MỤC LỤC
Một giải pháp để tăng độ bền cơ học là tạo ra một tổ hợp gốm composit bằng cách phân tán HA bột vào các polyme sinh học như collagen, chitosan, xenlulo, đường sacaro… [51]. Vật liệu ở dạng này được sử dụng làm các chi tiết cấy ghép xương chất lượng cao, làm kẹp nối xương hoặc có thể làm chất truyền dẫn thuốc. Việc sử dụng các polyme sinh học làm chất nền tạo điều kiện cho việc gia công, chế tạo các chi tiết dễ dàng hơn.
TCP có hai dạng thù hình là α và β -TCP, thành phần α - TCP có tác dụng làm tăng tốc độ tái sinh xương, nó như là nguồn khoáng cung cấp trực tiếp cho chỗ phát triển xương mới. Trong số đó có thể kể đến Ossopan của Pháp, Bone Booster Complex, Bone Dense Calcium của Mỹ, Calcium Complex của Anh, SuperCal của New Zealand [69]. Như trong phần ứng dụng đã đề cập, HA dạng màng đã được các nhà khoa học Nhật Bản chế tạo thành vật liệu chế tạo răng giả và sửa chữa những khuyết tật của răng.
Để chữa trị căn bệnh loãng xương, Cục Quản lý Thực phẩm và Dược phẩm Mỹ (FDA) đã cho phép sử dụng HA trong sản xuất thuốc và thực phẩm chức năng. Trong đó HA xốp được chế tạo bằng phương pháp nén ép - thiêu kết HA bột với các chất tạo xốp chitosan, xenlulo, đường sacaro và phương pháp phản ứng pha rắn giữa Ca(OH)2 và Ca3(PO4)2. Hydroxyapatite Ca10(PO4)6(OH)2(HA) và Tricalicium phosphate Ca3(PO4)2(TCP), ứng dụng thay thế một số bộ phận xương, khớp trong cơ thể con người”.
Đây là phương pháp chế tạo HA ở dạng bột hoặc dạng màng từ dung dịch chứa các nguyên liệu ban đầu khác nhau, bao gồm: phương pháp kết tủa, phương pháp sol – gel, phương pháp phun sấy… Nói chung, ưu điểm của phương pháp ướt là có thể điều chỉnh được kích thước của hạt HA theo mong muốn. Có thể sử dụng các polyme như axit polylactic, polystyren, polyethylen, collagen, chitosan, xenlulo… trong đó các polyme sinh học được đặc biệt quan tâm trong lĩnh vực y sinh vì chúng có tính tương thích và phân huỷ sinh học cao. Dưới tác dụng của điện trường phù hợp, các hạt huyền phù HA tích điện âm và di chuyển về phía anot (gắn vật liệu nền) tạo ra một lớp màng mỏng n – HA (màng HA có độ dày cỡ nanomet) trên bề mặt chi tiết với độ bám dính cao [41].
Bộ phận chính của thiết bị bốc bay nhiệt là một buồng được hút chân không cao (cỡ 10-5 – 10-6Torr) nhờ các bơm chân không (bơm khuếch tán hoặc bơm phân tử…). Thuyền điện trở được làm bằng các vật liệu (vonphram, tantan, bạch kim…) chịu nhiệt và ít tương tác với HA, có nhiệm vụ đốt nóng chảy HA cho đến khi HA bay hơi. Các hạt khí ion này được gia tốc và va chạm với các nguyên tử trên bề mặt của HA, làm cho chúng phún xạ và bay đến vật liệu nền, lắng đọng hình thành nên lớp màng HA [12].
Do electron có khối lượng nhỏ hơn nhiều so với ion dương, nên dòng xoay chiều này chỉ làm dịch chuyển electron, còn ion dương không bị ảnh hưởng nhiều. Một chùm electron đã được gia tốc, có năng lượng cao, đang chuyển động nhanh, bị hãm đột ngột bằng một vật cản, một phần năng lượng của chúng chuyển thành bức xạ sóng điện từ (tia X) gọi là bức xạ hãm. Khi một chùm tia X có bước sóng λ và cường độ I đi qua vật liệu, nếu tia tới thay đổi phương truyền và thay đổi năng lượng gọi là tán xạ không đàn hồi.
Trường hợp vật liệu đang nghiên cứu có cấu trúc tinh thể thì hiện tượng tán xạ đàn hồi của tia X sẽ đưa đến hiện tượng nhiễu xạ tia X. Hiện tượng này chỉ xảy ra với ba điều kiện: Vật liệu có cấu trúc tinh thể; có tán xạ đàn hồi; bước sóng của tia X (tia tới) có giá trị cùng bậc với khoảng cách giữa các nguyên tử trong mạng tinh thể. Tất cả các tia phản xạ đó tạo nên chùm tia X song song có cùng một bước sóng và có phương truyền làm với phương tia tới một góc 2θ.
