Áp dụng EGSnrc để tính phân bố liều quanh nguồn Ir-192 dạng hạt dùng trong xạ trị áp sát

MỤC LỤC

Đặc trưng nguồn bức xạ

Việc tính liều phụ thuộc chủ yếu vào độ mạnh của nguồn phóng xạ, do đó cần phải xác định chính xác độ mạnh của nguồn để đảm bảo chính xác khi tính liều cho bệnh nhân. Đơn vị của suất kerma không khí chuẩn trong hệ SI là Gy/s, nhưng người ta cũng thường dùng μGy/h trong XTAS suất liều thấp (low dose rate, LDR) và μGy/s hay mGy/h trong XTAS suất liều cao (high dose rate, HDR). Khó khăn: phải hiệu chỉnh sự suy giảm trong nguồn và vỏ bọc, hơn nữa ΓX thường không được biết chính xác vì phụ thuộc nhiều vào yếu tố môi trường như nhiệt độ, khí áp, độ ẩm.

Ở Mỹ [21], nguồn Ir-192 dạng hạt được thay thế cho nguồn dây, có hai loại nguồn dạng hạt Ir- 192 có mặt trên thị trường hiện nay và trong luận văn này chúng tôi cũng sẽ tính phân bố liều quanh hai loại nguồn này. Được kích hoạt bởi neutron của đồng vị ổn định Ir-191, quá trình này cũng tạo Ir-194 nhưng có chu kỳ bán rã nhỏ chỉ có 17h nên không có đóng góp đáng kể trong thời gian sử dụng trong bệnh nhân. Trong khuôn khổ luận văn này chúng tôi sẽ đi tính phân bố liều của nguồn Cs-137 có cấu tạo như sau: Nguồn Cs có chiều dài 5mm với đường kính ngoài 0,72mm, thành phần phóng xạ là một sợi dây vàng nhô ra với chiều dài 3mm và đường kính 0,3mm trong Cs (dưới dạng hợp chất CsCl3) được phõn bố đồng nhất.

Hình 1.1. Cấu tạo nguồn Ir bao plantinum và bao stainless steel [23]
Hình 1.1. Cấu tạo nguồn Ir bao plantinum và bao stainless steel [23]

Phương pháp tính suất liều của nguồn xạ dùng trong xạ trị áp sát

Một nhược điểm của công thức này là nó được tính dựa trên phổ năng lượng photon xung quanh nguồn trong không khí, trong khi đó các ứng dụng lâm sàng lại đòi hỏi sự phân bố liều trong một môi trường tán xạ (như cơ thể của bệnh nhân). Trong phương pháp mới này, có hai hàm phụ thuộc khoảng cách r và góc θ: Đó là hệ số hình học G(r,θ) dùng để tính sự phụ thuộc của thông lượng photon xung quanh nguồn trong không gian và hàm dị hướng F(r,θ) dùng để tính tính dị hướng do sự phân bố liều gây ra bởi nguồn trong môi trường tán xạ. Trong khi hàm liều xuyên tâm g(r) dùng để tính sự phụ thuộc vào độ sâu của liều trong môi trường tán xạ dọc theo trục vuông góc của nguồn thì hàm dị hướng F(r,θ) tính tính dị hướng của liều so với liều ở trục vuụng gúc của nguồn.

Hàm này đưa ra sự thay đổi của suất liều theo các góc ở từng khoảng cách do sự tự lọc (selffiltration), sự lọc xiên (oblique filtration) của photon sơ cấp khi xuyên qua lớp vỏ vật chất và sự tán xạ của photon trong môi trường. Ngoài ra còn các phương pháp khác để tính suất liều như phương pháp sử dụng tính liều khi biết kerma không khí trong không khí và phương pháp tính đối với nguồn tuyến tính, tuy nhiên chúng không được trình bày trong luận văn này. Biết được chính xác sự phân bố liều là rất quan trọng trong các quyết định lâm sàng và kết quả của điều trị, kiến thức về sự phân bố liều và các bài báo về nó rất quan trọng, chúng cho phép so sánh các kết quả của điều trị bằng nguồn phóng xạ khác nhau hoặc với phương thức điều trị khác nhau [14].

Hình 1.3. Hình  thức tính liều AAPM
Hình 1.3. Hình thức tính liều AAPM

PHƯƠNG PHÁP MONTE CARLO TRONG VIỆC TÍNH LIỀU. CHƯƠNG TRÌNH EGSnrc

Phương pháp mô phỏng Monte Carlo

Hầu hết các hệ phức tạp về nguyên tắc có thể được mô hình hóa, nếu đã biết về sự phân bố của các sự kiện xảy ra trong hệ thì có thể tạo ra một pdf và lấy mẫu nó một cách ngẫu nhiên để mô phỏng cho hệ thật sự. Khi được áp dụng vào bài toán vận chuyển bức xạ trong xạ trị và tính liều, phương pháp Monte Carlo cung cấp nghiệm bằng số cho phương trình vận chuyển Boltzmann, sử dụng trực tiếp các định luật vật lý vi mô đối với các tương tác electron-nguyên tử, photon-nguyên tử. Các tính chất vĩ mô của trường bức xạ (quãng chạy trung bình của một photon trong một thể tích không gian cho trước) được tính trung bình trên nhiều lần mô phỏng các hạt hoặc các lịch sử riêng biệt.

