MỤC LỤC
Thang máy điện dẫn động cáp có bộ tời kéo đặt phía trên đỉnh giếng thang;.
Mcb được nhân với hệ số 1,2 tính đến trọng lượng của các bộ phận khác như bộ hãm bảo hiểm cabin, đầu treo cáp, các con lăn dẫn hướng, cáp điện, cáp cân bằng…, do đó ta có trọng lượng sơ bộ của cabin.
Trong quá trình làm việc, động cơ phải khắc phục được các thành phần lực cản sau: Lực vòng Pmax trên puli ma sát, lực cản do không khí, lực ma sát giữa ray dẫn hướng và ngàm dẫn hướng. Tuy nhiên lực cản do ma sát và do không khí là không đáng kể nên ta chỉ tính lực cản do chênh lệch lực căng của hai nhánh cáp Pmax gây ra.
Ta tiến hành kiểm tra động cơ theo điều kiện quá tải khi làm việc ở thời kỳ mở máy phải thỏa mãn điều kiện: Mmmtb ≤ [M]gt;. Với Mt: Mô men cản tĩnh trên trục động cơ ứng với tải trọng nâng danh nghĩa;.
Theo kết cấu dầm đỡ bộ tời như hình 2-5 thì dầm thép (I) là hai thanh thép hình chữ I được bắt vào kết cấu chịu lực công trình bằng vít nở bắt bulông, toàn bộ trọng lượng của bộ tời, khối lượng cabin, đối trọng và tải được truyền sang kết cấu công trình qua hai dầm này. Để bộ tời làm việc bình thường thì cần đảm bảo khoảng cách giữa điểm thấp nhất của puly đổi hướng cáp so với mặt sàn buồng máy, vì vậy dầm được bố trí thêm các thanh thép hình chữ C (II), (III) và (IV).
Như vậy dầm đỡ (III) được chọn thỏa mãn điều kiện bền cho phép. Như vậy dầm đỡ bộ tời kéo là các thanh thép hình chữ I và C được chọn đều thỏa mãn điều kiện bền cho phép. §4 TÍNH CHỌN RAY DẪN HƯỚNG CABIN VÀ ĐỐI TRỌNG. Trang 32 Thiết kế thang máy chở người phục vụ nhà chung cư cao tầng. Ray dẫn hướng gồm nhiều đoạn và được nối với nhau bằng các tấm ốp phía sau. Các tấm ốp này liên kết với chân ray bằng bulông. Ray được cố định vào kết cấu chịu lực của công trình thông qua các mố ray. Các mố ray được cố định vào vách giếng thang bằng vít nở và cách nhau từ 1,5 đến 3,5m tùy theo thiết kế và tính toán. Ray được kẹp vào mố ray bằng cóc kẹp ray, đảm bảo cho ray không bị biến dạng do lún công trình và dễ lắp đặt. Quá trình tính toán và chọn ray dẫn hướng được dựa theo các thành phần lực tác dụng lên ray dẫn hướng cabin và đối trọng. Các thành phần lực tác dụng lên ray dẫn hướng bao gồm: lực thẳng đứng tác dụng lên ray do phanh hãm an toàn gây ra khi phanh hãm cabin; lực ngang do tải trọng phân bố không đều lên sàn cabin; lực cản do ma sát giữa con lăn dẫn hướng với ray dẫn hướng… tuy nhiên lực cản do ma sát là rất nhỏ do đó ta có thể bỏ qua mà chỉ tính toán với hai thành phần lực còn lại. Bảng 2-2: Đặc tính kỹ thuật ray dẫn hướng. Hình 2-9: Kích thước ray dẫn hướng. Trang 34 Thiết kế thang máy chở người phục vụ nhà chung cư cao tầng. Khi phanh hãm an toàn làm việc, kẹp chặt cabin trên ray tạo sẽ tạo ra một lực thẳng đứng tác dụng lên ray dẫn hướng cabin. amax = g: Gia tốc lớn nhất khi phanh hãm an toàn cabin làm việc, được lấy tương ứng với gia tốc rơi tự do. Lực thẳng đứng Fd có điểm đặt lệch với trọng tâm tiết diện mặt cắt ray một khoảng e, lực này gây ra mô men uốn dọc trong ray. Theo biểu đồ mô men, ta thấy tiết diện giữa dầm là nguy hiểm nhất, ứng suất uốn dọc sinh ra được tính theo công thức 7.14 tài liệu [07]:. a) Sơ đồ tính ray dẫn hướng. b) Sơ đồ tính cho một bước dầm ray dẫn hướng c) Biểu đồ mô men uốn dọc của ray dẫn hướng. Ta thấy ray có đủ độ bền khi chịu lực phanh Fd vì thỏa mãn điều kiện bền:. Thành phần lực ngang tác dụng lên ray Fx1, Fx2, Fy do sự phân bố tải trọng không đều lên sàn cabin. Giả thiết lực phân bố không đều lên sàn cabin là tải trọng phân bố đều theo đường bậc nhất, với giá trị lực tập trung là Q ứng với khoảng lệch tâm ex = c/6; ey = b/6 so với tâm sàn cabin. a) Sơ đồ tính lực ngang tác dụng lên ray dẫn hướng do tải trọng phân bố không đều b) Sơ đồ phân bố tải trọng lên mặt sàn. Trong quá trình hoạt động của thang máy, ray dẫn hướng đối trọng chịu lực tác dụng không đáng kể do đối trọng di chuyển lên xuống theo phương thẳng đứng không dùng bộ hãm bảo hiểm an toàn. Tổng chiều dài ray dẫn hướng đối trọng đúng bằng tổng chiều dài ray dẫn hướng cabin, ta lấy số thanh ray dẫn hướng đối trọng là n = 23 thanh.
