Định giá quyền chọn vàng: Công cụ phòng ngừa rủi ro hữu hiệu trong kinh doanh vàng

MỤC LỤC

Nguyên tắc định giá quyền chọn bán 1. Giá trị nhỏ nhất của quyền chọn bán

Đặc điêm về giá trị nội tại, Max(0,X - S0) không đúng cho quyền chọn bán kiểu Châu Âu vì quyền chọn phải có thể được thực hiện đối với nhà đầu tư thực hiện các giao dịch kinh doanh chênh lệch lãi suất. Mối quan hệ giữa thời gian đến khi đáo hạn và quyền chọn bán sẽ phức tạp hơn trong trường hợp quyền chọn bán kiểu Châu Âu việc mua một quyền chọn bán giống như trì hoãn việc bán cổ phiếu với giá thực hiện X. Đối với quyền chọn bán kiểu Châu Âu, thời gian đến khi đáo hạn dài hơn vừa có lợi thế - giá trị thời gian lớn hơn – và bất lợi - phải đợi lâu hơn để nhận được khoản tiền bằng với giá thực hiện.

Danh mục B bao gồm một vị thế bán đối với một quyền chọn bán kiểu Châu Âu được định giá là Pe(S0,T,X) và một vị thế mua đối với một trái phiếu phi rủi ro có mệnh giá là X và giá hiện thời là X(1+r)-T. Giá quyền chọn bán, quyền chọn mua, giá cổ phiếu, giá thực hiện, thời gian đến khi đáo hạn, và lãi suất phi rủi ro đều có liên hệ với nhau theo một công thức được gọi là ngang giá quyền chọn mua - quyền chọn bán.

Hình 2: Giá trị quyền chọn bán tại thời điểm đáo hạn
Hình 2: Giá trị quyền chọn bán tại thời điểm đáo hạn

Các yếu tố ảnh hưởng đến giá của quyền chọn 1. Giá thị trường của tài sản cơ sở

    Đối với các quyền chọn kiểu Châu Âu, ảnh hưởng của thời gian cho đến khi đáo hạn phụ thuộc vào việc quyền chọn là quyền chọn mua hay quyền chọn bán. Lãi suất ngắn hạn phi rủi ro trong suốt thời hạn tồn tại của quyền. Cố định tất cả các yếu tố khác, giá của một quyền chọn mua của một trái phiếu sẽ tăng khi lãi suất ngắn hạn phi rủi ro tăng.

    Đối với một quyền chọn bán của trái phiếu thì ngược lại: một sự gia tăng mức lãi suất ngắn hạn phi rủi ro sẽ làm giảm giá của một quyền chọn bán. Đối với các quyền chọn trái phiếu, các quyền chọn mua của các trái phiếu coupon sẽ bị định giá thấp hơn so với các quyền chọn mua của các trái phiếu không có coupon. Ngược lại các coupon có xu hướng làm tăng giá của các quyền chọn bán 4.6.

    Mức dao động dự đoán của các mức lãi suất trong suốt thời hạn của quyền. Quan hệ giữa mức dao động dự đoán của mức lãi suất trong suốt thời gian của quyền và giá của quyền là mối quan hệ tỷ lệ thuận bởi vì mức dao động dự đoán càng cao, xác suất giá của tài sản cơ sở sẽ dịch chuyển theo hướng có lợi cho người mua tài sản cơ sở sẽ càng cao.

    MỘT SỐ MÔ HÌNH ĐỊNH GIÁ QUYỀN CHỌN 1. Mô hình Nhị phân định giá quyền chọn

    • Mô hình Black–Scholes định giá quyền chọn 1. Các giả định của mô hình

      Xét tài sản cơ sở là cổ phiếu, một quyền chọn mua cổ phiếu có giá trị S1, giá thực hiện là X và giá hiện tại là C Quyền chọn mua này còn giá trị một thời gian nữa thì hết hiệu lực. Lãi suất phi rủi ro nằm trong khoảng giữa tỷ suất sinh lợi của trường hợp giá cổ phiếu tăng và tỷ suất sinh lợi của trường hợp giá cổ phiếu giảm. Nếu giá cổ phiếu giảm xuống Sd trong thời kỳ đầu tiên thì trong thời kỳ thứ hai nó có thể tiếp tục giảm nữa hoặc tăng trở lại, trong mọi trường hợp nó có thể kết thúc tại mức giá Sd2 hoặc Sdu.

      Bởi vì chỉ còn lại một thời kỳ duy nhất với hai trường hợp kết quả có thể có cho nên mô hình nhị phân một thời kỳ vẫn thích hợp để tìm kiếm giá của quyền chọn, Cu. Để tính được giá quyền chọn mua vào thời điểm đầu kỳ, chúng ta chiết khấu bình quân có trọng số của hai mức giá khả thi trong tương lai của quyền chọn mua theo lãi suất phi rủi ro cho một thời kỳ. - Giá của tài sản cơ sở biến động ngẫu nhiên và phát triển theo phân phối chuẩn - Lãi suất phi rủi ro và độ ổn định của tỷ suất sinh lời theo logarit của tài sản cơ sở không thay đổi trong suốt thời gian đáo hạn của quyền chọn.

      Biểu thức này là giá trị kỳ vọng của giá cổ phiếu khi đáo hạn, với điều kiện là giá cổ phiếu lớn hơn giá thực hiện nhân với xác suất giá cổ phiếu lớn hơn giá thực hiện khi đến hạn, tuy nhiên N(d1) không phải là xác suất đó. Điều này có nghĩa là khi đáo hạn người sở hữu quyền chọn mua sẽ chi trả X, có hiện giá là XercT , và sẽ nhận được cổ phiếu hiện tại có giá trị S0 và chắc chắn nhận được giá trị này khi đáo hạn. Sự thay đổi trong giá quyền chọn mua đối với một sự thay đổi rất nhỏ trong giá thực hiện là một giá trị âm và được tính theo công thức −ercTN(d2).

