MỤC LỤC
SSFM giải phương trình (13) bỏ qua đạo hàm bậc hai A(z,t) theo chiều truyền dẫn z (phép gần đúng lớp vỏ trường biến đổi chậm ) và sử dụng kỹ thuật khai triển Fourier nhanh (FFT). Phương pháp SSFM thu được nghiệm gần đúng bằng cách giả sử rằng trong quá trình trường quang lan truyền trên một khoảng cách nhỏ h, ảnh hưởng của tán sắc và phi tuyến coi như tác động độc lập.
Đường nét chấm biễu diễn sự mở rộng xung trong trường hợp xung Gauss không bị dịch tần (C=0). Như vậy, kết hợp cân bằng giữa GVD và SPM sẽ làm giảm sự mở rộng xung để xung quang có thể lan truyền không méo qua khoảng cách dài.
Vì E tích lũy theo sợi dẫn quang mà tính phi tuyến có thể ảnh hưởng đáng kể đến sự dịch chuyển theo chiều dọc, nói cách khác là ảnh hưởng của nú lờn cỏc đặc tớnh dẫn cú thể bỏ qua vỡ sự khỏc nhau về chỉ số chiết suất lừi- vừ là lớn hơn sự biến đổi phi tuyến trong mặt cắt chiết suất. Ảnh hưởng của tính phi tuyến lên sự dịch chuyển theo chiều dọc có thể được ước tính bằng cách lấy trung bình tích n2I trên phần cắt trong sợi.
Với hàm đầu vào chẳng hạn như u(0,τ )=N.sechτ đặt vào trong sợi, hình dạng của nó không thay đổi trong suốt quá trình lan truyền khi N=1, còn khi N>1 dạng đầu vào được khôi phục tại ξ =mπ/2(m∈Z). Chỉ soliton cơ bản vẫn không có sự dịch tần (chirp-free) trong suốt quá trình lan truyền trong khi duy trì hình dạng xung của nó.
Độ rộng xung và công suất đỉnh dao động ban đầu nhưng cuối cùng trở nên ổn định sau khi xung đầu vào đã tự sửa để thỏa mãn điều kiện N=1 trong phương trình (2.8). Nhìn chung một sự lệch nhỏ từ điều kiện lý tưởng không gây nguy hại đến sự lan truyền soliton vù xung đầu vào có thể sửa các tham số của nó để hình thành siliton cơ bản.
Sự mô phỏng bằng số cho thấy rằng trung tâm độ dốc có thể lan truyền như một soliton tối ngay cả khi nền không đồng bộ miễn là cường độ nền đồng dạng trong khoảng của độ dốc. Có thể tạo ra các cặp soliton tối bằng nhiều cách khác nhau như sử dụng giao thoa kế Mach-Zender, chuyển đổi phi tuyến tín hiệu beat trong sợi giảm tán sắc và chuyển đổi một tín hiệu mã NRZ thành tín hiệu RZ, sau đó thành các soliton tối.
Tuy nhiên xung có thể được tạo ra gần như không chirp bằng việc cho nó qua một sợi quang với tán sắc GVD bình thường (β2>0) mà nén xung ở cùng thời gian (chú ý kỹ thuật này tạo các xung với sự lệch tần sao cho tham số C<0). Trong một thí nghiệm khác, xung 3ps ở tốc độ lặp 40GHz đã được tạo ra sử dụng một laser DFB đơn mà đầu ra của nó được điều chế bởi bộ điều chế Mach-Zender trước khi đặt nó trong sợi thay đổi tán sắc với dạng tán sắc răng cưa.
Hiệu ứng tán xạ dẫn tới sự dịch xuống liên tục của tần số sóng mang soliton khi phổ xung trở nên rất rộng bởi vậy các thành phần tần số cao của xung có thể truyền năng lượng đến các thành phần tần số thấp của xung đó thông qua sự khuyếch đại Raman. Chẳng hạn, khi LD=50km nhưng các bộ khuyếch đại được đặt ở các khoảng cách 100km, các soliton cơ bản với T0=5ps được triển khai sau 500km trong trường hợp các bộ khuyếch đại tập trung nhưng có thể truyền lan trên các khoảng cách lớn hơn 5000km khi sự khuyếch đại phân bố được sử dụng.
Trong dạng đơn giản nhất của quản lý tán sắc, một phần tương đối ngắn của sợi bù tán sắc (DCF) được thêm vào định kỳ đối với sợi truyền dẫn tạo ra biểu đồ tán sắc tương tự như đã được sử dụng cho các hệ thống không phải soliton. Thí nghiệm 10Gb/s này đã truyền các tín hiệu trên 28Mm nhờ sử dụng nhờ sử dụng một vòng lặp sợi quay vòng gồm 100km sợi GVD thông thường và 8km sợi GVD dị thường bởi vậy GVD trung bình là dị thường (khoảng −0,1ps2/km).
