MỤC LỤC
Nhằm tăng thêm độ dự trữ cho khóa để đảm bảo sự an toàn và trạng thái hoạt động ổn định thì ta phải chọn khóa có Vds = 800(V).
Điện áp tựa dạng tam giác có hai sườn lên và xuống, lệnh mở van động lực ở giao điểm sườn lên, thì ở giao điểm sườn xuống sẽ phát lệnh khoá van và ngược lại. Một xung được coi là phù hợp để mở van là xung có đủ công suất (đủ dòng điện và điện áp điều khiển), cách ly giữa mạch điều khiển với mạch động lực khi nguồn động lực hàng chục vôn trở lên. Độ rộng xung điện áp α có thể được điều chỉnh bằng việc thay đổi cả thời điểm mở van bán dẫn ở sườn lên điện áp tựa và cả thời điểm khoá van bán dẫn tại sườn xuống điện áp tựa.
Tuy nhiên việc tạo điện áp có cả hai cạnh lên và xuống cùng biến thiên như hình 5.3a thường được thực hiện bằng mạch RC, hình dạng các cạnh đó phụ thuộc vào việc nạp và xả tụ. Khi thay đổi điện áp điều khiển, có một cạnh của tam giác là cạnh góc vuông, nên thời điểm mở (hay khoá) theo cạnh đó sẽ cố định trong một chu kì. Khuếch đại A1 có hồi tiếp dương bằng điện trở R1, đầu ra có trị số điện áp nguồn và dấu phụ thuộc hiệu điện áp hai cổng V+, V-.
Giống như mạch khuếch đại của tiristor, mạch khuếch đại cho van động lực là tiristor có nhiệm vụ tạo xung phù hợp để mở tranzitor.
Nhờ sự phát triển tiến bộ của khoa học kỹ thuật, ngày nay người ta sử dụng một kiểu sơ đồ điều khiển tiến bộ hơn, có nhiều ưu điểm hơn. Với yêu cầu tải là máy tính xách tay, và sơ đồ mạch động lực đã chọn như ở trên ta sử dụng IC TL494 để điều khiển cho mạch động lực đã chọn ở trên. IC TL494 không chỉ là một khối cơ bản được tạo thành nhờ sự kết hợp chặt chẽ giữa các khối riêng lẻ để đáp ứng được yêu cầu điều khiển bộ nguồn mà nó còn đưa ra nguyên lý điều khiển cơ bản và giúp giảm đi số lượng mạch cần phải có để cấu tạo nên IC TL494.
Việc điều chỉnh xung đầu ra được thực hiện bằng cách so sánh xung răng cưa được phát ra từ mạch tạo dao động với hai tín hiệu điều khiển. Trong khoảng thời gian tín hiệu điều khiển tăng lên thì xung răng cưa giảm xuống, vì vậy độ lớn của xung ở đầu ra sẽ giảm xuống. Tín hiệu điều khiển được tạo ra từ hai nguồn: thứ nhất là mạch điều khiển thời gian chết (dead- time control circuit), thứ hai là bộ khuyếch đại sai lệch (error amplifier).
Bộ này có khả năng tạo ra giá trị thời gian chết cho trước xấp xỉ bằng 3%, đây là thời gian chết nhỏ nhất có thể đạt được.
Tuy nhiên, tần số mạch dao động bằng tần số đầu ra chỉ trong trường hợp ứng dụng cho mạch một đầu ra. Còn khi áp dụng cho sơ đồ đẩy-kéo thì tần số ra chỉ bằng 1/2 tần số của mạch tạo dao động.Tần số của mạch tạo dao động nằm trong khoảng từ 1kHz tới 300kHz.
Đầu vào của bộ điều khiển dead-time sẽ tạo ra thời gian chết là nhỏ nhất. Đầu ra của bộ so sánh sẽ kiểm soát khóa công suất Q1 và Q2 khi điện áp tại đầu vào lớn hơn điện áp răng cưa của mạch tạo dao động (xem trong hình 5.16) .Với điện áp đồng dạng là 110mV đảm bảo cho thời gian chết đạt giá trị nhỏ nhất là 3% khi đầu vào của bộ điều khiển dead-time được nối đất. Đặt tín hiệu điện áp lên đầu vào của bộ điều khiển dead-time có thể điều chỉnh được thời gian chết tăng thêm.
Từ đó ta có thể điều khiển tuyến tính thời gian chết bắt đầu từ giá trị nhỏ nhất là 3% đến 100% tương ứng với điện áp đầu vào thay THƯ VIỆN ĐIỆN TỬ TRỰC TUYẾN. Đầu vào của bộ điều khiển dead-time có giá trị trở kháng vào cao (Il < 10àA). Đầu vào của bộ so sánh không xuất hiện hiện tượng trễ, vì vậy yêu cầu phải có thiết bị bảo vệ để tránh khi hoạt động đạt đến các giá trị ngưỡng.
