MỤC LỤC
Các kết quả phân tích cho thấy cấu trúc protein h-tPA bao gồm 5 vùng thuộc hai chuỗi: chuỗi nặng của h-tPA (hay còn gọi chuỗi A, có khối lượng 39.000 kDa) được xác định ở đầu amino, còn chuỗi nhẹ (hay còn gọi chuỗi B, khối lượng 33.000. Chuỗi nhẹ của h-tPA, chứa vị trí tâm hoạt động (gồm năm exon được ngăn cách bởi bốn intron), vùng serine protease (P - serine protease domain) có vị trí từ amino acid 267 đến 527 và tương đồng với chuỗi xúc tác của enzyme phân hủy protein serine khác [38], [45]. Protein h-tPA được tổng hợp và tồn tại trong tế bào màng trong mạch dưới dạng chuỗi polypeptide sợi đơn, tuy nhiên h-tPA trưởng thành là một sợi đơn glycoprotein có 530 amino acid; 32 amino acid trình tự đầu sẽ được cắt khỏi h-tPA.
Theo Berg, khi bị glycosyl hóa ở vị trí Asn- 184 sẽ gây ức chế trung gian đối với plasmin để chuyển h-tPA từ phân tử dạng sợi đơn sang dạng sợi đôi, và khi glycosyl hóa ở vị trí Asn- 117 và/hoặc Asn- 448 sẽ làm giảm kích thích hoạt hóa của h-tPA kết hợp với tơ máu và hoạt động phân giải huyết khối [11].
Thành phần quan trọng nhất trong hệ thống phân giải tơ máu là glycoprotein plasminogen, là chất do gan sinh ra và có mặt trong huyết tương và có mặt hầu hết ở ngoài thành mạch. Plasminogen là dạng tiền enzyme (zymogen), là chất có vùng dễ phân chia, dưới tác dụng của chất hoạt hóa plasminogen sẽ được chuyển đổi thành dạng hoạt động và là dạng phân giải protein, plasmin. Mục tiêu đầu tiên của plasmin là tơ máu, nhưng plasmin có thể làm giảm một vài thành phần của hỗn hợp ngoài thành mạch và chuyển một số tiền hormone và tiền cytokine thành dạng hoạt động của chúng.
Nguyên tắc phân hủy tơ máu: bản thân quá trình phân hủy tơ máu được điều hòa bởi các chất ức chế chất hoạt hoá plasminogen (plasminogen activator inhibitors - PAIs) và chất ức chế plasmin (α2-antiplasmin), đây là những chất làm chậm quá trình phân giải tơ máu.
Một nhóm nghiên cứu ở Hà Lan đã tiến hành biến đổi vật chất di truyền của một cây thuốc lá và sau đó lai cây thuốc lá biến đổi gen này với một cây được thiết kế để sinh ra một loại kháng thể của chuột. Kết quả là kháng thể này cũng có dạng glycosyl hóa, rất giống với kháng thể sinh ra bởi chuột hơn bất kỳ khỏng thể thực vật nào được sinh ra trước đú. Cú thể thấy rừ rằng, khoa học hiện đại có vai trò rất to lớn trong việc hoàn thiện các hệ thống biểu hiện protein tái tổ hợp.
Các thành phần của PCR: đoạn DNA khuôn (cDNA mã hóa h-tPA được tạo dòng trong vector pUC18), hai cặp mồi đặc hiệu có chiều dài 15- 30 nucleotide, bốn loại dNTP (dATP, dTTP, dGTP, dCTP), DNA polymerase. – Giai đoạn kéo dài chuỗi: nhiệt độ phản ứng được nâng lên 70oC- 80oC (trung bình khoảng 720C) trong khoảng thời gian thích hợp (tùy thuộc chiều dài đoạn DNA cần tổng hợp), enzyme Taq polymerase hoạt động và quá trình tổng hợp DNA diễn ra;. Để kiểm tra cDNA mã hóa h-tPA, chúng tôi đã tiến hành xác định trình tự cDNA mã hóa h-tPA trong vector pUC18 sử dụng cặp mồi M13, sau đó trình tự này được phân tích và so sánh với trình tự NM000930 trên Ngân hàng Gen Quốc Tế.
Trong nghiên cứu này, đối với vector pGEX6p1 chúng tôi sử dụng hai enzyme là BamHI và XhoI, vì chúng có mặt trong vùng cắt gắn đa vị của vector biểu hiện pGEX6p1; đối với vector pET21a(+), chúng tôi đã sử dụng hai enzyme NdeI và XhoI. Bởi vì sản phẩm của một vòng của quá trình nhân là mẫu cho quá trình tiếp theo, mỗi chu kỳ cho hai sản phẩm DNA nên số lượng sản phẩm là phản ứng mũ một đoạn đôi DNA được xác định bởi đầu cuối 5’ của đoạn mồi oligonucleotide và chiều dài được xác định bởi khoảng cách giữa hai mồi. Xử lý vector pGEX6p1 và pET21a(+) bằng enzyme hạn chế Sau khi nghiên cứu tài liệu và điều kiện vật chất phòng thí nghiệm, chúng tôi đã tiến hành biểu hiện protein h-tPA trên vi khuẩn E.
