MỤC LỤC
Tức là lượng hàng phát ra bằng đúng lượng hàng yêu cầu ở các điểm thu (điều kiện cân bằng thu phát). Dạng toán học của BTVT là:. phương trình còn lại và có thể bỏ đi. Ta đưa BTVT về dạng. Ta gọi Pij là cột của ma trận A ứng với biến xij. Vector này có 2 thành phần bằng 1 tại dòng thứ i và dòng thứ m+j còn các thành phần khác bằng 0. Một phương án X gọi là phương án cơ sở nếu vector cột Pij của ma trận A tương ứng với các xij > 0 là độc lập tuyến tính. 1) Trước hết ta chứng minh BTVT luôn có phương án. 2) Sau đó chứng minh rằng miền rằng buộc giới nội. Theo thuật toán đơn hình, xuất phát từ một phương án cực biên, sau một số hữu hạn bước ta phải đi tới một phương án cực biên tối ưu. Định lý 2.2: Hệ thống vector Pij của BTVT là độc lập tuyến tính khi và chỉ khi các ô tương ứng với các vector của hệ thống không tạo thành chu trình.
Điều đó có nghĩa là trong thành phần của tổ hợp này ngoài vector dạng Pi1j1, phải có các vector Pi1jk và vector Piej1. Hệ quả: Vector X là phương án cực biên khi và chỉ khi tập các ô sử dụng tương ứng không lập thành chu trình. Chứng minh: Coi BTVT là một QHTT thì X là phương án cực biên khi và chỉ khi các vector Pij ứng với xij > 0 là độc lập tuyến tính, theo định lý 2.2 thì điều đó xẩy ra khi và chỉ khi tập các ô sử dụng tương ứng không lập thành chu trình.
Định lý 2.3: Giả sử X là một phương án của BTVT và tập G của nó lập thành chu trình, thế thì bao giờ cũng có thể điều chỉnh được X để chuyển sang một phương án mới X’ không xấu hơn mà tập G’ không lập thành chu trình. Quá trình biến đổi và phân phối hoàn toàn giống như phương pháp trên chỉ khác là trong mỗi bước ta không chọn ô ở góc tây bắc mà chọn ô có cước phí nhỏ nhất trong toàn bảng. Dùng các phương pháp trên để tìm phương án xuất phát, trong một số lớn các trường hợp, số bước lặp dẫn tới nghiệm giảm đi khá nhiều, nhất là khi giải BTVT mà số điểm phát và thu rất lớn.
Nếu các ô sử dụng lập thành chu trình thì ta sử dụng định lý (2.3) để phá chu trình, chuyển phương án xuất phát về phương án cực biên. Các nguồn phát có thể là các nơi sản xuất, các kho hàng, hoặc các điểm cung cấp được đặc trưng bởi lượng hàng phát ai,, i=1.,m. Đặt ek, k=1,..,l là số lượng sản phẩm có thể vận chuyển được bởi một trong l phương án khác nhau hay các phương tiện vận chuyển khác nhau.
Ta có nhận xét mô hình của bài toán STP là dạng tổng quát của mô hình bài toán vận tải hai chỉ số thông thường TP (Transport Problem) nếu chúng ta chỉ nghiên cứu trong một phương thức vận chuyển duy nhất (l=1). ii) Một phương án mà hệ thống các vector hệ số ứng với các toạ độ dương độc lập tuyến tính gọi là 1 phương án tựa (phương án cực biên). iii) Một phương án tựa mà số các toạ độ dương đúng bằng hạng của ma trận hệ số gọi là một phương án tựa không suy biến. iv) Một phương án làm cực tiểu hàm chi phí được gọi là một phương án tối ưu. v) Ta gọi một tập hợp các ô (i,j,k) tạo thành một vòng nếu các vector hệ số Pijk tương ứng là phụ thuộc tuyến tính, nhưng nếu bớt đi một vector thì chúng trở thành độc lập tuyến tính. vi) Một tập hợp các ô (i,j,k) không tạo thành vòng nếu các vector hệ số Pijk. tương ứng là độc lập tuyến tính. vii) Nếu các ô (i,j,k) tạo thành một vòng thì các vector hệ số Pijk thoả mãn hệ thức.
Giá trị của hàm mục tiêu tương ứng với phương án tối ưu trên là 115. Ta có thể giải tương tự như trong quy hoặc tuyến tính với các biến bị chặn trên.
Giải bài toán ISTP thông qua việc đưa sang bài toán phụ STP bằng cách thêm nguồn phát, thu, phương tiện vận tải phù hợp. Theo cách đó bài toán m nguồn phát, n nguồn thu, l phương thức vận chuyển được chuyển sang bài toán phụ STP như được trình bày trong Bảng 2.3, và Bảng 2.4, mà có thể giải có hiệu quả cho bài toán chuẩn. Trong số đó có 1 nguồn phát, 1 nguồn thu và 1 phương thức vận chuyển được gọi là “giả”.