Bộ so sánh hoạt động trong khoảng thời gian là 400ns kể từ lúc tín hiệu điều khiển đạt lên đầu vào tới lúc đưa tới đầu ra của khóa transistor, chỉ cần tăng thêm 100mV.
Tuy nhiờn, để điều khiển theo quy tắc thỡ đầu vào phải được giới hạn. Bộ này tạo ra cách điện với nguồn vào để đạt được tuổi thọ cao hơn.
Trong cấu trúc của IC-TL494 có khối output-control logic nhằm tăng thêm nhiều ứng dụng cho mạch điều khiển. Trong ứng dụng cho sơ đồ đẩy-kéo hoặc sơ đồ một đầu ra, thì khả năng làm việc của mạch sẽ đạt mức tối ưu nhờ việc lựa chọn điều kiện thích hợp để đặt vào các đầu vào khác nhau. Mạch output-control input xác định trạng thái làm việc của khóa công suất transistor là hoạt động song song hay hoạt động đẩy-kéo.
Bộ output-control input là bộ không đồng bộ và có điều khiển một chiều trên đầu ra, không phụ thuộc vào mạch tạo dao động hay flip-flop điều chỉnh độ rộng xung. Trong chế độ hoạt động song song, thì output-control input phải được nối đất. Trong chế độ này, những xung đầu ra của bộ điều khiển độ rộng dead-time và bộ so sánh PWM được truyền đi nhờ cả hai khóa transistor đầu ra hoạt động song song.
Với điều kiện này, mỗi khóa công suất ở đầu ra được kích hoạt nhờ flip-flop điều khiển độ rộng xung.
Từ lúc flip-flop nhận được tín hiệu từ đầu ra của bộ so sánh, không phải của bộ tạo dao động, thì đầu ra luôn hoạt động ở chế độ đẩy-kéo. Flip-flop không thay đổi trạng thái cho đến khi xuất hiện xung ở đầu ra của mạch tạo dao động.
+12V: Trong các hệ thống máy tính hiện đại, đây là đường điện đóng vai trò quan trọng nhất, ban đầu nó được sử dụng để cấp nguồn cho mô tơ của đĩa cứng cũng như quạt nguồn và một số thiết bị làm mát khác. Nếu không có tín hiệu này, BMC sẽ không cho phép máy tính hoạt động.Trong số các đường điện chính, những đường có giá trị dương (+) đóng vai trò quan trọng hơn và bạn phải luôn để mắt tới chúng. Nếu như với nguồn AT, việc kích hoạt chế độ bật được thực hiện qua công tắc có bốn điểm tiếp xúc điện thì với bộ nguồn ATX bạn có thể bật tắt bằng phần mềm hay chỉ cần nối mạch hai chân cắm kích nguồn (dây xanh lá cây và một trong các dây Ground đen).
Gần đây xuất hiện một chuẩn mới với tên gọi BTX (Balanced Technology Extended) có cách sắp xếp các thành phần bên trong máy hoàn toàn khác với ATX hiện nay, cho phép các nhà phát triển hệ thống có thêm tùy chọn nhằm giải quyết vấn đề nhiệt lượng, độ ồn. - Molex: Sử dụng cho các loại đĩa cứng và ổ đĩa quang, ngoài ra bạn cũng có thể sử dụng để cắm quạt và một số thiết bị khác như card đồ họa AGP (Geforce 5, 6 hoặc Radeon X800) hay BMC như của Asus hay DFI. Khác với Active PFC, Passive PFC căn chỉnh dòng điện thông qua các tụ lọc và chính vì thế khả năng làm việc của nó sẽ bị thay đổi theo thời gian cũng như chịu ảnh hưởng khá lớn từ các yếu tố bên ngoài như nhiệt độ, chấn động.
Ví dụ bạn cắm một loạt thiết bị với tổng công suất khoảng 430W vào bộ nguồn có chỉ số Continuous Power là 400W, chúng vẫn có thể hoạt động được trong khoảng thời gian ngắn nếu mức Peak Power của nguồn đạt trên 430W nhưng sau một khoảng thời gian nhất định, các linh kiện trong nguồn sẽ bị THƯ VIỆN ĐIỆN TỬ TRỰC TUYẾN. Khi bộ nguồn làm việc nặng nhọc hơn (nuôi nhiều thiết bị) thì nhiệt lượng do nó tỏa ra cũng tăng cao và đối với những bộ nguồn có quạt tự điều chỉnh tốc độ, số vòng quay của quạt cũng tăng lên và khi đó những âm thanh ồn ào bắt đầu xuất hiện. Một khi đã tìm được một bộ nguồn phù hợp cả về công suất lẫn đường +12V, chúng ta phải đảm bảo kiến trúc đường điện +12V đáp ứng được các thiết bị cần thiết, ví dụ riêng con chip Pentium 4 3,4 Extreme Edition đã cần tới 11A trên đường 12V.