Nghiên cứu chế tạo và hoạt tính điện hóa của vật liệu màng mỏng chứa Platin, Thiếc trên nền dẫn điện sử dụng phương pháp sol-gel

MỤC LỤC

Phương pháp solgel [7,9,15,29]

Phương pháp thủy phân muối

Phương pháp này thường sử dụng các muối nitrat, clorua, nên sự thuỷ phân xem như chỉ xảy ra với các cation kim loại Mz+. Kích thước hạt keo, cấu tạo của gel tuỳ thuộc tốc độ thuỷ phân (Vtp)và tốc độ ngưng tụ (Vnt): Vtp < Vnt : kích thước hạt keo nhỏ. Nhược điểm của phương pháp này là tổng hợp các oxit phức hợp rất khó chọn các cation kim loại thuỷ phân và ngưng tụ ở cùng điều kiện.

Phương pháp thuỷ phân alkoxit

Quá trình này xảy ra theo cơ chế thế ái nhân SN: Tác nhân ái nhân (nucleophin) tấn công vào Mn+ của alkoxit (a) hình thành trạng thái chuyển tiếp (b), sau đó vận chuyển proton từ nước sang nhóm RO (c) và loại rượu ROH (d). Nhiệt động học và động học của phản ứng do cùng các thông số như đối với sự thuỷ phân chi phối. Khi trong alkoxit có sự bão hoà phối trí chưa được thoả mãn thì có sự hình thành cầu nối hydroxo do loại phân tử dung môi.

Như vậy, bốn phản ứng : thuỷ phân, alkoxolation, oxolation, olation tham gia vào sự biến đổi alkoxit thành khung oxit. Dùng alkoxit là một trong những phương pháp sol gel khá thông dụng hiện nay, đặc biệt dùng trong điều chế Ti cỡ nano và cũng đã được nghiên cứu ở Việt Nam. Nhưng Alkoxit Nikel là polyme và không tan, trong khi chúng chứa nhóm alkoxit có chức năng cho nên rất khó thu được sol đồng nhất với hợp chất có halogen.

Phương pháp PPM (Polymeric precursor method)

- Thông số nội: bản chất kim loại và các nhóm alkyl, cấu trúc của alkoxit. Yêu cầu này khắc phục được khó khăn của phương pháp thuỷ phân khi muốn tạo composit từ các muối có khả năng thuỷ phân khác nhau. Hiện nay, người ta không chỉ dùng phối tử hữu cơ là Axit Citric và dung môi etylenglycol mà còn dùng nhiều hợp chất khác.

Nhưng bản chất vẫn là các phối tử hữu cơ liên kết với cation kim loại nhằm phân bố chúng rồi xử lý nhiệt đốt cháy phần hữu cơ để thu được sản phẩm có kích thước hạt nhỏ và độ đồng nhất cao. Trong khóa luận này, chúng tôi lựa chọn phương pháp PPM với việc sử dụng phối tử hữu cơ là Acid Cirtic và dung môi hữu cơ là Ethylene Glycol để đưa các hạt Pt, Sn và hỗn hợp PtSn lên bề mặt điện cực C xốp.

Phương pháp chế tạo màng mỏng[15,16]

Độ dày lớp phủ phụ thuộc vào góc giữa chất nền và bề mặt chất lỏng, độ dày lớp phủ khác nhau ở mặt trên và mặt dưới của nền (Hình 5). Hoặc phát triển cho bề mặt cong như kính mắt, chủ yếu thực hiện lớp phủ chống mài mòn cho nền plastic bằng xoay chai trong quá trình nhúng rút ( hình 5). Quá trình nhúng phủ trong công nghiệp tinh thể chì tạo cốc vại (cốc Beso) hay ly rượu đã được sử dụng hàng thế kỷ. Đó là quá trình flash-tia, mẫu nóng của một thuỷ tinh không màu được nhúng vào trong thuỷ tinh nóng chảy có màu có cùng thành phần và sau đó thổi thành hình dạng tương tự. Hạn chế của nhúng phủ là phủ lên một vật liệu lớn và kiểm soát áp suất khi nhúng rút. b) Kỹ thuật phủ phun (spray-coating). Kỹ thuật này sử dụng rộng rãi trong sơn hữu cơ cho những hình dạng đặc biệt như đèn hoặc container thuỷ tinh. c) Kỹ thuật phủ chảy (flow-coating). Độ dày lớp phủ phụ thuộc vào góc nghiêng của nền, độ nhớt chất lỏng phủ và tốc độ bay hơi dung môi. Kỹ thuật này thường ứng dụng cho mặt phẳng lớn. Tuy nhiên, sau đó quay nền sẽ giúp đạt được lớp phủ tối ưu hơn. d) Kỹ thuật quay phủ (spin-coating). Quá trình quay trong điều kiện sạch và tự động. Độ dày lớp phủ vào khoảng vài trăm nanomet tới 10micromet. Thậm chí nền không phẳng cũng có thể tạo màng rất đồng nhất. Chất lượng lớp phủ phụ thuộc lưu biến học của chất lỏng, một nhân tố quan trọng nữa là số Reynolds không khí xung quanh. e) Kỹ thuật phủ hoá học (Chemical -coating).

Phủ hoá học được hiểu như một quá trình có xảy ra phản ứng hoá học. Phần lớn gương vẫn được tạo ra theo cách tại bề mặt thuỷ tinh hoạt động như một nhân phản ứng của sự khử Ag+ thành Ag này. Hoặc kết tủa đồng trên thuỷ tinh, xảy ra quá trình kim loại hoá với chất lỏng thông thường sau khi tạo mầm trên bề mặt thuỷ tinh.

