Điều chế OFDM: Các vấn đề từ lý thuyết đến ứng dụng

MỤC LỤC

Mô hình hệ thống

Kỹ thuật phân tán dữ liệu

    Kỹ thuật interleaving thông thường là kỹ thuật phân tán theo khối (block interleaving), hay cũng có thể là phân tán dạng chập (convolution interleaving). Bộ phân tán ký tự dạng này có chất lượng tương đương với dạng khối nhưng ưu điểm đặc biệt là nó gây trễ đầu phát tới đầu thu chỉ bằng M(N-1) ký tự.

    Hình 2.9 : Sơ đồ khối bộ convolutional interleaver/ Deinterleaver
    Hình 2.9 : Sơ đồ khối bộ convolutional interleaver/ Deinterleaver

    Chuyển đổi Serial/Parallel và Parallel/Serial

    Bằng cách sử dụng bộ S/P ta đã chuyển kênh truyền từ frequency selective fading thành kênh truyền flat fading. Ngược lại với phía phát, phía thu sẽ dùng bộ Parallel/Serial để ghép N luồng dữ liệu tốc độ thấp thành một luồng dữ liệu tốc độ cao duy nhất.

    Điều chế các sóng mang con

      Do đó ta không thể tăng M lên tuỳ ý được, công thức trên cho phép ta xác định M lớn nhất, số bit lớn nhất có thể truyền trong một symbol. Sóng mang chỉ thay đổi về pha phụ thuộc bit vào, mà không thay đổi biên độ, nên công suất của tín hiệu không đổi.

      Hình 2.12: Giản đồ chòm sao M-PSK
      Hình 2.12: Giản đồ chòm sao M-PSK

      MÔI TRƯỜNG TRUYỀN DẪN VÔ TUYẾN

        Nếu trong toàn khoảng băng thông của tín hiệu đáp ứng tần số là bằng phẳng, ta nói kênh truyền không chọn lọc tần số (frequency nonselective fading channel), hay kênh truyền phẳng (flat fading channel), ngược lại nếu đáp ứng tần số của kênh truyền không phẳng, không giống nhau trong băng thông tín hiệu, ta nói kênh truyền là kênh truyền chọn lọc tần số (frequency selective fading channel). Tuy nhiên mọi kênh truyền đều biến đổi theo thời gian, do các vật thể tạo nên kênh truyền luôn luôn biến đổi, luôn có vật thể mới xuất hiện và vật thể cũ mất đi, xe cộ luôn thay đổi vận tốc, nhà cửa, công viên, có thể được xây dựng thêm hay bị phá hủy đi, sông, núi, biển có thể mở rộng hoặc bị thu hẹp lại…Hình 3.12 cho thấy công suất tín hiệu thu được thay đổi theo thời gian dù tín hiệu phát đi có công suất không đổi tức là kênh truyền đã thay đổi theo thời gian.

        Hình 3.9: Kênh truyền chọn lọc tần số và biến đổi theo thời gian.
        Hình 3.9: Kênh truyền chọn lọc tần số và biến đổi theo thời gian.

        ƯỚC LƯỢNG VÀ CÂN BẰNG THÍCH NGHI CHO KÊNH TRUYỀNTRONG HỆ THỐNG OFDM

        Giới thiệu

          Mặc dù thời gian bảo vệ (Guard time) có khoảng thời gian dài hơn độ trải trễ của kênh truyền đa đường có thể loại bỏ nhiễu liên ký tự (ISI) do ký tự trước đó gây ra, nhưng vẫn còn có một vài nhiễu liên ký tự gây ra bởi sự chọn lọc tần số của kênh truyền. Trong đó GI là số phần tử đa đường (multipath components), Nnlà biến đổi FFT của AGWN (Additive White Gaussian Noise) tại sóng mang con thứ n và Hl(0) là đáp ứng tần số kênh truyền của phần tử đa đường thứ l tại tần số thứ zero (zero-th frequency). Để ước lượng đáp ứng tần số kênh truyền, chuỗi huấn luyện pilot được chèn vào các sóng mang con trong miền tần số, nghĩa là chúng được chèn vào trước khi tiến hành biến đổi IFFT tại phía phát.

          Vì những ký tự pilot thường chỉ chiếm một lượng nhỏ của băng thông đối với hiệu quả phổ, nên phép nội suy qua miền tần số được sử dụng để ước lượng đáp ứng tần số kênh truyền ở những nơi không có đặt ký tự pilot.

