MỤC LỤC
Thông tin này được truyền tới bộ phận điều khiển, bộ phận điều khiển sẽ phân tích và từ đó đưa ra thông tin điều khiển tới bộ phận chấp hành. Mô hình lai bao gồm nhiều cặp “cảm nhận – châp hành” hoạt động như mô hình phản xạ, tốc độ đáp ứng khá nhanh.
Thông tin từ khối cảm nhận được đưa thẳng tới khối chấp hành, từ đó cơ cấu chấp hành hoạt động. Bên cạnh đó có 1 khối điều khiển lập kế hoạch cho toàn bộ tác vụ của robot.
Nếu bit TRISAx=1 thì chân RAx sẽ được đinh nghĩa là lối vào và ngược lại. Nếu bit TRISBx=1 thì chân RBx sẽ được đinh nghĩa là lối vào và ngược lại. Nếu bit TRISCx=1 thì chân RCx sẽ được đinh nghĩa là lối vào và ngược lại.
Nếu bit TRISDx=1 thì chân RDx sẽ được đinh nghĩa là lối vào và ngược lại. • Chu kì được quyết định bởI giá trị ghi trong thanh ghi PR2 và Timer2. Điện áp tham chiếu lựa chọn được bằng phần mềm, có thể là điện áp hệ thống, hoặc điện áp tham chiếu ngoài được đưa và từ chân RA2 và RA3.
• Khối UART có thể được cấu hình để hoạt động ở chế độ song công hoặc bán song công.
Lúc đầu hệ thống dự định sẽ sử dụng LM138 hoặc LM150, tuy nhiên hai loại IC này không có bán trên thị trường, do vậy đã chuyển sang dùng 2 IC LM317 mắc song song để tạo ra dòng lớn hơn (mới chỉ cung cấp cho 2 động cơ bánh xe mà không có động cơ chổi quét). Bình thưởng, tín hiệu phát từ sensor phát sẽ phản xạ từ mặt sàn lên sensor thu, nhưng nếu gặp phải độ cao (tức là khoảng cách giữa sensor và mặt sàn lớn hơn một ngưỡng nào đó) thì tín hiệu phản xạ sẽ rất yếu hoặc không có. Lối ra từ dòng chuyển thành thế qua một điện trở rồi đưa vào khối ADC 10-bit của vi điều khiển.Vi điều khiển sẽ so sánh giá trị ADC thu được với giá trị trước đó để kết luận robot đang di chuyển về vùng sáng hơn hay tối hơn.
Khối này có chức năng hoàn toàn giống như một bộ điều khiển từ xa trong bán kính 10m.Tín hiệu điều khiển được truyền từ bộ phát (hay bộ điều khiển từ xa) đến bộ thu trong môi trường không khí. Trước khi dữ liệu được truyền, chúng được thêm các bit đầu, cuối, kiểm lỗi, hoặc các bit bảo mật…Dữ liệu mới tạo ra được truyền từng bit đồng thời chúng được điều chế trên sóng mang có tần số đặc trưng cho bộ phát.
Khung dữ liệu nhận được từ cảm biến có sự tương đồng với khung dữ liệu chuẩn RS232. Vì vậy ta sử dụng khốI UART của vi điều khiển để đọc dữ liệu từ cảm biến. Trên thực tế, trong phần mềm xử lí, để quyết định xem phím nào được ấn, không phải ta so sánh giá trị ADC với một số nào đó mà xem giá trị ADC này có nằm trong dải nào đó không.
Phương pháp đọc phím bấm này có ưu điểm tiết kiệm tài nguyên của Vi điều khiển, tuy nhiên nhược điểm của phương pháp này là không chính xác, do xung nhiếu sinh ra khi ấn phím.
Trên thực tế trong các mạch cầu H ta có thể thay các khoá S1 S2 S3 S4 bằng rơle hay các loại transistor, tuy nhiên các transistor này phải có công suất tiêu tán nhỏ, chịu được dòng lớn. Hiện nay có rất nhiều loại transistor trường MOSFET có công suất tiêu tán nhỏ tuy nhiên lại chịu được dòng lớn, rất thích hợp cho việc thiết kế mạch cầu H. Thay vào đó ta sử dụng IC L298 Đây là IC có chứa 2 mạch cầu H hoàn toàn độc lập và có thể ghép song song với nhau, mỗi cầu có khả năng cung cấp dòng 2A – đáp ứng được yêu cầu cho mỗi motor có dòng tiêu thụ tối đa là 1.5A.
Do chổi quét chỉ xoay theo một chiều nên mạch điều khiển không cần cầu H mà chỉ sử dụng một MOSFET-N là IRF540 làm nhiệm vụ đóng mở thông thường. Nhược điểm của mạch: vì IRF540 mở hoàn toàn ở 10V nên với mạch được thiết kế như trên IRF540 mở ở 5V vì vậy trong quá trình hoạt động transistor rất nóng, mặc dù có tản nhiệt nhưng cũng không thể hoạt động được lâu.
