MỤC LỤC
Đây là những phản ứng làm giảm hàm lượng lưu huỳnh, nitơ trong xăng, do đó nó là phản ứng phụ có lợi.
Cơ chế đóng vòng của cacboncation 3 cho thấy khi reforming n - C6 thì không phải vòng 6 được tạo ra đầu tiên mà chính là các hợp chất vòng 5 đã sinh ra metylcyclopentan, metylcyclopenten. Người ta tính được rằng hằng số tốc độ phản ứng khi reforming các naphten thì lớn hơn cả trăm triệu lần so với ở các parafin rất nhiều là quan hệ đó biến đổi phụ thuộc vào chất xúc tác.
Tốc độ tạo thành ioncacboni và sự chuyển hóa tiếp theo của nó theo những hướng khác nhau được quyết định trước hết bởi cấu trúc hydrocacbon tham gia phản ứng và bản chất tâm axit trên bề mặt chất mang. Phản ứng dehydro hóa sẽ xảy ra khi cả 6 nguyên tử hydro bị tách loại khỏi nguyên tử cyclohexan một cách đồng thời.Sau này cùng với sự phát triển của lý thuyết phức và những phương pháp nghiên cứu hiện đại đồng thời cũng phổ biến một quan niệm khác về cơ chế dehydrohoá cyclohexan.
Điều kiện chỉ chuyển hóa một phần aromatic còn nếu thực hiện ở nhiệt độ cao hơn và áp xuất khoảng 10 atm thì có thể chuyển hóa gần như hoàn toàn naphten thành aromatic tại cân bằng với những quá trình làm việc ở áp xuất cao từ 34 50 atm thì vận tốc phản ứng hydrocracking cao, mức độ chuyển hóa thành hợp chất thơm giảm (bảng 2), vận tốc phản ứng khử hoạt tính xúc tác và hiệu xuất hydro thấp. Nước và các hợp chất chứa Clo cũng là thành phần không mong muốn trong nguyên liệu vì nó thay đổi độ axit của chất mang và làm đảo lộn cân bằng của những phản ứng đang xảy ra vì những hợp chất này để loại bỏ, hàm lượng của chúng cần phải điều khiển cẩn thận để duy trì độ axit của xúc tác.
Nhưng dù áp dụng sơ đồ nào, nguyên liệu trước khi đưa vào quá trình reforming xúc tác cũng cần phải được qua công đoạn làm sạch hay xử lý bằng hydro (nhất là quá trình sử dụng xúc tác đa kim loại). Nguyên liệu naphta, xăng (có thể dùng cả kerosen, gasoil khi xử lý các nhiên liệu này) được trộn với hydro để tiến hành phản ứng ở nhiệt độ và áp xuất cao. Những hydrocacbon chứa lưu huỳnh và các tạp chất khác chứa trong nguyên liệu sẽ được phản ứng với hydro trên xúc tác Co hoặc xúc tác Ni/Mo trên chất mang để các tạp chất này được tách ra một cách chọn lọc và nhờ đó các đặc tính của nguyên liệu được cải thiện.
Các kim loại ở trong hợp chất cơ kim được tách ra trước hết bởi sự phân huỷ các kim loại, bị giữ lại trong xúc tác hoặc do hấp thụ hoặc phản ứng hóa học với xúc tác. Các halogen hữu cơ được phân huỷ hoàn toàn trên xúc tác tạo thành các muối vô cơ, chúng được tách ra khi ta phun nước để hạn chế tối đa sự ăn mòn thiết bị.
Hàm lượng của các tạp chất cần tách sẽ được khống chế bằng điều kiện công nghệ của quá trình. Tính chất và thành phần của sản phẩm của một số loại xăng reforming được trình bày ở bảng 3. Tuy vậy, nhược điểm lớn nhất của xăng reforming xúc tác là ít phần nhẹ trong quá trình không xảy ra sự cắt mạch cacbon để tạo hydrocacbon nhẹ nên tỷ trọng xăng cao, áp xuất hơi bão hòa thấp, sự phân bổ thành phần phân đoạn không đều nên động cơ sẽ khó khởi động nếu nhiệt độ thấp và làm việc ở chế độ không ổn định.
Trong quá trình bảo quản, chuyển vận và sử dụng xăng ôtô đều dễ bị oxy hóa bởi oxy trong không khí và tạo thành các sản phẩm chứa oxy rất đa dạng, mức độ oxy hóa phụ thuộc rất nhiều vào chất lượng của xăng, cụ thể là thành phần hóa học của xăng. Các hợp chất olefin có 2 nối đối xứng và các loại cacbua hydro dạng mono hoặc diolefin nối với phần thơm là kém ổn định nhất.
Benzen : trong quá trình reforming, benzen thường được tạo ra dưới dạng hỗn hợp với các hydrocacbon thơm khác và được tách ra bằng cách trích ly dung môi hoặc chưng cất đẳng phí vì nó tạo hỗn hợp đẳng phí với các hydro cacbon thơm khác. Hai quá trình chủ yếu là hydro reforming ở 480 550oC, với xúc tác trioxylmolipden kết hợp với chưng cất trích ly bằng phenol và quá trình platforming udex với nguyên liệu là phân đoạn có nhiệt độ sôi là 150 400oF, xúc tác platin, nhiệt độ phản ứng 800 950oF : độ chuyển hóa benzen trong qúa trình udc udc là 80%, quá trình kèm theo trích ly bằng dung môi là các glycol (ví dụ: 75% dietylenglycol và 25% dipropylenglycol) và một ít nước. Benzen thu được có độ tinh khiết cao thường được sử dụng để trộn với xăng vì nó có đặc tính chống kích nổ cao, có xu hướng làm giảm sự khó nổ máy.