Kết hợp giữa các lý thuyết hiện đại (như điện động lực lượng tử) và công suất của máy tính ngày càng được nâng cao đã góp phần đẩy phương pháp Monte Carlo trở thành công cụ chuẩn của các nhà vật lý y học, đặc biệt là trong nghiên cứu. Số gần như ngẫu nhiên được định nghĩa như là một không gian tính toán liên lục (thực sự, sự liên tục này cũng. không hoàn toàn ngẫu nhiên, chúng chỉ đúng trong một mức độ nào đó). Với số lịch sử được mô phỏng tương đối ít, ta không thể lấy mẫu một cách chính xác hàm phân bố xác suất của những hiện tượng vật lý cơ bản, và sẽ dẫn đến làm tăng sai số thống kê.

Thông lượng năng lượng này có thể khác biệt đáng kể từ thông lượng photon phát ra ban đầu, đặc biệt trong các trường hợp xạ trị áp sát dùng nguồn năng lượng thấp như 125 I và 103 Pd. Để lấy mẫu những hướng của các photon sơ cấp, hướng cosines (u,v, w) = (sinθcosφ, sinθ sinφ, cosθ) với φ là góc phương vị, θ là góc cực của những hướng phát xạ của photon trong toạ độ cầu. Điểm trong môi trường mà một photon đi đến sau khi vận chuyển một đoạn r được cho bởi toạ độ Decac (x, y, z) = (ru, rv, rw) để thuận tiện cho việc tính toán sự thay đổi hướng sau khi tán xạ của photon do tương tác với môi trường.

Bước tiếp theo để hoàn tất việc mô phỏng vận chuyển phóng xạ photon xung quanh nguồn điểm đồng nhất là việc lấy mẫu của loại tương tác ở điểm cuối chiều dài quãng đường của photon sơ cấp. Đối với vùng năng lượng có liên quan đến các nguồn trong xạ trị áp sát, các tương tác được quan tâm tới là sự hấp thụ quang điện, tán xạ đàn hồi (tán xạ Rayleigh) và tán xạ không đàn hồi (tán xạ Compton). Từ phân tích ở trên, có thể chỉ ra sự chính xác tính liều trong xạ trị áp sát bằng phương pháp Monte Carlo dựa trên các hệ số tương tác sử dụng trong mô phỏng vì chúng thường được dùng để xác định chiều dài quãng đường của photon và loại tương tác và hai biến này xác định phần năng lượng bỏ lại trong môi trường.

Sau khi tìm hiểu về phương pháp Monte Carlo và mô phỏng sự vận chuyển photon, tiếp theo chúng tôi sẽ trình bày về chương trình EGSnrc là chương trình tính liều phóng xạ của các nguồn dùng trong XTAS theo phương pháp mô phỏng Monte Carlo.

Hình 2.1. Quá trình tương tác photon
Hình 2.1. Quá trình tương tác photon

Giới thiệu chương trình EGSnrc [15]

Bằng việc lấy mẫu số ngẫu nhiên, RN, có thể xác định loại tương tác mà photon thực hiện bằng cách tìm tỉ lệ phân nhánh nơi mà photon thuộc vùng đó. Điều này cho thấy là việc sử dụng các mã Monte Carlo với các thư viện tiết diện khác nhau làm khó khăn cho việc so sánh với kết quả của việc tính liều tương ứng. Xác định hình học của đích đến, số các mặt phẳng và tọa độ hình trụ, chia hình trụ thành nhiều vùng, mỗi vùng hợp thành bởi vật chất riêng.

Chọn các tham số vận chuyển như tỉ số mất năng lượng trên mỗi bước hạt mang điện, kích thước bước tối đa, hình chiếu năng lượng hạt, tham số loại trừ phạm vi. Tuy nhiên, trong khuôn khổ của luận văn này chúng tôi chỉ nói về các tính chất cơ bản trong việc sử dụng mã DOSRZnrc của chương trình EGSnrc. Việc xác định môi trưòng cho các vùng hình học có thể được thực hiện theo hai cách dựa trên việc lựa chọn DESCRIPTION BY= Regions hoặc Planes.

Đây là ngưỡng dưới năng lượng của electron, dưới giá trị này thì xem như năng lượng electron bỏ lại trong vùng này và lịch sử hạt kết thúc. Đây là ngưỡng dưới năng lượng của photon, dưới giá trị này thì xem như năng lượng photon bỏ lại trong vùng này và lịch sử hạt kết thúc. Boundary crossing algorithm: Có 2 lựa chọn: EXACT, đi qua biên dưới chế độ tán xạ đơn, khoảng cách từ biên đến chỗ vận chuyển được xác định bởi ’Skin depth for BCA’.

Skin depth for BCA: Xác định khoảng cách từ biên sử dụng chế độ tán xạ đơn (nếu chọn EXACT boundary crossing) hoặc bỏ qua sự tương quan các vật bên (nếu chọn PRESTA-I boundary crossing). Chọn Simple để sử dụng số hạng đầu của phân bố góc (là đủ đối với mọi ứng dụng), chọn KM (Koch and Motz) sử dụng 2BS từ bài báo cáo của Koch and Motz. Để xác định suất liều tại một điểm bất kỳ thì cần phải bao điểm đó lại bởi một vùng dạng hình vành khuyên thẳng, bề dày z; và có bán kính nằm giữa hai giá trị R1 và R2.

Sau khi đã tìm hiểu sơ lược về phương pháp Monte Carlo trong xạ trị áp sát cùng với cách khai báo dữ liệu trong chương trình EGSnrc, sau đây chúng tôi sẽ tiến hành tính phân bố liều cũng như các giá trị g(r) và DF(r, θ) của các nguồn Ir-192 và Cs-137 dựa vào các công thức đã đưa ra ở chương 1.

Hình 2.2. Cấu trúc của hệ thống code EGSnrc [15].
Hình 2.2. Cấu trúc của hệ thống code EGSnrc [15].