(a) dịch tần trong khoảng thời gian xung đột của hai soliton độ rộng 50ps với độ rộng kênh 75GHz (b) độ dư dịch tần sau xung đột do các bộ khuyếch đại tập trung LA=20 và 40km đối với các trường hợp đường cong theo trình tự thấp hơn. Sự dịch tần vượt ra ngoài phạm vi chiều dài một soliton khi hai soliton tiếp cận nhau đạt tới giá trị công suất đỉnh xấp xỉ 0.6GHz tại điểm chồng xung cực đại va sau đó giảm trở lại không khi hai soliton tách ra.
Nội dung phần này như sau: trong phần 1, thông qua các kỹ thuật nhiễu loạn soliton, chúng ta nhận được từ các phương trình căn bản cho phép chúng ta tính toán độ lệch tần (phương trình (10))và sự dịch thời tương ứng (xem phương trình (12)) thu được từ sự xung đột đơn giữa hai soliton được ghép kênh phân chia theo bước sóng trong sợi quang không lý tưởng. (Không có sự khác nhau nào đáng kể được nhận ra trong trường hợp không có các bộ lọc nhở sử dụng sự ước lượng chính xác hơn bởi (18b). Bởi vậy có thể thấy các kênh ngoài cùng mang lại hiệu suất tồi nhất. Sử dụng các công thức thu được trong phần trước cho jitter timing tổng chúng ta có thể soạn ra một ước lượng cho khoảng cách cực đại của truyền dẫn không lỗi có thể đạt tới được với chiều dài hệ thống mong muốn. Chung hơn, để có tỉ lệ lỗi bít tổng thấp hơn 10−9trong một hệ thống đa kênh thì cần thiết jitter timing trong mỗi các kênh riêng thấp hơn 0.1637rτ. Hoặc, trong các đơn vị thứ nguyên, jitter timing rms cực đại nhỏ hơn 0.818rτ. Lần lượt các điều kiện trước đặt ra một giới hạn trên đối với chiều dài hệ thống. Trong cả hai trường hợp chiều dài cực đại bị giới hạn bởi kênh có toàn bộ jitter timing lớn nhất. Tăng số lượng các kênh, Cj tương ứng tăng trong cả hai trường hợp bởi vì tổng theo k được chuyển qua một số lượng lớn các kênh và bởi vì các kênh được thêm vào duy nhất là các kênh ngoài cùng trong miền tần số, và tương tác mạnh hơn với tất cả các kênh khác. Chiều dài cực đại của chiều dài truyền dẫn không lỗi đối với một số kênh cho trước: a) không có các bộ lọc; b) có các bộ lọc. Các hệ số Fourier của G(z(ς)) sau đó được tính bằng cách phân chia thành các tích phân trong các khoảng con S:. Mỗi sự thay đổi từ gm đến Gm được thực hiện, tất cả các thủ tục đã được giới thiệu ở phần trước có thể vẫn được sử dụng để i) tính toán căn quân phươn jitter timing, ii) tỉ lệ lỗi bít và iii) ước lượng chiều dài hệ thống cực đại.
Tuy nhiên, đối với các giá trị Ω rất lớn (tức là các giá trị nhỏ của tỉ số zc/za) nhiều hệ số hơn trong chuỗi Fourier xuất hiện, và giá trị tối ưu của θ không thể được tìm thấy điểm xuất phát cơ bản của chủ đề phần trước. Trong cả hai trường hợp chúng ta biểu thị các kết quả trong 3 tình huống saU: i) không quản lý tán sắc; ii) Khoảng cách bước sợi quang bằng chiều dài bước trong các đơn vị thực (tức là θ =0.5); iii) giá trị của θ mà tạo ra cực tiểu của H1(. Các cực đại xẩy ra một cách tuần tự đối với. Căn quân phươn jitter timing trong hệ thống hai kênh WDM với zc /za =1.4; a) không có các bộ lọc; b) có các bộ lọc. Đường nét liền:. θ Các giá trị của τ,D,la,η2 giống như trong hình 1. Căn quân phươn jitter timing ở 10000km là một hàm của chiều dài xung đột: a) không có các bộ lọc; b) có các bộ lọc. Đường nét liền:. không có quản lý tán sắc; b) đường nét đứt: θ =0.5;các đường nét chấm gạch: giá trị θ mà tạo ra cực tiểu cho ∆trms, được định nghĩa về mặt số cho mỗi giá trị của zc/za.
- Soliton cơ bản có xung đầu vào bị dịch pha trong quá trình lan truyền trong sợi nhưng biên độ không đổi làm cho nó trở nên lý tưởng với truyền thông quang. Vì vậy các Soliton cơ bản tuy yêu cầu 1 dạng đặc biệt và công suất đỉnh riêng song nó có thể được hình thành ngay cả khi các giá trị đó lệch khỏi điều kiện lý tưởng nhờ khả năng tự sửa các tham số của mình.