MỤC LỤC
Nguyên lý truyền hình đen trắng 1.1.1. Nguyên lý truyền hình. A, Các tham số hình ảnh. • Độ chói trung bình: Mỗi điểm ảnh đều có độ chói riêng để cấu thành toàn bộ ảnh trong truyền hình đen trắng người ta truyền đi tín hiệu đặc trung co độ chói của mỗi điểm ảnh. • Mầu sắc: Màu sắc của mỗi phần tử ảnh, tham số này chỉ cần thiết đối với truyền hình màu. • Hình phẳng: Truyền hình là bức hình phẳng theo không gian 2 chiều, truyền từng điểm ảnh lần lượt theo chiều ngang và chiều dọc, chiều ngang gọi là quét dòng chiều dọc gọi là quét mành. • Ảnh động: Truyền hình là truyền đi các bức ảnh động, để mắt người cảm nhận sự chuyển động là liên tục thì truyền đi số bức ảnh sao cho thấy mắt không thấy sự nhấp nháy của ảnh. Nguyên lý truyền hình ảnh. Người ta không truyền toàn bộ bức hình mà truyền đi lần lượt từng dòng từ trên xuống như ta đọc một quyển sách. Hệ truyền hình màu cơ bản. Hệ thống truyền hình màu cơ bản là hệ thống truyền hình đồng thời truyền ba tín hiệu màu riêng biệt của tín hiệu hình. +) Hệ thống phát truyền hình màu. Để thực hiện được tính kết hợp giữa truyền hình màu và truyền hình đen trắng ta phải tạo ra một đường truyền, độ chói Y riêng biệt và nét dải thông của tín hiệu màu 6MHz để phù hợp với dải thông của tín hiệu đen trắng. Trong thực tế ta không cần truyền cả 3 thông tin tín hiệu “Hiệu số màu” với độ chói Y mà chỉ cần truyền đi thông tin độ chói Y và tín hiệu “Hiệu số màu” (R-Y) và (B – Y), với cách truyền này nhằm giảm nhiễu do tính hiệu màu sinh ra trên ảnh truyền hình đên trắng hoặc trên các mảng trắng của ảnh màu.
Điện áp tín hiệu màu tổng hợp (T) điều chế vào tần số sóng mang do máy phát tạo ra, kết quả ta có tín hiệu màu tổng hợp điều chế cao tần đưa tới ăng ten phát tạo ra, kết quả có tín hiệu màu tổng hợp điều chế vào tần số sóng mang do máy phát tạo ra, kết quả tín hiệu màu tổng hợp điều chế cao tần đưa tới ăng ten phát và phát ra không gian. Hệ SECAM đã trải qua nhiều phương pháp cải tiến nâng cao chất lượng truyền màu do đó nó có các tên sau: SECAM I, SECAM II, SECAM IIIA, SECAMIIIB, SECAMIV, SECAMIIIB-Optimal, Vì nó đã trở thành hệ truyền hình màu SECAM chính thức. Đến nay hệ SECAM IIIB được sử dụng phổ biến, hệ SECAM IIIB tín hiệu chói Ey truyền được tất cả các dòng, còn hai tín hiệu màu DR, DB truyền lần lượt theo dòng quét trên hai sóng mang phụ có tần số trung tần là for, fob tương ứng theo phương thức điều tần.
Hệ SECAM IIB truyền lần lượt tín hiệu màu DR và DB để tránh nhiều giao thoa giữa chúng trên đường truyền và phương pháp điều tần DR và DB vào hai song mang phụ for và fob do đó méo pha nhỏ, nhược điểm chủ yếu là không phủ được tần số song mang màu phụ nên có hiện tượng nhiễu trên khi thu chương trình truyền hình đen trắng, có hiện tượng nhấp nháy ở các dòng kế tiếp nhau tại các vùng bão hoà.
Nguyên lý hiển thị hình ảnh của màn hình màu loại CRT giống với màn hình đen trắng đã trình bày ở trên. Từ ba màu này mà máy in trước đây chỉ gồm ba hộp màu cơ bản trên, để in màu đen thì các máy in này in cả ba màu với cường độ cao để pha trộn sao cho ra màu đen (chứ khôn gphải là màu trắng như trong hình này). Trên màn hình hiển thị lớp huỳnh quang của màn hình đen trắng được thay bằng các lớp phát xạ màu dọc từ trên xuống dưới màn hình (điều này hoàn toàn có thể quan sát được bằng mắt thường).
Như vậy, có thể thấy ở màn hình CRT, mỗi hình ảnh được hiển thị không tức thời, mà từ phía trên xuống phía dưới. Nếu dùng máy ảnh chụp ảnh màn hình CRT với tốc độ nhanh sẽ nhận thấy các hình ảnh xuất hiện theo từng khối ngang màn hình. Đối với màn hình tinh thể lỏng, các hình ảnh tỉnh được hiển thị gần như tức thời nên không có cảm giác này (do đó ở tần số làm tươi 60 Hz vẫn không có cảm giác rung hình.
