MỤC LỤC
Trong khuôn khổ của khóa học Cao học, chuyên ngành Tự động hóa tại trường Đại học Kỹ thuật Công nghiệp, được sự tạo điều kiện giúp đỡ của nhà trường và Tiến sĩ Phạm Hữu Đức Dục, em đã lựa chọn đề tài tốt nghiệp của mình là “Nghiên cứu ứng dụng mạng nơron truyền thẳng nhiều lớp trong điều khiển thích nghi vị trí động cơ điện một chiều khi có thông số và tải thay đổi”. Khác hẳn với kỹ thuật điều khiển kinh điển là hoàn toàn dựa vào sự chính xác tuyệt đối của thông tin mà trong nhiều ứng dụng không cần thiết hoặc không thể có được, điều khiển nơron truyền thẳng nhiều lớp chỉ cần sử lý những thông tin (không chính xác) hay không đầy đủ, những thông tin mà sự chính xác của nó chỉ nhận thấy được giữa các quan hệ của chúng với nhau và chỉ có thể mô tả được bằng ngôn ngữ, đã có thể cho ra những quyết định chính xác.
Chính khả năng này đã làm cho điều khiển nơron truyền thẳng sao chụp được phương thức xử lý thông tin và điều khiển của con người. Do đó việc áp dụng điều khiển nơron truyền thẳng nhiều lớp vào hệ thống điều khiển thích nghi vị trí động cơ một chiều khi có tải và thông số thay đổi là việc cần phải làm.
Năm 1969, Minsky và Papert phân tích sự đúng đắn của Perception, họ đó chứng minh cỏc tớnh chất và chỉ rừ cỏc giới hạn của một số mụ hình. Thuật toán học lan truyền ngược (Back Propagation learning rule) được Rumelhart, Hinton, Williams (1986) đề xuất luyện mạng nơron nhiều lớp.
Có thể trả lời ngắn gọn là sự giống nhau của các tín hiệu của các tế bào thần kinh đơn lẻ, do đó chức năng thực sự của bộ não không phụ thuộc vào vai trò của một tế bào thần kinh đơn, mà phụ thuộc vào toàn bộ các tế bào thần kinh hay cách các tế bào thần kinh liên kết với nhau thành một mạng thần kinh hay một mạng nơron (Neural Networks). Dựa vào cấu trúc của nơron sinh học có nhiều mô hình được đưa ra như perceptron (Roenblatt, 1958); adaline (Windrow và Hoff, 1960). Mỗi nơron gồm có nhiều đầu vào và một đầu ra. Trên mỗi đầu vào có gắn một trọng số để liên hệ giữa nơron thứ i với nơron thứ j. Các trọng số này tương tự như các tế bào cảm giác của nơron sinh học. học tuyến tính. Hàm động học phi tuyến ặ).
Một phần tử PE với hàm tích phân tuyến tính ở đầu vào và hàm chuyển đổi Threshold ở đầu ra được gọi là phần tử ngưỡng tuyến tính (Linear Threshold Unit - LTU) và một phần tử PE với hàm tích phân tuyến tính ở đầu vào và hàm chuyển đổi ở dạng hàm sigmoid 1 và 2 cực ở đầu ra được gọi là phần tử graded tuyến tính (Linear Graded Unit - LGU). Đầu ra của các nơron này được đưa đến đầu vào của bốn nơron tiếp theo, bốn nơron này không trực tiếp tiếp xúc với môi trường xung quanh và làm thành lớp trung gian trong mạng (hidden layer).
Giữa hai lớp nơron vào và ra có một hoặc nhiều lớp nơron không liên hệ trực tiếp với môi trường bên ngoài được gọi là các lớp ẩn (Hidden Layer). Hai loại mạng nơron một lớp và nhiều lớp được gọi là truyền thẳng (Feedforward Network) nếu đầu ra của mỗi nơron được nối với các đầu vào của các nơron cùng lớp đó hoặc đầu vào của các nơron của các lớp trước đó.
Trong lĩnh vực ứng dụng, mạng nơron có khả năng tạo ra các đáp ứng đầu ra dựa trên thông tin thu thập vào của mạng, điều đó có nghĩa là ứng với một thông tin xác định ở đầu vào của mạng cung cấp một đáp ứng tương ứng xác định ở đầu ra. Nguyên tắc học được thực hiện cho mạng mà cấu trúc của mạng cũng như của các phần tử nơron cố định, chính là thay đổi giá trị của các phần tử trong véc tơ hàm trọng lượng, véc tơ ghép nối giữa các phần tử nơron trong mạng.
