MỤC LỤC
Khó có thể xác định chính xác thời điểm xuất hiện của khoa học vật liệu nano, song người ta nhận thấy rằng vài thập niên cuối của thế kỷ XX là thời điểm mà các nhà vật lý, hoá học và vật liệu học quan tâm mạnh mẽ đến việc điều chế, nghiên cứu tính chất và những sự chuyển hoá của các phần tử có kích thước nano. Tuy nhiên, điều quan trọng nhất để tổng hợp vật liệu nano là kiểm soát kích thước và sự phân bố theo kích thước của các cấu tử hay các pha tạo thành, do đó các phản ứng thường được thực hiện trên khuôn (đóng vai trò như những bình phản ứng nano) vừa tạo ra không gian thích hợp, vừa có thể định hướng cho sự sắp xếp các nguyên tử trong phân tử hoặc giữa các các phân tử với nhau.
Ứng dụng công nghệ nano trong lĩnh vực sinh học để tạo ra các thiết bị cực nhỏ có thể đưa vào cơ thể để tiêu diệt virut và các tế bào ung thư, tạo ra hàng trăm các dược liệu mới từ các vi sinh vật mang ADN tái tổ hợp, tạo ra các protein cảm ứng có thể tiếp nhận các tín hiệu của môi trường sống, tạo ra các động cơ sinh học mà phần di động chỉ có kích thước cỡ phân tử protein, tạo ra các chíp sinh học và tiến tới khả năng tạo ra các máy tính sinh học với tốc độ truyền đạt thông tin như bộ não. Công nghệ nano sinh học còn có thể được ứng dụng trong y học để tạo ra một phương pháp tổng hợp, thử nghiệm để bào chế dược phẩm, nâng cao các kĩ thuật chuẩn đoán, liệu pháp và chiếu chụp ở cấp độ tế bào với độ phân giải cao hơn độ phân giải của chụp hình cộng hưởng từ.
Chất đầu để tổng hợp sol này là các hợp chất hoạt động của kim loại như các alkoxide của silic, nhôm, titan…Giai đoạn này có thể điều khiển bằng sự thay đổi pH, nhiệt độ và thời gian phản ứng, xúc tác, nồng độ tác nhân, tỷ lệ nước…Các hạt sol có thể lớn lên và đông tụ để hình thành mạng polime liên tục hay gel chứa các bẫy dung môi. Phương pháp làm khô sẽ xác định các tính chất của sản phẩm cuối cùng: gel có thể được nung nóng để loại trừ các phân tử dung môi, gây áp lực lên mao quản và làm sụp đổ mạng gel, hoặc làm khô siêu tới hạn, cho phép loại bỏ các phân tử dung môi mà không sụp đổ mạng gel. Quá trình tổng hợp đốt cháy xảy ra phản ứng oxi hoá khử toả nhiệt mạnh giữa hợp phần chứa kim loại và hợp phần không kim loại, phản ứng trao đổi giữa các hợp chất hoạt tính hoặc phản ứng chứa hợp chất hay hỗn hợp oxi hoá khử … Những đặc tính này làm cho tổng hợp đốt cháy thành một phương pháp hấp dẫn cho sản suất các vật liệu mới với chi phí thấp so với các phương pháp truyền thống.
(đường mía) để tạo phức gel hình thành khi làm bay hơi nước ở 60oC cuối cùng nung ở nhiệt độ 300, 600 hoặc 700oC trong thời gian 2 h có thể thu được niken oxit và niken ferit kích thước hạt trung bình có thể xác định bằng cả phương trình Scherre và ảnh hiển vi điện tử quét nằm trong khoảng 11 – 36 nm. - Ying Wu và các cộng sự [28] đã công bố điều chế thành công vật liệu NiO kích thước nano bằng vài phương pháp khác nhau thì thu được tinh thể NiO kết tinh ở các hình dạng khác nhau có kích thước và phân bố khác nhau, kết quả công bố cũng chỉ ra việc điều chế bằng phương pháp sol – gel, hỗn hợp nitrat niken và axit nitric được khuấy trộn liên tục ở 70oC trong 18 h, gel thu được làm được làm khô ở 110oC trong 24 h cuối cùng nung ở 400oC trong 4 h bột oxit NiO thu được hình cầu đồng đều có kích thước trong khoảng 10 – 15 nm. - Yọngie và các cộng sự [27] đã điều chế NiO kích thước nano dạng nan tre bằng việc sử dụng tiền chất ban đầu dạng nhũ tương nuôi cấy trong dung dịch NaCl sau khi kết tinh, rửa sạch bằng axeton làm khô và nung ở 810oC trong 1 h loại bỏ NaCl với nước, kết quả đã chỉ ra đường kính của nan tre cỡ 40 – 100nm.