Điện áp cung cấp cho đèn xenon phải rất lớn, thứ nhất để vượt qua ngưỡng điện áp đánh thủng để sinh ra tia lửa điện, thứ hai để kích thích các nguyên tử khí trơ lên mức năng lượng đủ cao để ánh sáng do chúng phát ra khi quay trở lại mức năng lượng thấp có bước sóng ngắn. Lớp thứ hai là lớp kính lọc phân cực có quang trục phân cực dọc, kế đến là một lớp tinh thể lỏng được kẹp chặt giữa hai tấm thuỷ tinh mỏng, tiếp theo là lớp kính lọc phân cực có quang trục phân cực ngang. Nếu giữa hai đầu lớp tinh thể lỏng không đựơc đặt một điện áp, các phân tử tinh thể lỏng sẽ ở trạng thái tự do, ánh sáng truyền qua sẽ không bị thay đổi phương phân cực.
Trước mỗi điểm ảnh con có một kính lọc màu, cho ánh sáng ra màu đỏ, xanh lá và xanh lam.Với một điểm ảnh, tuỳ thuộc vào cường độ ánh sáng tương đối của ba điểm ảnh con, dựa vào nguyên tắc phối màu phát xạ, điểm ảnh sẽ có một màu nhất định. Va chạm sẽ truyền năng lượng cho các electron ở lớp ngoài cùng của nguyên tử khí, làm cho các electron này nhẩy lên mức năng lượng cao hơn, sau một khoảng thời gian rất ngắn, các electron sẽ tự động chuyển xuống mức năng lượng thấp hơn và sinh ra một photon ánh sáng theo định luật bức xạ điện từ. Điều này do trong màn hình LCD, mỗi điểm ảnh con chỉ cần một lớp tinh thể lỏng khá bé cũng có thể thay đổi phương phân cực của ánh sáng một cách dễ dàng, từ đó tạo điều kiện để chế tạo các điểm ảnh với kích thước bé, tạo nên một số lượng lớn điểm ảnh trên một đơn vị diện tích (độ phân giải cao).
Chính vì thế, kích thước một điểm ảnh của màn hình Plasma khá lớn so với một điểm ảnh của màn hình LCD, dẫn đến việc với cùng một diện tích hiển thị, số lượng điểm ảnh của màn hình Plasma ít hơn LCD, đồng nghĩa với độ phân giải thấp hơn. Nhưng, không dừng lại ở đó, trong khi màn hình tinh thể lỏng và plasma đang từng bước chiếm lĩnh thị trường, thì tin tức về những thế hệ màn hình mới, với ưu điểm vượt trội hơn đã xuất hiện. Một cách tổng quát, tại mảng đồ hoạ cao cấp, màn hình tinh thể lỏng và plasma vẫn chưa thể cung cấp một chất lượng hình ảnh, độ chân thực màu sắc như những màn hình CRT truyền thống.
Đánh vào những điểm yếu đó của, màn hình LED và Laser ra đời, kết hợp được ưu điểm của màn hình tinh thể lỏng, plasma là kích thước nhỏ gọn, kiểu dáng đẹp, và của màn hình CRT là chất lượng hình ảnh tuyệt hảo. Chính những ánh sáng lọt qua ngoài mong muốn này khiến cho màu sắc của mỗi điểm ảnh con không đạt độ chính xác tuyệt đối, dẫn đến việc hiển thị màu sắc tại điểm ảnh cũng không chính xác. Hai loại màn hình thế hệ mới, LED và Laser, về cấu tạo chung cũng tương tự như màn hình LCD và Plasma, bao gồm các điểm ảnh, mỗi điểm ảnh cũng có ba điểm ảnh con, mỗi điểm ảnh con hiển thị một màu cơ bản trong hệ màu RGB.
Tuy nhiên, khác với màn hình tinh thể lỏng và plasma, màn hình LED và Laser không sử dụng phương pháp lọc ánh sáng từ ánh sáng đèn nền để cho ra ánh sáng đơn sắc, mà sử dụng phương pháp phát trực tiếp ra ánh sáng có bước sóng mong muốn. Ngày nay, nhờ nghiên cứu về vật liệu bán dẫn, con người có thể chế tạo được những LED có khả năng phát ra màu sắc như mong muốn, trong đó có ba màu cơ bản của hệ màu RGB là xanh, xanh lá, đỏ. Khi muốn điểm ảnh tắt, chỉ cần tắt toàn bộ 3 LED là có thể thu được màu đen tuyệt đối, không gặp phải hiện tượng màu đen không chân thực do lộ sáng từ đèn nền như với màn hình LCD.
Hiện nay, mới chỉ có tia laser đỏ (còn gọi là laser hồng ngọc) là phổ biến và có khả năng ứng dụng trong sản xuất màn hình, còn laser xanh và xanh lá, do có năng lượng cao hơn nên gần như không thể tạo được trong điều kiện hoạt động của một màn hình.