Tuy nhiên sự dehydro hóa của naphten dễ dàng hơn benzen, lượng toluen thu được nhờ reforming rất lớn được ứng dụng chủ yếu là phần của xăng, của dung môi cho nhiều quá trình. Hiệu xuất xylen hỗn hợp sau khi tách benzen và toluen nhờ trích ly trong dung môi chọn lọc cao (> 99%) hai quá trình reforming của toyoragon và allentoc - richfichtơra có hiệu quả rất cao mà không cần dùng kim loại quý và hydro.
Chưng cất trích ly (phenol), chưng cất đẳng phí, hoặc tích luỹ bằng dung môi dietylen glycol (xioxyt + lưu huỳnh). Ngoài ra benzen còn là nguồn nguyên liệu để sản xuát rất nhiều hợp chất hóa học và là dung môi cho nhiều sản phẩm công nghiệp. Toluen: Thường thu được đồng thời với benzen trong quá trình hydro reforming và platforming.
Xylen được sử dụng để pha trộn với xăng (có thể dùng ngay dạng hỗn hợp BTX hoặc dung môi).
Các phản ứng chính của quá trình reforming xúc tác đều kèm theo sự tăng thể tích, ví dụ khi khử hydro và các hydrocác bon naphten thì cứ 1 mol naphten sẽ tạo ra 3 mol hydro, như vậy thể tích tăng lên 4 lần và khử hydro vòng hóa các hydrocacbon parafin thì cứ 1 mol parafin sẽ tạo ra 4 mol hydro, tức là thể tích của sản phẩm sẽ lớn lên gấp 5 lần thể tích ban đầu. Tốc độ nạp liệu ảnh hưởng đến quá trình như sau: Khi tăng lưu lượng của nguyên liệu hay giảm lưu lượng xúc tác trong thiết bị phản ứng sẽ làm tăng tốc độ nạp liệu đồng nghĩa với thời gian lưu giảm, điều này sẽ dẫn đến giảm hiệu xuất hydro và các hydrocacbon, đặc biệt là hydrocacbon thơm. Lò phản ứng phổ biến trong dây chuyển reforming với xúc tác cố định thường dùng hai loại : Loại lò phản ứng dọc trục và lò phản ứng xuyên tâm, lò phản ứng dọc trục là loại hình trụ, trong đó khối khí chuyển động qua lớp xúc tác dọc theo hướng trục của lò phản ứng (có thể từ trên xuống hay từ dưới lên).
Phương pháp tái sinh xúc tác của quá trình reforming xúc tác thường được chia làm 3 loại: Thiết bị bán tái sinh (xúc tác cố định), thiết bị tái sinh tuần hoàn (có lắp đặt 1 thiết bị phản ứng phụ) và thiết bị lớp xúc tác chuyển động. Do hệ thống này làm việc ở áp xuất thấp hơn (200 400 psi) và điều kiện khắc nghiệt hơn thiết bị phần tái sinh nên việc tái sinh từng thiết bị được tiến hành thường xuyên và do đó hiệu xuất sản phẩm cao hơn trong hệ thống bán tái sinh. Nguyên liệu là phân đoạn naphta đã được sấy khô và làm sạch từ bộ phận hydro hoá làm sạch được trộn với khí hydro từ máy nén sau khi qua các thiết bị trao đổi nhiệt và được nạp nối tiếp vào lò đốt nóng và các reactor theo thứ tự từ 1 đến 3 (ngày nay thường dùng đến lò thứ 4).
Khi sơ đồ công nghệ có sử dụng lò dự trữ thì việc tái sinh không làm gián đoạn thời gian làm việc và chỉ đơn giản là chuyển đường dẫn nguyên liệu sang lò phản ứng làm việc thế, quá trình tái sinh đối với lò phản ứng đã làm việc tương tự như đã trình bày ở trên.
Những tính toán lò phản ứng dựa trên các số liệu ban đầu đã cho như công suất, đặc tính của nguyên liệu. + Xác định hằng số tốc độ của phản ứng loại hydro của hydrocacbon naphten thành hydrocacbon thơm. - Thiết lập cân bằng nhiệt lượng của lò phản ứng, từ đố tính toán nhiệt độ của hỗn hợp khí ở cửa ra của lò phản ứng.
* Tính toán sự phân bố áp suất của các cấu tử trong hỗn hợp nguyên liệu và khí tuần hoàn. Trong bảng trên P* là lượng hydrocacbon khí tuần hoàn; A,N,P lần lượt là ký hiệu của hydrocacbon aromatic, naphten, parafin trong nguyên liệu. Ta nhận thấy KP2 <<1 chứng tỏ ưu thế phản ứng nghịch chuyển hóa từ hydrocacbon parafin thành naphten.
Việc tính toán cho lò phản ứng thứ hai và thứ ba hoàn toàn tương tự với lò phản ứng thứ nhất.