- Lili Wu và các cộng sự [30] đã điều chế vật liệu NiO dạng dây bằng phương pháp kết tủa khi cho dung dịch nitrat niken cùng với ure theo tỷ lệ tương thích và điều chỉnh pH của dung dịch bằng dung dịch axit sunfuric hoặc amoni trong khi khuấy trộn đều trên máy khuấy từ gia nhiệt ở 95oC. Satyanarayana cùng các cộng sự [32] đã điều chế thành công NiFe2O4 bằng phương pháp thuỷ nhiệt bằng cách hoà tan Fe (III) nitrat và Ni (II) nitrat theo tỷ lệ tương thích rồi điều chỉnh pH trong khoảng 8 – 10 bằng dung dịch amoni trong khi khuấy trộn đều trong 2 h, sau đó chuyển dung dịch hỗn hợp này qua một nồi hấp bằng nhựa Teflon rồi gia nhiệt lên 225oC kết quả áp suất hơi tự sinh đạt 20 kg/cm2 trong 0,5 h, nồi hấp được làm lạnh tới nhiệt độ phòng thu được kết tủa màu đen được làm sạch vài lần với nước để khử ion dư thừa, qua phân tích và tính toán cỡ hạt của các tinh thể NiFe2O4 trung bình là 11 nm ứng với diện tích bề mặt 94 m2/g. Trong các ứng dụng trên, việc sử dụng vật liệu NiO, NiFe2O4 trong xúc tác sử lí khí đang được các nhà khoa học quan tâm bởi hoạt tính oxi hoá khử cao, khả năng chống nhiễm độc tố tốt mà giá thành thấp để thay thế các hệ xúc tác kim loại quí trên chất mang.
Tiếp theo là quá trình bốc hơi nhanh dung dịch nhớt PVA-nitrat kim loại trong điều kiện khuấy liên tục và bốc hơi ở nhiệt độ thích hợp, trong môi trường oxi hoá mạnh, khối phản ứng tự bùng cháy lan truyền đến khi thu được một khối xốp. Ứng dụng của phương pháp phân tích nhiệt là rất rộng lớn: Nghiên cứu và sản xuất polime, các vật liệu silicát (xi măng, gốm, sứ, thuỷ tinh, vật liệu chịu lửa) và các vật liệu mới (gốm kỹ thuật điện, gốm bán dẫn, siêu dẫn, vật liệu từ, quang học.) thăm dò địa chất khoáng sản, ngành luyện kim, sản xuất thuốc y dược. Phương pháp SEM đặc biệt hữu dụng, bởi vì nó cho độ phúng đại cú thể thay đổi từ 10 đến 100.000 lần với hỡnh ảnh rừ nột, hiển thị hai chiều phù hợp cho việc phân tích hình dạng và cấu trúc bề mặt.
Quá trình xác định diện tích bề mặt được tiến hành trên máy Autochem II 2920 tại phòng thí nghiệm công nghệ lọc hoá dầu và vật liệu xúc tác, Trường đại học Bách khoa Hà Nội. Dựa vào tần số đặc trưng, cường độ pic trong phổ hồng ngoại, ngoài ta có thể phán đoán trực tiếp về sự có mặt các nhóm chức, các liên kết xác định trong phân tử hay tinh thể chất nghiên cứu. Gọi So và Si là diện tích pic của sắc kí khí tương ứng với cấu tử i trước khi phản ứng (không cho đi qua chất xúc tác) và sau khi đã phản ứng (đã cho đi qua chất xúc tác); v: tốc độ phản ứng thực nghiệm; Ea: năng lượng hoạt hoá của phản ứng; D: lưu lượng dòng khí, (l/h); T: nhiệt dộ phản ứng, K;.
Chất hấp phụ: chất có bề mặt trên đó xảy ra sự hấp phụ Chất bị hấp phụ: chất được tích luỹ trên bề mặt chất hấp phụ Pha mang: hỗn hợp tiếp xúc với chất hấp phụ. - Tốc độ hấp phụ: Hấp phụ vật lí không đòi hỏi sự hoạt hoá phân tử do đó xảy ra nhanh, hấp phụ hoá học nói chung đòi hỏi sự hoạt hoá phân tử do đó xảy ra chậm hơn. Dung lượng hấp phụ cân bằng: biểu thị khối lượng chất bị hấp phụ trên một đơn vị khối lượng chất hấp phụ tại trạng thái cân bằng dưới các điều kiện nồng và nhiệt đo cho trước.
Đường đẳng nhiệt hấp phụ là đường mô tả sự phụ thuộc giữa tải trong hấp phụ tại thời điểm vào nồng độ cân bằng của chất hấp phụ trong dung dịch (hay áp suất riêng phần trong pha khí) tại thời điểm đó. - Giữa các phần tử chất hấp phụ không có tương tác qua lại với nhau - Bề mặt chất hấp phụ đồng nhất về năng lượng, nghĩa là sự hấp phụ xảy ra trên bất kì chỗ nào thì nhiệt hấp phụ vẫn là một giá trị không đổi.