Đầu tiên ta phải khởi tạo project, sau đó tạo file schematic để tạo ra môi trường vẽ mạch nguyên lý. Altium hỗ trợ hầu hết thư viện footprint cho các linh kiện điện tử, như PIC16F877A, Led7 đoạn, các loại điện trở và tụ điện, IC người thiết kế không phải tự tạo thư viện footprint vì vậy việc thiết kế mạch được thực hiện khá nhanh và thuận lợi. Đầu tiên ta sắp linh kiện vào vị trí nhất định trên bản mạch, khối số được sắp gần nhau, khôi tương tự được sắp ra 1 phần, điều này giúp giảm nhiễu trên mạch.
• Tuy nhiên vì tất cả các khối được đặt trên cùng 1 bo mạch nên việc sửa chữa và nâng cấp là rất khó khăn. • Khối điều khiển motor phát điộng tuy đã đáp ứng được việc thực hiện các tác vụ của robot, tuy nhiên do sử dụng IC tích hợp, nên khi yêu cầu thay động cơ có công suất cao hơn vào thì không đáp ứng được.
Khi xây dựng các ứng dụng phần mềm chúng ta luôn mong muốn thời gian trễ để đưa ra một lệnh hay một quyết định là nhỏ nhất, hay khi xây dựng các ứng dụng phần cứng chúng ta lại muốn thời gian đưa ra một tín hiệu đáp trả một sự kiện là phải gần như tức thời, các hệ thống đáp ứng sự kiện bao giờ cũng có một thời gian trễ nhất định. Như vậy, một hệ thời gian thực là một hệ thống mà sự hoạt động tin cậy của nó không chỉ phụ thuộc vào sự chính xác của kết quả, mà còn phụ thuộc vào thời điểm đưa ra kết quả, hệ thống có lỗi khi yêu cầu về thời gian không được thoả mãn. Có thể, cùng một lúc một bộ điều khiển được yêu cầu thực hiện nhiều vòng điều chỉnh, giám sát ngưỡng giá trị nhiều đầu vào, cảnh giới trạng thái làm việc của một số động cơ.
Nếu một bộ điều khiển phải xử lý đồng thời nhiều nhiệm vụ, ta phải tham gia quyết định được về trình tự thực hiện các công việc và đánh giá được thời gian xử lý mỗi công việc. Mỗi tác vụ xử lý một công việc nhất định, có thể là quét bàn phím, đọc sensor, điều khiển motor v.v… Tại một thời điểm vi xử lý chỉ thực hiện 1 tác vụ, nhưng với thời gian chuyển đổi rất nhanh giữa các tác vụ ta có thể coi như các tác vụ được thực hiện đồng thời.
• Hệ thống sensor gầm phát hiện độ cao được làm chưa tốt, nên khi đặt trên các mặt thảm dầy, robot thường không nhận mặt sàn và báo lỗi. • Phần chổi quét hoạt động chưa tốt, khi vận hành lâu, transistor điều khiển motor quét nóng và có thể bị cháy. • Có thể ra lệnh cho robot bằng 3 phím bấm trên robot hoặc điều khiển từ xa.
• Robot được lập trình nhiều kiểu di chuyển: phản xạ, men tường hình chữ S, đa giác, xoẵn ốc, xoắn đa giác…. • Khi gần hết Pin robot tự tìm đc vị trí sáng và tự động ngừng làm việc.
Khi cần tìm trạm sạc, robot sẽ di chuyển sao cho nhận được tín hiệu từ nguồn phát hồng ngoại, và robot sẽ di chuyển trong thị trường của nguồn phát về đến trạm sạc. • Do nguồn hồng ngoại không thể phát quá xa, hơn nữa lại bị ảnh hưởng của sự phản xạ do đó rất khó cho robot có thể nhận được tín hiệu từ nguồn phát và đi đúng trong thị trường của nguồn phát. • Việc có thêm camera xử lý ảnh giúp phát triển nhiều tính năng thông minh hơn nữa cho robot ví dụ như ra lệnh cho robot bằng cách ra hiệu bằng tay cho robot v.v….
Ta có thể khắc phục bằng cách ghép nối bộ thu tín hiệu RF với vi điều khiển thông qua bộ chuyển đổi giao tiếp từ nối tiếp (serial) sang song song (parallel), rồi sau đó ghép nối với vi điều khiển bằng các cổng vào ra (I/O port) của vi điều khiển. Ở đây ta đưa ra giải pháp sử dụng Psoc vì vi điều khiển Psoc được chế tạo trên công nghệ mới, có khả năng cấu hình phần cứng rất linh hoạt, ta có thể đặt nhiều khối UART trong vi điều khiển.