          Ước lượng kênh truyền

          • Sự sắp xếp các pilot (Pilot Arrangements)
            • Ước lượng theo kiểu sắp xếp pilot dạng khối
              • Ước lượng theo kiểu sắp xếp pilot dạng lược

                Việc ước lượng kênh truyền có thể được thực hiện bằng cách hoặc là chèn pilot vào tất cả các sóng mang của ký tự OFDM theo chu kỳ ở miền thời gian hoặc là chèn pilot vào mỗi sóng mang của ký tự OFDM ở miền tần số hoặc chèn pilot ở cả miền tần số và miền thời gian. Có nhiều dạng nội suy cho kết quả tốt, nhưng vì độ phức tạp trong tính toán của một số phương pháp và hầu hết hệ thống OFDM yêu cầu truyền dữ liệu ở tốc độ cao, cho nên chỉ một vài phương pháp nội suy được xem xét, đó là nội suy sử dụng hàm tuyến tính (linear interpolation), nội suy bậc hai, nội suy low-pass. Kỹ thuật này đầu tiên sẽ chèn zero vào chuỗi dữ liệu gốc và sau đó đưa qua bộ lọc thông thấp FIR để cho dữ liệu gốc có thể đi qua bộ lọc mà không bị thay đổi và thực hiện cực tiểu hóa trung bình bình phương lỗi (MSE) giữa những điểm được nội suy và những giá trị lý tưởng của chúng.

                Peter Hoeher trong bài báo ‘‘TCM on Frequency- Selective Land-Mobile Fading Channels’’ đã chứng minh được rằng bộ lọc Wiener hai chiều có thể tách thành hai bộ lọc Wiener một chiều (một bộ lọc thực hiện ở miền thời gian và một bộ lọc thực hiện ở miền tần số).

                Hình 4.1 : Tổng quan một hệ thống OFDM
                Hình 4.1 : Tổng quan một hệ thống OFDM

                ỨNG DỤNG CỦA KỸ THUẬT OFDM

                • Hệ thống DRM

                  Các trạm phát BTS được kết nối tới mạng Internet thông qua các đường truyền tốc độ cao riêng hoặc có thể được nối đến một BTS khác như một trạm trung chuyển bằng đường truyền thẳng (line of sight), và chính vì vậy WiMax có thể phủ sóng đến những vùng rất xa. - Về cấu trúc phân lớp, hệ thống WiMax được phân chia thành 4 lớp: Lớp con tiếp ứng (Convergence) làm nhiệm vụ giao diện giữa lớp đa truy nhập và các lớp trên, lớp đa truy nhập (MAC layer), lớp truyền dẫn (Transmission) và lớp vật lý (Physical). Ở Châu Âu, băng tần 5.15 – 5.35 GHz và 5.45 – 5.725 GHz được sử dụng cho HIPERLANs, một số băng tần yêu cầu cho việc truyền công suất điều khiển TCP (transmission power control) và sự chọn lựa tần số dynamic DFS (dynamic frequency selection) để tồn tại cùng với những hệ thống rada.

                  IEEE 802.16a là chuẩn được áp dụng cho những mạng lưới trong trung tâm MANs (metropolitan area network), chuẩn này sử dụng truy cập không dây băng thông rộng, được đưa ra để thay thế cho những hệ thống truy cập bằng dây như cable modem và đường thuê bao số (DSL).

                  Hình 5.3 : Mô hình mô phỏng hệ thống DVB-T trong matlab.
                  Hình 5.3 : Mô hình mô phỏng hệ thống DVB-T trong matlab.

                  MÔ PHỎNG

                  Giới thiệu các khối

                    • Chuỗi huấn luyện : nó được chèn lên mỗi sóng mang con , nó là chuỗi bit thông thường và được biết trước tại nơi thu, số lượng kí tự huấn luyện được nhập từ ô Training Symbol và khoảng từ 5 đến 10 kí tự. Kênh truyền chịu ảnh hưởng của multipath Rayleigh fading, sử dụng hàm rayleighchan(ts, fd, tau, pdb) trong matlab (ts : thời gian lấy mẫu [s], fd : độ dịch Doppler max [Hz], tau : vectơ thời gian trễ [s], pdb : vectơ độ lợi công suất (dB)). Với outsignal là tín hiệu sau khi qua kênh truyền multipath Rayleigh fading, snr tỷ số công suất tín hiệu trên công suất nhiễu sau khi đã bị suy hao do khoảng bảo vệ (mức suy hao : 10log10((NFFT+G)/NFFT), NFFT : số điểm FFT, G: số khoảng bảo vệ).

                    Sau đó, đáp ứng kênh truyền tại những tần số mang dữ liệu có ích sẽ được xác định bằng các phương pháp nội suy từ những giá trị đáp ứng kênh truyền đã được ước lượng tại những sóng mang pilot.

