MỤC LỤC
Tư tưởng thuật toán giống như duyêt theo chiều sâu, tuy nhiên cơ sở của phương pháp này là "lập lịch" để duyệt các đỉnh thứ tự ưu tiên là chiều rộng nghĩa là: Bắt đầu từ một đỉnh u nào đó sẽ thăm tất cả các đỉnh kề với u, sau khi thăm u sẽ thăm đỉnh v với thứ tự ưu tiên là đỉnh gần với u nhất. Chi phí về thời gian trong quá trình tìm kiếm trên đồ thị phụ thuộc vào việc biểu diễn đồ thị, với mỗi phương pháp biểu diễn đồ thị (n đỉnh và m cạnh) khác nhau sẽ có chi phí về mặt thời gian khác nhau.
Sau đó lại tiếp tục đi theo cạnh của C cho đến khi gặp phải đỉnh không cô lập của H thì lại theo chu trình Euler của thành phần liên thông tương ứng trong H,. Khởi tạo ngăn xếp ban đầu chỉ gồm đỉnh v bất kì , thủ tục Push(v) đẩy v vào ngăn xếp và hàm Pop lấy ra một đỉnh từ ngăn xếp STACK, hàm Get cho biết phần tử ở đỉnh STACK (không lấy phần tử đó ra). Bài toán được nhà toán học Trung Hoa Guan nêu lên đầu tiên (1960), vì vậy thường được gọi là “bài toán người phát thư Trung Hoa”.
Rừ ràng rằng nếu G là đồ thị Euler (mọi đỉnh đều cú bậc chẵn) thỡ chu trình Euler trong G (qua mỗi cạnh của G đúng một lần) là hành trình ngắn nhất cần tìm. Ta quy ước xem mỗi hành trình T trong G là một hành trình trong đồ thị Euler GT, có được từ G bằng cách vẽ thêm một cạnh song song đối với những cạnh mà T đi qua hai lần.
Ta tìm hành trình của con mã trên một nửa bàn cờ, rồi lấy đối xứng cho nửa bàn cờ còn lại, sau đó nối hành trình của hai nửa đã tìm lại với nhau. Chu trình bắt đầu từ một đỉnh v nào đó qua tất cả các đỉnh còn lại mỗi đỉnh đúng một lần rồi quay trở về v được gọi là chu trình Hamilton. Chính vì vậy chủ yếu dựa trên thuật toán xác định bằng hoán vị vòng quanh với tư tưởng thuật toán đệ quy quay lui hoặc dựa trên các quy tắc để xác định chu trình Hamilton (H) của đồ thị.
Bái toán trở thành tìm các chu trình Hamilton phân biệt của đồ thị đầy đủ Kn (hai chu trình Hamilton gọi là phân biệt nếu chúng không có cạnh chung). Coi các ô của bàn cờ là đỉnh của đồ thị và các cạnh nối giữa hai đỉnh tương ứng với hai ô mã giao chân thì ta dễ dàng thấy rằng hành trình của quân mã cần tìm sẽ là một đường đi Hamilton.
Nếu như đồ thị có chu trình âm (chu trình với độ dài âm) thì khoảng cách giữa một số cặp đỉnh nào đó có thể không xác định. Nếu như đồ thị không có chu trình âm thì ta có thể chứng minh được rằng một trong những đường đi ngắn nhất là đường đi cơ bản. Chỉ cần thay đổi đôi chút là có thể giải được bài toán tìm đường đi ngắn nhất trong đồ thị có hướng.
Thuật toán Dijkstra tìm đường đi ngắn nhất từ một đỉnh cho trước đến một đỉnh tuỳ ý trong đơn đồ thị vô hướng liên thông có trọng số có độ phức tạp là O(n2). Để tìm đường đi ngắn nhất giữa mọi cặp đỉnh của G, ta có thể áp dụng thuật toán Dijkstra nhiều lần hoặc áp dụng thuật toán Floyd được trình bày dưới đây.
Trong một bản đồ, ta coi hai miền có chung nhau một đường biên là hai miền kề nhau (hai miền chỉ có chung nhau một điểm biên không được coi là kề nhau). Mỗi bản đồ trên mặt phẳng có thể biểu diễn bằng một đồ thị, trong đó mỗi miền của bản đồ được biểu diễn bằng một đỉnh; các cạnh nối hai đỉnh, nếu các miền được biểu diễn bằng hai đỉnh này là kề nhau. Bài toán tô màu các miền của bản đồ là tương đương với bài toán tô màu các đỉnh của đồ thị đối ngẫu sao cho không có hai đỉnh liền kề nhau có cùng một màu, mà ta gọi là tô màu đúng các đỉnh của đồ thị.