Trong bài toán phụ, m rằng buộc đầu tiên ứng với mức độ cung cấp nhỏ nhất của nguồn phát và chi phí vận chuyển tương ứng tới nguồn thu. Sau đó là m rằng buộc biểu diễn lượng hàng cung cấp của các nguồn thêm vào nhưng không cần thiết, do đó chi phí vận chuyển tương ứng tới nguồn thu giả bằng phương thức vận chuyển giả nhận giá trị 0. Tương tự, n rằng buộc đầu tiên ứng với lượng nhu cầu nhỏ nhất của các nguồn thu và chi phí vận chuyển tương ứng từ nguồn phát giả với phương thức.
Tiếp tục như vậy, l rằng buộc tương ứng khả năng vận chuyển nhỏ nhất, chi phí vận chuyển từ nguồn phát giả tới nguồn thu giả nhận giá trị M, tiếp theo l rằng buộc thể hiện khả năng vận chuyển khả năng vận chuyển của phương thức vận chuyển thêm vào nhưng không cần thiết, do đó chi phí vận chuyển từ nguồn phát giả đến nguồn thu giả nhận giá trị 0. Số lượng của nguồn phát giả, nguồn thu giả, phương thức vận chuyển giả được cố định phần còn lại để bài toán được cân bằng.
Tạm thời cố định các biến xi (mức sản xuất) ta có bài toán vận tải thông thường, giải bài toán này ta thu được phương án vận chuyển tốt nhất ứng với mức sản xuất đã chọn. Tiếp đó, ta kiểm tra xem các xi hiện có đã phải là tốt hay chưa; nếu chưa, ta sẽ tìm cách chọn (nhờ giải một bài toán phi tuyến phụ) mức sản xuất mới tốt hơn và lại giải bài toán vận tải ứng với mức sản xuất mới này,. Sau một số hữu hạn bước lặp ta sẽ thu được lời giải của bài toán.
Chỳ ý: Cỏc bài toỏn phụ (Qk) là bài toỏn tỡm cực tiểu của một hàm lừm với các rằng buộc tuyến tính, trong đó bài toán sau chỉ khác bài toán trước bởi một rằng buộc mới thêm vào.
Ngoài ra, thời gian vận chuyển cũng rất quan trọng, đặc biệt là trong trường hợp chất lượng sản phẩm có thể bị suy giảm hoặc có yêu cầu về thời gian đối với hàng hoá đó. Chúng ta coi thời gian vận chuyển là không phụ thuộc vào tổng số hàng hoá được vận chuyển và vận chuyển bấy kỳ từ điểm phát nào tới bất kỳ điểm thu nào đều bắt đầu tại một thời điểm là 0. Ngoài mục đích cực tiểu cước phí, bài toán còn phải đòi hỏi giảm thời gian vận chuyển trong suốt quá trình vận chuyển.
Đôi khi cũng có sự tương xứng giữa thời gian vận chuyển và chi phí vận chuyển trên một đơn vị hàng hoá cij, như trong trường hợp tij cũng là biến quyết định. Bài toán này xét cực tiểu vector (khoảng thời gian vận chuyển, tổng chi phí vận chuyển) trên tất cả các điểm hữu hiệu tij và xij. Gọi cij(t) là chi phí trên một đơn vị hàng hoá vận chuyển từ nguồn phát i tới nguồn thu j khi t là thời gian vận chuyển tương ứng với cặp điểm đó.
Nghiệm của bài toán P là liệt kê tất cả những điểm hữu hiệu thuộc Z và tìm sự tương ứng của nó trên T x K. Bài toán vận tải có nhiều phương thức vận chuyển khác nhau như vận chuyển bằng đường sắt, đường không,. Mỗi phương thức vận chuyển bao hàm thời gian vận chuyển và chi phí vận chuyển trên một đơn vị hàng hoá.
Gọi k là một trong các phương thức vận chuyển đó, khi đó ta có thời gian vận chuyển là tijk và chi phí vận chuyển trên một đơn vị hàng hoá là cij. Trong ngữ cảnh của bài toán cực tiểu vector khoảng thời gian vận chuyển và tổng chi phí vận chuyển thì việc làm trội các phương thức vận chuyển không liên quan đến nhau.
Một số bài toán mở rộng trong lớp các bài toán vận tải mở rộng: Bài toán vận tải ba chỉ số (solid transport problem), Bài toán vận tải ba chỉ số khoảng (interval solid transport problem) và giới thiệu một số Bài toán vận tải đa mục tiêu.