Khi hiệu số pha giữa các tia X phản xạ là 2nπ (n là số nguyên), tại điểm hội tụ chùm tia X sẽ có vân giao thoa với cường độ ánh sáng cực đại. Trong đó, d là khoảng cách giữa hai mặt song song, θ là góc giữa chùm tia X, n là bậc phản xạ (số nguyên dương), λ là bước sóng của tia tới. Bản chất vật lý của việc xác định kích thước tinh thể bằng phương pháp XRD là: kích thước hạt và độ rộng của vạch nhiễu xạ có mối liên hệ phụ thuộc.
Giản đồ XRD của mẫu cần được ghi theo cùng một chế độ với phổ chuẩn ATSM, sau đó kết quả đo được so sánh với dữ liệu ATSM.
Chùm tia này đi qua bộ giao thoa kế (gồm gương cố định, gương di động và bộ phận phân chia chùm sáng). Bức xạ hồng ngoại sau khi đi ra khỏi giao thoa kế sẽ đi qua mẫu rồi đến detector. Detector ghi nhận sự biến đổi của cường độ của bức xạ theo quãng đường d mà gương di động thực hiện được rồi chuyển thành tín hiệu điện.
Máy tính sẽ thực hiện phép biến đổi Fourie để chuyển hàm V = f(d) thành hàm của cường độ bức xạ I theo nghịch đảo của quãng đường d (d-1). Vì d-1 chính là số sóng υ , do đó thực chất đó là hàm phụ thuộc của cường độ bức xạ vào số sóng.
Ưu điểm của phương pháp SEM là cú thể thu được những bức ảnh ba chiều rừ nột và khụng đũi hỏi khõu chuẩn bị mẫu quá phức tạp. Nguyên tắc của kính hiển vi điện tử truyền qua (TEM) là sử dụng chùm điện tử xuyên qua mẫu cần nghiên cứu. Khi chùm tia điện tử đập vào mẫu sẽ phát ra các chùm tia điện tử phản xạ và điện tử truyền qua.
Chùm tia điện tử truyền qua này được đi qua điện thế gia tốc vào phần thu và biến đổi thành một tín hiệu ánh sáng, tín hiệu này được khuếch đại, đưa vào mạng lưới điều khiển để tạo ra độ sáng trên màn ảnh. Mỗi điểm trên mẫu cho một điểm tương ứng trên màn ảnh, độ sáng tối phụ thuộc vào lượng điện tử phát ra tới bộ thu. Khi tia điện tử có bước sóng cỡ 0,4nm chiếu lên mẫu ở hiệu điện thế khoảng 100kV, ảnh thu được cho biết chi tiết hình thái học của mẫu theo độ tương phản tán xạ và tương phản nhiễu xạ, qua đó có thể xác định được kích thước hạt một cách khá chính xác.
Sử dụng chùm tia điện tử để tạo ảnh mẫu nghiên cứu, ảnh đó khi đến màn hình huỳnh quang có thể đạt độ phóng đại theo yêu cầu. Chùm tia điện tử được tạo ra từ catot qua hai “tụ quang” điện tử sẽ được hội tụ lên mẫu nghiên cứu. Các điện tử phản xạ và điện tử truyền qua này được đi qua điện thế gia tốc vào phần thu và biến đổi thành một tín hiệu ánh sáng, tín hiệu này được khuếch đại, đưa vào mạng lưới điều khiển để tạo ra độ sáng trên màn.
Độ sáng tối trên màn ảnh phụ thuộc vào lượng điện tử phát ra tới bộ thu và phụ thuộc hình dạng bề mặt mẫu nghiên cứu.
Hỗn hợp phản ứng được khuấy và gia nhiệt bằng máy khuấy từ đến nhiệt độ cần nghiên cứu, duy trì tại nhiệt độ đó trong toàn bộ thời gian phản ứng. Một số mẫu sau khi sấy được nung ở 9000C trong 1giờ để xác định sự tồn tại của chất đầu Ca(OH)2 trong sản phẩm HA. Các thông số khác (tốc độ khuấy, tốc độ cấp axit, dung môi) được duy trì như mục 2.3.
Thí nghiệm D2: Các chất phản ứng được pha trong hỗn hợp etanol + nước, tỉ lệ 1:1 về thể tích. Bình phản ứng điều chế HA được đặt trong bể siêu âm với tần số 46kHz, công suất 200W. Phổ FTIR của các mẫu được ghi trên máy IMPAC 410 – Nicolet (Mỹ), tại Viện Hoá học (Viện KH&CN Việt Nam).
Ảnh SEM của các mẫu được đo trên thiết bị hiển vi điện tử quét Hitachi S4800 (Nhật Bản), tại Viện Khoa học Vật liệu (Viện KH&CN Việt Nam). Trước khi đo, các mẫu được phủ Pt trong chân không để tăng độ nét của ảnh SEM do HA có độ dẫn điện kém. Ảnh TEM của các mẫu được đo trên thiết bị hiển vi điện tử truyền qua JEM – 101 (Nhật Bản), tại Phòng Hiển vi Điện tử (Viện Vệ sinh Dịch tễ Quốc gia).
Trước khi đo, cho một lượng nhỏ mẫu vào etanol, sau đó đặt trong bể siêu âm khoảng 3 giờ để bột HA phân tán đồng đều.