Vector pGEX6p1 được thiết kết gồm có một gen lacIq, sản phẩm gen lacIq là protein ức chế kết hợp với vùng operator trên promoter tac, làm ngăn cản quá trình biểu hiện cho tới khi cảm ứng bởi IPTG, qua đó điều khiển quá trình biểu hiện của gen được thêm vào. Hai cặp enzyme NdeI/XhoI và BamHI/XhoI đã được sử dụng để tạo đầu bổ sung cho vector và đoạn chèn nên để kiểm tra, chúng tôi cũng sử dụng hai cặp enzyme này nhằm kiểm tra các dòng được chọn có mang đoạn chèn hay không. Theo tính toán lý thuyết, sản phẩm xử lý enzyme của plasmid tái tổ hợp bao gồm hai đoạn gen, một đoạn có kích thước tương ứng với vector gốc (vector mở vòng) và một đoạn có kích thước tương ứng với đoạn chèn (cDNA mã hóa h-tPA).
Đối với vector pET21a(+), chúng tôi cũng thu được một băng có kích thước khoảng 5,5kb (tương ứng với kích thước vector pET21a(+)) và một băng có kích thước khoảng 1,7kb (tương ứng với kích thước cDNA mã hoá h-tPA). Kiểm tra vector tái tổ hợp mang cDNA mã hóa h-tPA bằng kỹ thuật PCR Để khẳng định lại các dòng plasmid tái tổ hợp đã được chọn có mang đúng đoạn gen mã hóa h-tPA, chúng tôi đã tiến hành PCR với việc sử dụng các plasmid được chọn làm khuôn để nhân đoạn h-tPA với các cặp mồi đặc hiệu. Vì vậy, sau khi chọn được các dòng mang cDNA mã hoá h-tPA, trước khi tiến hành biểu hiện, chúng tôi đã tinh sạch và một lần nữa xác định trình tự cả hai chiều đoạn cDNA bằng hai cặp mồi: cặp mồi T7 đối với vector pET21a(+) và cặp mồi PEXF/PEXR đối với vector pGEX6p1 trên máy xác định trình tự tự động.
Từ kết quả so sánh trên, chúng tôi nhận thấy trình tự cDNA mã hóa h-tPA được tạo dòng trong hai vector biểu hiện hoàn toàn không thay đổi so với trình tự cDNA đã xác định được trong vector tạo dòng pUC18.
Ở vector pET21a(+), không có trình tự kết thúc do chúng tôi thiết kế mồi PCR nhằm gắn đuôi His vào giúp quá trình tinh sạch protein h-tPA sau này được dễ hơn. Kiểm tra protein bằng phương pháp điện di trên SDS-PAGE Đối với vector biểu hiện pGEX6p1 mang h-tPA, kết quả phân tích SDS- PAGE cho thấy các mẫu thí nghiệm đã xuất hiện một băng protein mới có kích thước khoảng 95kDa so với các mẫu đối chứng. Mẫu đối chứng âm chúng tôi sử dụng là dịch phá màng của tế bào BL21 có chứa vector pGEX6p1 gốc (giếng 5) và dịch phá màng của E.coli BL21 không mang vector (giếng 7) có cảm ứng IPTG.
Ở giếng 5 xuất hiện băng đậm có kích thước 26,4kDa, đây là băng GST đã được tổng hợp tuy nhiên do plasmid không mang gen cDNA mã hóa h-tPA nên trong quá trình tổng hợp protein, h-tPA không được tổng hợp. Song song với thí nghiệm biểu hiện h-tPA trong vector pGEX6p1, chúng tôi cũng tiến hành biểu hiện protein h-tPA trong vector pET21a(+) trên tế bào chủ E.coli BL21. Kết quả điện di cho thấy không có sự khác biệt nhiều về số lượng và độ đậm nhạt băng giữa các dòng E.coli BL21 mang vector pET21a(+)/h-tPAvới các đối chứng âm (giếng 1 và giếng 2).
Để có những kết luận chính xác về quá trình biểu hiện của cDNA mã hóa h- tPA, cần có những nghiên cứu khác như: lai Western Blot, hay kỹ thuật Elisa. Mặt khác, các điều kiện thí nghiệm khác cũng cần được nghiên cứu tối ưu để quá trình biểu hiện cho lượng protein h- tPA là lớn nhất và tiến tới ứng dụng quy trình biểu hiện. Đây là một quá trình phức tạp và khó thực hiện do hệ thống này chỉ biểu hiện tốt đối với protein có kích thước nhỏ hơn 80 acid amin, đối với các protein có kích thước lớn thì hệ thống biểu hiện E.coli có thể tổng hợp được protein nhưng protein này có thể không cuộn xoắn; bộ ba mã hóa ở E.coli có sự khác biệt nhiều với bộ ba mã hóa ở sinh vật bậc cao; các quá trình cải biến sau dịch mã thường không có; khả năng biểu hiện một protein đơn lẻ không tốt.
Vì vậy, việc nghiên cứu biểu hiện trên các đối tượng khác như nấm men, tế bào côn trùng, tế bào động vật cũng được quan tâm ở nhiều phòng thí nghiệm. So sánh trình tự nucleotide của cDNA mã hóa h-tPA với trình tự gen trên Ngân hàng Gen Quốc tế, mã số NM_000930 cho thấy độ tương đồng đạt 99%.