Có lẽ một trong những chứng minh sai nổi tiếng nhất trong toán học là chứng minh sai “bài toán bốn màu” được công bố năm 1879 bởi luật sư, nhà toán học nghiệp dư Luân Đôn tên là Alfred Kempe. Mặt khác, dùng phương pháp của Kempe, Heawood đã chứng minh được “bài toán năm màu” (tức là mọi bản đồ có thể tô đúng bằng 5 màu). Như vậy, Heawood mới giải được “bài toán năm màu”, còn “bài toán bốn màu” vẫn còn đó và là một thách đố đối với các nhà toán học trong suốt gần một thế kỷ. Việc tìm lời giải của “bài toán bốn màu” đã ảnh hưởng đến sự phát triển theo chiều hướng khác nhau của lý thuyết đồ thị. Mãi đến năm 1976, khai thác phương pháp của Kempe và nhờ công cụ máy tính điện tử, Appel và Haken đã tìm ra lời giải của “bài toán bốn màu”. Chứng minh của họ dựa trên sự phân tích từng trường hợp một cách cẩn thận nhờ máy tính. Họ đã chỉ ra rằng nếu “bài toán bốn màu” là sai thì sẽ có một phản thí dụ thuộc một trong gần 2000 loại khác nhau và đã chỉ ra không có loại nào dẫn tới phản thí dụ cả. Trong chứng minh của mình họ đã dùng hơn. Cách chứng minh này đã gây ra nhiều cuộc tranh cãi vì máy tính đã đóng vai trò quan trọng biết bao. Chẳng hạn, liệu có thể có sai lầm trong chương trình và điều đó dẫn tới kết quả sai không? Lý luận của họ có thực sự là một chứng minh hay không, nếu nó phụ thuộc vào thông tin ra từ một máy tính không đáng tin cậy?. Những ứng dụng của bài toán tô màu đồ thị. 1) Lập lịch thi: Hãy lập lịch thi trong trường đại học sao cho không có.
Cách chứng minh này đã gây ra nhiều cuộc tranh cãi vì máy tính đã đóng vai trò quan trọng biết bao. Chẳng hạn, liệu có thể có sai lầm trong chương trình và điều đó dẫn tới kết quả sai không? Lý luận của họ có thực sự là một chứng minh hay không, nếu nó phụ thuộc vào thông tin ra từ một máy tính không đáng tin cậy?. Những ứng dụng của bài toán tô màu đồ thị. 1) Lập lịch thi: Hãy lập lịch thi trong trường đại học sao cho không có.
Cách chứng minh này đã gây ra nhiều cuộc tranh cãi vì máy tính đã đóng vai trò quan trọng biết bao. Chẳng hạn, liệu có thể có sai lầm trong chương trình và điều đó dẫn tới kết quả sai không? Lý luận của họ có thực sự là một chứng minh hay không, nếu nó phụ thuộc vào thông tin ra từ một máy tính không đáng tin cậy?. Những ứng dụng của bài toán tô màu đồ thị. 1) Lập lịch thi: Hãy lập lịch thi trong trường đại học sao cho không có. Có thể chia kênh truyền hình như thế nào bằng mô hình tô màu đồ thị. Ta xây dựng đồ thị bằng cách coi mỗi đài phát là một đỉnh. Hai đỉnh được nối với nhau bằng một cạnh nếu chúng ở cách nhau không quá 240 km. Việc phân chia kênh tương ứng với việc tô màu đồ thị, trong đó mỗi màu biểu thị một kênh. 3) Các thanh ghi chỉ số: Trong các bộ dịch hiệu quả cao việc thực hiện.
Có thể chia kênh truyền hình như thế nào bằng mô hình tô màu đồ thị. Ta xây dựng đồ thị bằng cách coi mỗi đài phát là một đỉnh. Hai đỉnh được nối với nhau bằng một cạnh nếu chúng ở cách nhau không quá 240 km. Việc phân chia kênh tương ứng với việc tô màu đồ thị, trong đó mỗi màu biểu thị một kênh. 3) Các thanh ghi chỉ số: Trong các bộ dịch hiệu quả cao việc thực hiện. BÀI TẬP CHƯƠNG IV Bài tâp tính toán. Dùng thuật toán Ford Bellmam tìm đường đi ngắn nhất từ đỉnh a đến các đỉnh khác trong đồ thị sau:. Dùng thuật toán Dijkstra tìm đường đi ngắn nhất từ đỉnh a đến các đỉnh khác trong đồ thị. Cho đồ thị có trọng số như hình dưới đây. Hãy tìm đường đi ngắn nhất từ đỉnh A đến đỉnh N. Áp dụng thuật toán Floyd vào đồ thị sau:. Cho G là một đơn đồ thị phẳng liên thông có 10 mặt, tất cả các đỉnh đều có bậc 4. Tìm số đỉnh của đồ thị G. Hai người chơi trò chơi như sau: mỗi người lần lượt tô đỏ một mặt trong các mặt còn lại. Người thắng là người tô được 3 mặt có chung một đỉnh. Chứng minh rằng tồn tại cách chơi mà người được tô trước luôn luôn thắng. Chứng minh rằng:. a) Một đồ thị phẳng có thể tô đúng các đỉnh bằng hai màu khi và chỉ khi đó là đồ thị phân đôi. b) Một đồ thị phẳng có thể tô đúng các miền bằng hai màu khi và chỉ khi đó là đồ thị Euler.