Sai lệch đó sẽ được truyền ngược tới đầu vào để điều chỉnh thông số mạng nơron là ma trận trọng sô W… Quá trình cứ thế tiếp diễn sao cho sai lệch giữa tín hiện ra mong muốn và tín hiệu ra thực tế trong phạm vi cho phép, kết quả ta nhận được ma trận trọng số W với các phần tử wij đã được điều chỉnh phù hợp với đặc điểm của đối tượng hay hàm số mạng nơron cần học. Tín hiệu giám sát bên ngoài d thường được tiến hành bởi các tín hiệu ước lượng để tạo thông tin tín hiệu ước lượng cho mạng nơron điều chỉnh trọng số với hy vọng sự ước lượng đó mạng lại sự tốt đẹp cho quá trình tính toán.
Thông thường, các nơron đầu vào không làm biến đổi các tín hiệu vào xi, tức là chúng không có các trọng số hoặc không có các loại hàm chuyển đổi nào, chúng chỉ đóng vai trò phân phối các tín hiệu và không đóng vai trò sửa đổi chúng. Mạng liên kết 2 chiều (Bidirectional Associative Memory – BAM) là mạng thuộc nhóm mạng nơron hồi quy gồm 2 lớp nơron liên kết tay đôi, trong đó đảm bảo nơron của cùng một lớp không liên kết với nhau, cùng hội tụ về trạng thái ổn định (Kosko, 1986).
Nú chỉ rừ RTRL và RTRL có tín hiệu chỉ đạo là 2 loại đơn giản của luật học EKF (Williams, RTRL có tín hiệu chỉ đạo là 2 loại đơn giản của luật học EKF (Williams, 1992b). Đối với bài toán điều khiển tiên đoán, mô hình đối tượng được dùng để tiên đoán đầu ra tương lai của đối tượng và sử dụng một thuật toán tối ưu chọn tín hiệu đầu vào làm tối ưu chỉ tiêu tương lai.
- Giai đoạn I: (khoảng 1960-1975) được đánh dấu bằng nhận dạng các mô hình không tham số cho đối tượng điều khiển tuyến tính mà trọng tâm là thiết lập hàm trọng hay đặc tính tần biên – pha dưới dạng một dãy giá trị (phức). Cho hệ tuyến tính bất biến thời gian với thông số chưa biết, đối với hệ một đầu vào, một đầu ra (Single Input, Sing Output – SISO) để điều khiển và quan sát đối tượng, ma trận A, B và C của đối tượng ở dạng rời rạc được cho ở dạng. Số lượng các lớp, số nơron ở mỗi lớp và các mối liên kết giữa các nơron mỗi lớp với nhau của mạng nơron nhận dạng được chọn cần phù hợp với độ chính xác và đặc tính vào-ra của hàm phi tuyến tương ứng của đối tượng đã cho.
Việc nhận dạng ở đây là ước lượng các tham số 𝛼 𝑖 cũng như các trọng số của mạng nơron sử dụng thuật toán lan truyền ngược động dựa vào sai lệch e(k) giữa lượng ra của mô hình 𝑦 𝑝(𝑘) và lượng ra thực yp(k).
Điều khiển thích nghi là tổng hợp các kỹ thuật điều khiển nhằm tự động chỉnh định các bộ điều chỉnh trong mạch điều khiển nhằm thực hiện hay duy trì ở một mức độ nhất định, chất lượng của hệ khi thông số của quá trình được điều khiển không biết trước hay thay đổi theo thời gian. Sai lệch e(t) được đưa tới khối tính toán điều khiển thích nghi, cùng với một số tín hiệu thích hợp khác tham gia tạo tín hiệu hiệu chỉnh thích nghi g*(t) có tác dụng bù đắp cho các ảnh hưởng không mong muốn đưa tín hiệu ra của hệ thống y(t) bám được tín hiệu ra của mô hình mẫu ym(t).
Động cơ điện một chiều khi làm việc với tải thay đổi, làm dòng điện phần ứng thay đổi theo yêu cầu của tải, dẫn đến nhiệt độ động cơ và mức độ từ hóa của lừi thộp thay đổi, do đú làm cho điện trở phần ứng R, điện cảm L của động cơ thay đổi theo. Từ đó một vấn đề đặt ra là cần có một giải pháp nào đó để tạo ra một bộ điều chỉnh thông minh có khả năng điều chỉnh thích nghi vị trí của động cơ điện một chiều khi làm việc với tải và các thông số điện trở phần ứng R và điện cảm L thay đổi. * Dựa trên kết quả nghiên cứu của các tài liệu, luận văn đã đi sâu phân tích được sự đúng đắn của việc sử dụng khối điều khiển NARMA-L2 với luật học thích nghi tạo ra tín hiệu điều khiển để đạt được sai lệch trung bình bình phương trong giới hạn cho phép.
- Kết quả mô phỏng cho thấy sai lệch điều chỉnh giữa vị trí mẫu qd và vị trí q của mô hình điều chỉnh là rất nhỏ, điều đó chứng tỏ rằng sử dụng mạng nơron truyền thẳng nhiều lớp (9 lớp) trong điều khiển thích nghi vị trí động cơ điện một chiều khi có thông số R, L và tải thay đổi trong vùng tải nhỏ là một giải pháp rất hiệu quả và có độ chính xác mong muốn.