Hình 3: Gelatin hoá
Hình 3: Gelatin hoá

Phơng pháp nghiên cứu

    Quá trình quay trong điều kiện sạch và tự động. Độ dày lớp phủ vào khoảng vài trăm nanomet tới 10micromet. Thậm chí nền không phẳng cũng có thể tạo màng rất đồng nhất. Chất lượng lớp phủ phụ thuộc lưu biến học của chất lỏng, một nhân tố quan trọng nữa là số Reynolds không khí xung quanh. e) Kỹ thuật phủ hoá học (Chemical -coating). Khi nồng độ chất khử giảm đến 0 ở sát bề mặt điện cực thì dòng điện đạt giá trị cực đại, sau đó lại giảm xuống vì nồng độ chất khử trong dung dịch giảm xuống. Khi quét thế tuần hoàn, căn cứ vào đường cong thu được và một số dữ kiện khác có thể xác định được số phản ứng xảy ra hay số giai đoạn của phản ứng tuỳ theo số píc cực đại, điểm gãy, điểm nối xuất hiện trên đường cong đo được.

    Cho chùm tia X truyền qua một chất ở trạng thái rắn hoặc khí, chùm tia này sẽ tương tác với các điện tử trong các nguyên tử của chất nghiên cứu hoặc ngay cả với nhân nguyên tử nếu chùm tia có năng lượng đủ lớn. Khi chùm tia X tới bề mặt tinh thể và đi sâu vào bên trong mạng lưới thì mạng lưới này đóng vai trò như một cách tử nhiễu xạ đặc biệt, các nguyên tử, ion bị kích thích bởi chùm tia X sẽ trở thành các tâm phát ra các tia phản xạ. Việc tìm ra trên giản đồ đó sự giống nhau cả về vị trí lẫn tỷ lệ cường độ của chất nghiên cứu và chất chuẩn đã biết là cơ sở của phép phân tích phổ định tính.

    Các tia phân kì theo các phương khác nhau sẽ hấp phụ ở mặt bên trong của ống, các tia xuất phát từ mẫu 2 sẽ tách thành phổ nghĩa là phân bố theo độ dài bước sóng nhờ tinh thể phân tích 4. Trong quá trình gia nhiệt, các mẫu rắn có thể xảy ra các quá trình biến đổi hoá lý khác nhau như: sự phá vỡ mạng tinh thể, sự biến đổi đa hình, sự tạo thành và nóng chảy của các dung dịch rắn, sự thoát khí, bay hơi, thăng hoa của các tướng hoá học..Phương pháp phân tích nhiệt là một nhóm các kỹ thuật trong đó một hoặc một vài thuộc tính của mẫu được khảo sát theo nhiệt độ. Một số kỹ thuật cơ bản trong phân tích nhiệt là: Phân tích nhiệt vi sai (Differencial Thermal Analysis-DTA), Phân tích thay đổi trọng lượng (khối lượng) theo nhiệt độ (Thermal Grevimetric Analysis- TG), Nhiệt lượng vi sai quét (DSC), Phân tích cơ-nhiệt (TMA), hai kỹ thuật đo phổ biến nhất hiện nay là DTA và TG.

    Giản đồ nhiệt DTA mô tả sự phụ thuộc chênh lệch nhiệt độ giữa mẫu đo và mẫu so sánh theo nhiệt độ hoặc theo thời gian khi nhiệt độ tác động lên mẫu đo được quét theo chương trình. Thông tin cơ bản nhận được từ giản đồ nhiệt DTA là các hiệu ứng nhiệt: hiệu ứng thu nhiệt ứng với xuất hiện mức cực tiểu, hiệu ứng toả nhiệt ứng với xuất hiện mức cực đại trên đường DTA, chuyển pha (chuyển thể thuỷ tinh). Từ giản đồ TG có thể nhận biết các quá trình biến đổi có kèm theo thay đổi khối lượng, các quá trình chuyển pha từ không có từ tính sang pha có từ tính hay ngược lại.

    Nó có ích khi chúng ta quan tâm tới khía cạnh động học của quá trình biến đổi xảy ra trong hệ.Ngoài ra, Giản đồ DTG nói chung thường cải thiện đáng kể khả năng phân giải của dữ liệu: Khi các quá trình xảy ra rất sát nhau, thậm chí chồng chập, che phủ nhau có thể tách rời ra bằng giải pháp này.

    Hình 8: Dạng đường phân cực vòng
    Hình 8: Dạng đường phân cực vòng

    THựC NGHIệM

    Chuẩn bị thí nghiệm 1. Hóa chất

    Điều kiện thực nghiệm: tốc độ quét nhiệt là 10oC/phút, môt trường không khí. Ảnh SEM của mẫu được chụp qua kính hiển vi điện tử quét trên máy Hitachi S-4800 tạị phòng thí nghiệm trọng điểm - viện khoa học Việt Nam. Tính chất điện hóa của điện cực được khảo sát trên máy PGS HH8 được ghép nối với máy tính tại phòng điện hóa, trường Đại Học Khoa học Tự nhiên.

    Điện cực so sánh (RE): Calomen 3- Điện cực làm việc(WE) Điện cực phụ trợ (CE):Platin 4- Dung dịch nghiên cứu.