      Trong trường hợp đó, chênh lệch giữa giá thực hiện có thể quá lớn nên không thể áp dụng công thức trên, công thức trên chỉ đúng trong trường hợp X thay đổi một lượng giá trị rất nhỏ. Đối với bất kỳ giá thực hiện cho trước nào, mối quan hệ giữa độ bất ổn hàm ý và thời gian đáo hạn quyền chọn được gọi là cấu trúc kỳ hạn của độ bất ổn hàm ý. Vì độ bất ổn này được giả định đại diện cho độ bất ổn của cổ phiếu qua các thời gian đáo hạn của quyền chọn, rất có thể các độ bất ổn có thể thay đổi qua các khoảng thời gian khác nhau.

      Công thức định giá quyền chọn kiểu Châu Âu đối với các tài sản khác - Công thức Black – Scholes đối với cổ phiếu trong trường hợp có cổ tức. Công thức Black – Scholes đối với quyền chọn vàng cũng tương tự như đối với trường hợp quyền chọn về cổ phiếu không có cổ tức (trong kỳ hạn của quyền chọn).

      Sơ đồ cây nhị phân một thời kỳ
      Sơ đồ cây nhị phân một thời kỳ

      SỬ DỤNG MÔ HÌNH BLACK – SCHOLES ĐỊNH GIÁ QUYỀN CHỌN VÀNG

      MỘT SỐ MÔ HÌNH KIỂM ĐỊNH VÀ ƯỚC LƯỢNG 1. Mô hình chuyển động Brown hình học (GBM)

      • Mô hình ước lượng độ bất ổn 1. Mô hình ARCH

        {St} là quá trình giá tài sản tuân theo mô hình GBM nếu nó là nghiệm của phương trình vi phân (1). Để kiểm định giả thiết - Giá của tài sản cơ sở có phát triển theo phân phối logarit chuẩn hay không (Rt = ln(St/St-1) có phân phối chuẩn) ta chỉ cần kiểm định {St} là quá trình giá có động thái tuân theo mô hình GBM. Kiểm định {St} là quá trình có động thái tuân theo mô hình GBM tương đương với việc kiểm định xt (xt ≡ lnSt) là nghiệm của phương trình vi phân.

        Vậy việc kiểm định {St} là quá trình giá có động thái tuân theo mô hình GBM bây giờ tương đương với kiểm định xt là một bước ngẫu nhiên. Nếu chấp nhận H0 thì ta kết luận quá trình {xt} là một bước ngẫu nhiên, hay {St} là quá trình giá có động thái tuân theo mô hình GBM. Ở đây sử dụng độ bất ổn (độ lệch chuẩn) quá khứ hoặc có thể ước lương độ lệch chuẩn bằng mô hình ARCH, GARCH.

        SỬ DỤNG MÔ HÌNH BLACK – SCHOLES ĐỊNH GIÁ QUYỀN CHỌN VÀNG 1. Các kiểm định

        • Ước lượng các biến số

          Kiểm định tính phân phối chuẩn của chuỗi lợi suất của vàng Kiểm định xt (xt ≡ lnSt) là một bước ngẫu nhiên. Nhược điểm của cách ước lượng này là, nếu ta chọn kích thước mẫu (số quan sát) càng nhiều, chúng ta phải đi ngược dòng thời gian nhiều hơn. Tóm lại, mỗi cách ước lượng cho ta một độ bất ổn khác nhau, vì mỗi cách có giả thiết khác nhau và có ưu nhược điểm riêng.

          Việc lựa chọn độ bất ổn nào để tính giá quyền chọn là dựa vào kết quả tính toán bằng mô hình Black – Scholes sát với giá trị thực tế nhất, hơn nữa việc ước lượng độ bất ổn đó phải đảm bảo được tối ưu nhất các giả thiết của mô hình. Giả định giá của tài sản biến động ngẫu nhiên, tuy nhiên sự thật giá tài sản cơ sở có ngẫu nhiên hay không?. Họ quan sát các đồ thị và tuyên bố rằng những chuỗi số biểu diễn như vậy ít nhất là có thể dự đoán được một phần.

          Lãi suất phi rủi ro và độ bất ổn của tỷ suất sinh lợi theo logarit của giá tài sản không thay đổi trong suốt thời gian đáo hạn của quyền chọn?. Thật ra không thể nhận thức rằng bất kỳ tài sản có rủi ro nào cũng có cùng một mức độ bất ổn trong một khoảng thời gian. Khả năng thực hiện sớm trong quyền chọn kiểu Mỹ không thể được điều chỉnh một cách dễ dàng để phù hợp với mô hình Black – Scholes.

          Tuy nhiên chúng ta sẽ thấy rằng mô hình Black – Scholes có thể giúp chúng ta hiểu biết tốt hơn về điều gì xảy ra khi một quyền chọn mua được thực hiện sớm. Tuy nhiên, chấp nhận hay bác bỏ một mô hình phải dựa trên ba điều kiện: (1) Các kết quả đạt được từ mô hình có phù hợp với thực tế không?. Từ sự phân tích trên, ta cũng thấy được kết quả tính toán của mô hình Black – Scholes sẽ không luôn luôn phù hợp với thực tế và mặc dù có những mô hình phức.

          Hình 2 thể hiện sự phát triển của giá vàng theo phân phối logarit chuẩn
          Hình 2 thể hiện sự phát triển của giá vàng theo phân phối logarit chuẩn

          SỬ DỤNG MÔ HÌNH BLACK – SCHOLES ĐỊNH GIÁ QUYỀN CHỌN VÀNG