                    Hình 6.4 : Sơ đồ khối phát thu OFDM khi sử dụng cân bằng thích nghi One-Tap
                    Hình 6.4 : Sơ đồ khối phát thu OFDM khi sử dụng cân bằng thích nghi One-Tap

                    Giao diện chương trình

                    • Checkbox AWGN Noise : nếu chương trình mô phỏng có xét đến ảnh hưởng của nhiễu AWGN thì tick vào đó, khi đó edit SNR sẽ ‘enable’ và có thể nhập giá trị SNR cần mô phỏng vào đó. Trong đó có pop-up menu Aglorithm cho phép chọn giải thuật LMS hoặc RLS, hai editbox Training Symbol và Stepsize cho phép nhập các giá trị bằng tay. Số Training Symbol là số ký tự huấn luyện, giá trị step size là hệ số μ trong giải thuật LMS, hoặc là giá trị λ (hệ số quên) trong giải thuật RLS.

                    Nếu radiobutton Comb được chọn, pop-up menu Comb sẽ tích cực và có thể chọn một trong 4 phương pháp nội suy (Linear, Second Order, Lowpass, Spline Cubic) để ước lượng.

                    Kết quả mô phỏng với các giải thuật cân bằng (giao diện ‘CÂN BẰNG’)

                      - Nếu truyền file âm thanh: hiển thị dạng sóng âm thanh phát và thu, 2 pushbutton Play để nghe âm thanh tín hiệu phát và thu. Nếu chương trình đang chạy mô phỏng, text này sẽ hiển thị ‘Running!’, và khi hoàn thành mô phỏng sẽ hiển thị ‘Complete!’. - Với giải thuật LMS hệ số Step size khá quan trọng, nó quyết định bộ cân bằng hoạt động có hiệu quả hay không, với LMS người ta thường chọn giá trị step size nhỏ.

                      - Trong cùng điều kiện giải thuật LMS thường có tốc độ thực thi nhanh hơn giải thuật RLS do độ phức tạp trong tính toán thấp hơn, nhưng về chất lượng thì bộ RLS cho tỷ lệ lỗi thấp hơn.

                      Kết quả mô phỏng với các giải thuật ước lượng kênh truyền ( giao diện

                        - Các giải thuật ước lượng chạy với thời gian lâu hơn (khoảng 15 giây) so với các giải thuật cân bằng (khoảng 7 giây), điều này hợp lý vì các giải thuật ước lượng phải tính toán nhiều hơn, tính toán trên từng symbol OFDM (với ước lượng dạng lược) hoặc theo block chu kỳ Dt =4 (với ước lượng dạng khối ). - Trên các hình trên thực hiện với giá trị M-QAM khác nhau, khi số mức M-QAM tăng thì số bit lỗi tăng vì khi đó các điểm trên biểu đồ chòm sao gần nhau hơn, để có tỷ lệ lỗi chấp nhận được ta phải tăng SNR. ♦ OFDM Spectrum biểu diễn đồ thị phổ tín hiệu OFDM trước khi qua kênh truyền (bên phần Transmit) và sau khi qua kênh truyền (bên Receive), trục hoành biểu diễn tần số của sóng mang con (được chuẩn hóa theo số điểm FFT), trục tung biểu diễn biên độ của tín hiệu OFDM (dB).

                        Do bị ảnh hưởng của nhiễu AWGN, multipath, dịch Doppler, bên thu không được ước lượng nên tín hiệu nhận được bị sai nhiều (tổng bit phát : 304, số bit lỗi : 140), dạng phổ của tín hiệu OFDM trước và sau khi qua kênh truyền có sự khác nhau.

                        Xem xét ảnh hưởng của các loại nhiễu lên hệ thống

                        Tuy số bit lỗi trong trường hợp này lớn nhưng từ hình thu được ta thấy chất lượng vẫn chấp nhận được , có thể lỗi rơi vào tần số cao của ảnh, nó không chứa nhiều thông tin quan trọng của ảnh. Trong hình trên ta xét hệ thống chỉ có nhiễu trắng, dễ dàng nhận thấy rằng nhiễu trắng sẽ làm cho tín hiệu bị nhòe tại vị trí đúng của nó, nhưng ít làm xoay pha tín hiệu, nhiễu trắng có thể loại bỏ bằng cách tăng tỉ số tín hiệu trên nhiễu (SNR). Khi mô phỏng ta thấy rằng các giải thuật cân bằng và ước lượng chỉ hoạt động hiệu quả với hiện tượng multipath và doppler, hiện tượng làm xoay pha tín hiệu rất lớn và biến thiên biên độ.

                        Nếu giả sử rằng trên kênh truyền không có nhiễu trắng, các giải thuật cân bằng có thể hoạt động tốt với vận tốc doppler lớn.