Theo sơ đồ tính toán và biểu đồ nội lực ta thấy rằng mố ray chịu uốn và xoắn đồng thời dưới tác dụng của lực ngang Fx còn dưới tác dụng của lực ngang Fy thì mố ray chịu uốn và nén đồng thời. Công tắc (08) được gắn vào khung (05) nhằm ngắt động cơ dẫn động và mạch điều khiển nhờ hạn chế hành trình (07) khi hành trình đối trọng (06) vượt quá giá trị cho phép hoặc đứt cáp hạn chế tốc độ. Tuy nhiên do yêu cầu cấu tạo và đặc điểm làm việc của bộ hãm phải đảm bảo thanh chữ U không bị biến dạng khi chịu lực tác dụng từ nêm, vì vậy thanh phải đảm bảo tuyệt đối cứng.
+ Thanh đứng khung cabin chịu ứng suất kéo và mô men uốn do sự phân bố không đều của tải trọng lên sàn cabin, khoảng lệch tâm e được lấy theo phần tính ray dẫn hướng. Tải trọng định mức phân bố đều lên sàn cabin với cường độ q; dầm treo chịu tỏc dụng của lực tập trung (Q+Mcb)ìg, cỏc lực này gõy ra mụ men M1 và M2 tại các nút liên kết khung cabin. Tải trọng tập trung tác dụng lên dầm treo cabin là không đáng kể, lực tác dụng lên khung cabin gây ra mô men uốn M1 và M2 tại các nút liên kết khung cabin.
Vậy tiết diện thanh dọc sàn tĩnh cabin được thiết kế thỏa mãn điều kiện bền.
Cũng giống như tính toán khung cabin, khi tính toán khung đối trọng ta dựa vào các thành phần lực tác dụng lên khung trong các điều kiện làm việc của thang máy như: trường hợp làm việc ổn định, trường hợp khung đối trọng tỳ lên đầu giảm chấn tuy nhiên do không chịu tác dụng trực tiếp của tải trọng lên kết cấu khung nên có thể bỏ qua tính toán bền khi thử tải tĩnh. Đồng thời sự khép kín của tiếp điểm thường hở 3y đảm bảo cấp điện cho công tắc tơ 3y trong suốt thời gian chuyển động của cabin đồng thời sự mở ra của các tiếp điểm thường kín 3y đảm bảo việc cắt điện qua các công tắc tơ 1y và 2y loại trừ khả năng điều khiển cabin từ các nút đến tầng DT và gọi tầng GT. Khi cabin đi đến sàn tầng 16 thì tiếp điểm của công tắc tầng CT16 hở ra, công tắc tơ nâng N mất điện làm các tiếp điểm thường hở N trong mạch động lực hở ra, động cơ và cơ cấu phanh hãm mất điện, phanh hãm động cơ và dừng cabin tại sàn tầng 16 đồng thời tiếp điểm thường hở đóng chậm N trong mạch của công tắc tơ 3y mở ra, công tắc tơ 3y mất điện, các tiếp điểm thường hở 3y trong mạch của rôto mở ra, toàn bộ điện trở phụ lại được đưa vào mạch rôto để chuẩn bị cho lần mở máy của động cơ lần tiếp theo.
- Kiểm định kỹ thuật an toàn tổng thể thang máy bao gồm các nội dung theo quy trình do cơ quan có thẩm quyền về an toàn lao động ban hành. - Kết quả kiểm định được thể hiện trong biên bản kiểm định kỹ thuật an toàn kèm vào hồ sơ xin đăng ký cấp phép sử dụng. - Thời hạn giữa hai lần kiểm tra định kỳ không được quá 1 năm, không phụ thuộc mức độ sử dụng thang máy nhiều hay ít.
- Khi có hỏng hóc lớn khiến thang máy không thể tiếp tục hoạt động thì phải báo cho đơn vị bảo trì bảo dưỡng đến xử lý. Bảo trì kỹ thuật thang máy là tổng hợp các biện pháp kỹ thuật nhằm duy trì cho thang máy luôn ở trạng thái kỹ thuật tốt, đảm bảo an toàn và tin cậy trong suốt quá trình sử dụng. Theo TCVN thì chỉ sử dụng thang máy ở trạng thái kỹ thuật tốt và đã được cấp giấy phép sử dụng.
Như vậy phải đánh giá được trạng thái kỹ thuật của thang máy một cách thường xuyên. + Kiểm tra cụm liên kết giữa cáp hạn chế tốc độ với hệ tay đòn của bộ hãm an toàn cabin;. + Kiểm tra hộp đựng dầu bôi trơn cho ray dẫn hướng cabin và đối trọng;.
Công việc bảo dưỡng hàng ngày do người quản lý thang máy thực hiện với các công việc đơn giản như: vệ sinh trong cabin, chăm sóc bảo dưỡng tại những nơi dễ gây ra bẩn và có thể gây nguy hiểm cho thang máy như: vách, trần, tay vịn, ngưỡng cửa tầng, bảng điều khiển…. - Dựa vào biên bản kiểm tra định kỳ và kết quả kiểm tra thực tế tại thời điểm tiến hành bảo dưỡng để căn chỉnh những bộ phận, những chi tiết vượt quá giới hạn cho phép, thay thế những bộ phận, chi tiết hỏng hóc. Kết thúc quá trình bảo dưỡng cần cho thang máy chạy thử ở các chế độ tải trọng khỏc nhau, theo dừi và chỉ khi nào khụng cú vấn đề gỡ mới bàn giao cho bên sử dụng.