MỤC LỤC
- Do tốc độ dâng nước lớn nên rất khó tạo bùn hạt (loại bùn có hoạt tính cao) Từ các ưu nhược điểm trên cho thấy hệ thống EGSB nên áp dụng cho nước thải có tải lượng COD thấp và chứa các chất hữu cơ dạng hòa tan. Vi sinh vật có thể dính bám lên giá thể vì có nhiều loại VSV có khả năng tiết ra các polyme sinh học giống như keo dính vào giá thể, tạo thành màng. Hồ sinh học: Các quá trình diễn ra trong hồ sinh học tương như quá trình tự làm sạch ở sông hồ nhưng tốc độ nhanh hơn và hiệu quả cao hơn.
Đầu tiên VSV phân hủy các chất hữu cơ phức tạp thành các chất đơn giản, đồng thời trong quá trình quang hợp chúng lại giải phóng ra oxy cung cấp cho động thực vật. Ngoài nhiệm vụ xử lý nước thải, hồ sinh học còn có các lợi ích: nuôi trồng thủy sản và cây trồng, điều hòa lưu lượng, dự trữ nước cho các mục đích sử dụng nước khác. + Hồ tùy tiện: được sử dụng rộng rãi trong XLNT, trong hồ xảy ra song song hai quá trình: oxy hóa hiếu khí chất hữu cơ và phân hủy methane cặn lắng.
Theo chiều sâu của hồ phân ra thành ba vùng: Lớp nước phía trên có nhiều oxy hòa tan nên quá trình oxy hóa xảy ra ở môi trường hiếu khí; Lớp giữa là lớp trung gian; Lớp dưới cùng quá trình phân hủy các chất hữu cơ ở môi trường yếm khí. Trong quá trình XLNT thì sự phối hợp chặt chẽ giữa TVTS và các sinh vật khác (động vật phù du, tảo, vi khuẩn, vi nấm, động vật nguyên sinh, nhuyễn thể, ấu trùng, côn trùng…) có ý nghĩa quan trọng. Vi sinh vật tham gia trực tiếp vào quá trình phân hủy các hợp chất hữu cơ và tạo nguyên liệu dinh dưỡng (N, P và các khoáng chất khác…) cho thực vật sử dụng.
- Tốc độ tăng trưởng sinh khối nhanh: sinh khối của TVTS sau xử lý có thể sử dụng làm thức ăn chăn nuôi, sản xuất khí mêtan, phân bón…;. +Xử lý nước thải bằng tảo: Tảo có khả năng quang hợp, chúng có tốc độ sinh trưởng nhanh, chịu được các thay đổi của môi trường, có khả năng phát triển trong nước thải, có giá trị dinh dưỡng cao. Do đó người ta đã lợi dụng các đặc điểm này của tảo để: chuyển đổi năng lượng mặt trời và chất dinh dưỡng trong nước thải thành năng lượng sinh khối tảo.
Độ sâu của tảo: độ sâu của tảo được lựa chọn trên cơ sở tối ưu hóa khả năng sử dụng ánh sáng trong quá trình quang hợp của tảo, độ sâu thường là 40 - 50cm. Lượng BOD nạp cho hồ tảo: ảnh hưởng đến năng suất tảo vì nếu lượng BOD nạp quá cao môi trường sẽ trở nên yếm khí ảnh hưởng đến quá trình cộng sinh của tảo và vi khuẩn. - Nhóm chìm: rong xương cá (Potamogeton crispus), rong đuôi chó (Littorella umiflora), thực vật loại này chìm hẳn trong nước, rễ của chúng bám chặt vào bùn đất, còn thân và lá ngập trong nước.
Song song với quá trình khử nitrat là quá trình tổng hợp tế bào, do đó lượng chất hữu cơ tiêu hao cho cả quá trình lớn hơn nhiều so với lượng chất hữu cơ cần thiết cho khử nitrat. Quá trình khử nitrat không phải là quá trình lên men yếm khí mà nó giống như quá trình hô hấp hiếu khí nhưng thay vì sử dụng oxy chúng sử dụng NO2- và NO3- khi môi trường thiếu oxy. Trong hệ khử nitrat bởi VSV, mức độ tiêu hao chất điện tử phụ thuộc vào sự có mặt của chất nhận điện tử (chất oxy hóa) trong hệ: oxy hòa tan, nitrit, nitrat, sunfat.
+ DO: Qúa trình khử nitrat xảy ra trong điều kiện thiếu khí nên nồng độ oxy hòa tan - DO ảnh hưởng rất lớn đến hiệu quả quá trình vỡ oxy trong nước thải ức chế các enzyme khử nitrat. Trong nước thải chăn nuôi, hàm lượng COD và nitơ đều cao nên sự hoạt động của VSV tự dưỡng sẽ bị cạnh tranh quyết liệt bởi VSV dị dưỡng, dẫn đến khả năng xử lý các hợp chất chứa nitơ trở lên khó khăn hơn. Bằng cách sử dụng bùn hoạt tính, các hợp chất trong các quá trình xử lý thiếu khí, xử lý hiếu khí, xử lý yếm khí kết hợp hoặc riêng biệt để thực hiện quá trình khử nitơ và photpho.
• Quy trình A2/O (Kỵ khí – thiếu khí – hiếu khí): quy trình này được cải tiến từ quy trình A/O và bổ sung thêm ngăn thiếu khí để khử nitrat, thời gian lưu nước trong ngăn thiếu khí khoảng 1h. Trên cơ sở những dữ liệu kiểm tra được, xuất hiện một số hợp chất hữu cơ trong nước thải đầu vào, đảm bảo sự ổn định trong hoạt động của bể kỵ khí, làm giảm nhanh chóng lượng oxi theo yêu cầu. Nguyên lý hoạt động của mương oxy hóa tuần hoàn là bùn hoạt tính thổi khí kéo dài, lượng oxy cần cung cấp 1,5-1,8 kgO2/kgBOD5 để đảm bảo quá trình khử nitrat (Gray, 1990).
Trong mương oxy hóa có các vùng hiếu khí và thiếu khí, vùng hiếu khí (DO>2mg/l) diễn ra quá trình oxy hóa chất hữu cơ và nitrat hóa, vùng thiếu khí (DO<0,5mg/l) diễn ra quá. -Không tạo điều kiện tích lũy dạng Nitribacter bằng cách giảm thời gian lưu tế bào ngang bằng với thời gian lưu nước (không hồi lưu bùn), kiểm soát cấp khí trong quá trình oxy hóa (giảm công suất cấp khí, bố trí các điểm cấp khí xa nhau). Hiện nhóm nghiên cứu ở Viện Sinh học Nhiệt đới tại TP Hồ Chí Minh đã có các kết quả ban đầu về làm giàu vi khuẩn anammox từ bùn kỵ khí của bể biogas nước thải nuôi lợn [9].
Tuy nhiên, kỹ thuật này chỉ áp dụng cho xử lý nước thải giàu nitơ, với yêu cầu nước thải đầu vào công trình: amoni>200mg/l và nồng độ chất hữu cơ thấp (tỷ lệ C/N<0,15) (Banashri Sinha và Ajit P. Trong các công trình trên vi khuẩn Acinetobacter được luân chuyển giữa các điều kiện nên khả năng lấy P trong nước thải tăng lên rất nhiều, Photpho được loại bỏ trong bùn lắng. Từ đánh giá kết quả của 2 dây chuyền công nghệ xử lý nước thải trên, đề xuất dây chuyền công nghệ số 3, thực hiện xây dựng cơ sở lý thuyết và tính toán các công trình xử lý nước thải theo dây chuyền công nghệ số 3.