Ứng dụng điều khiển mờ thích nghi tối ưu hóa cánh gió tuabin trục đứng

MỤC LỤC

Mục đích của đề tài

Việc nâng cao hiệu suất chuyển động năng của gió thành điện năng để giảm giá thành là vấn đề rất quan trọng trong quá trình sử dụng nguồn năng lƣợng sạch ở hiện tại và trong tương lai. Mục tiêu của đề tài là nghiên cứu bộ điều khiển mờ thích nghi và ứng dụng chúng để điều khiển cách gió của tuabin trục đứng nhằm mục đích nâng cao hiệu suất và ổn định tốc độ quay của tuabin.

Đối tƣợng và phạm vi nghiên cứu

Để nâng cao được hiệu suất sử dụng năng lượng gió thì cần phải có các thiết bị chuyển đổi với các bộ điều khiển hợp lý. Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn.

Cấu trúc của luận văn

ĐÔI NÉT VỀ LỊCH SỬ NGHIÊN CỨU VÀ PHÁT TRIỂN CỦA MÁY PHÁT ĐIỆN SỨC GIể

    Trong suốt những năm tiếp theo, các thiết kế của thiết bị chạy bằng sức gió càng ngày đƣợc hoàn thiện và đƣợc sử dụng rộng rãi trong khá nhiều các lĩnh vực ứng dụng: chế tạo các máy bơm nước, hệ thống tưới tiêu trong nông nghiệp, các thiết bị xay xát, xẻ gỗ, nhuộm vải… Cho đến đầu thế kỷ 19, cùng với sự xuất hiện của máy hơi nước, thiết bị chạy bằng sức gió dần dần bị thay thế. Ƣu điểm dễ thấy nhất của điện gió là không tiêu tốn nhiên liệu, tận dụng được nguồn năng lượng vô tận là gió, không gây ô nhiễm môi trường như các nhà máy nhiệt điện, không làm thay đổi môi trường và sinh thái như nhà máy thủy điện, không có nguy cơ gây ảnh hưởng lâu dài đến cuộc sống của người dân xung quanh.

    NĂNG LƢỢNG GIể VÀ THIẾT BỊ BIẾN ĐỔI NĂNG LƢỢNG GIể – TUABIN GIể

      Ngày nay với xu hướng ngày càng phát triển việc sử dụng nguồn năng lượng sạch tái tạo từ gió, trên thế giới người ta đã chế tạo các loại tuabin gió với công suất lớn đến trên 7 MW, nếu dùng loại tuabin gió tốc độ thay đổi có bộ biến đổi nối trực tiếp giữa stator và lưới thì sẽ tốn kém, đắt tiền do bộ biến đổi cũng phải có công suất bằng công suất của toàn tuabin. Vì vậy các hãng chế tạo tuabin gió có xu hướng sử dụng MFKĐBNK làm máy phát trong các hệ thống tuabin gió công suất lớn để giảm công suất của bộ biến đổi và do đó giảm giá thành, vì bộ biến đổi đƣợc nối vào mạch rotor của máy phát, công suất của nó thường chỉ bằng cỡ 1/3 tổng công suất toàn hệ thống, các thiết bị đi kèm nhƣ bộ lọc biến đổi cũng rẻ hơn vì cũng đƣợc thiết kế với công suất bằng 1/3 công suất của toàn hệ thống.

      Hình 1.7  Tuốc bin gió với tốc độ cố định
      Hình 1.7 Tuốc bin gió với tốc độ cố định

      KHÍ ĐỘNG LỰC HỌC TUABIN GIể .1 Động lực học cánh gió tuabin

        Lực dR này được phân tích thành hai thành phần là lực nâng dRl và lực cản dRd tương ướng theo phương vuông góc và song song tốc độ tương đối. Tổng lực F tác dụng của gió trên rotor và mômen M trên trục của rotor thu được tính bằng tổng tất cả các lực dF thành phần và các mômen dM thành phần.

        PHƯƠNG PHÁP ĐIỀU KHIỂN CÁNH GIể CỦA TUABIN TRỤC ĐỨNG .1 Lý luận chung

          Kết cấu máy sử dụng lực ly tâm và kết cấu cơ khí để xoay cánh tuabin như vậy tương đối đơn giản, nhưng có nhược điểm là đáp ứng chậm, độ chính xác điều chỉnh thấp, khoảng biến thiên tốc độ quay của tuabin quá lớn. Nguyên lý làm việc của hệ thống điều khiển cánh gió để ổn định tốc độ quay của tuabin như sau: Đặt cho trục tuabin gió một giới hạn tốc độ cho phép; khi tốc độ gió lớn hơn quy định, trục tuabin sẽ quay nhanh hơn tốc độ cho phép, bộ phận cảm biến nhận được tín hiệu, chuyển tín hiệu đó đến bộ điều khiển, bộ điều khiển so sánh với tốc độ quay quy định, phát tín hiệu đến động cơ điều khiển cánh gió, động cơ thay đổi góc cánh tuabin để giảm bề mặt hứng gió; khi tốc độ gió giảm, động cơ sẽ xoay cánh quay trở lại. Đặt tuabin gió trong dòng chảy của không khí, khi không khí đến gần tuabin bị ứ lại, áp suất dòng chảy tăng lên và vận tốc giảm, đến khi dòng chảy chạm vào mặt tuabin trao cho tuabin năng lượng.

          Hình 2.4 Mô hình tuabin gió trục đứng   5 cánh
          Hình 2.4 Mô hình tuabin gió trục đứng 5 cánh

          CÁC HỆ ĐIỀU KHIỂN KINH ĐIỂN

            Phương pháp tuyến tính điều hoà cho phép đưa ra kết quả hợp lý và có thể dùng cho các hệ thống bậc bất kỳ, nhưng vì là phương pháp gần đúng nên ta phải kiểm tra lại độ chính xác bằng các kỹ thuật khác hoặc bằng mô phỏng trên máy tính. Vùng tác động lớn tồn tại khi hệ thống ở xa trạng thái cân bằng, khi có tác động lớn hệ thống sẽ nhanh chóng dịch chuyển về trạng thái cân bằng, với tốc độ dịch chuyển lớn như vậy hệ thống dễ dàng vượt qua trạng thái cân bằng và gây độ quá điều chỉnh lớn, điều này không mong muốn. Với sự ra đời của các lý thuyết điều khiển hiện đại như điều khiển thích nghi, điều khiển mờ, mạng nơron…đã tạo điều kiện thuận lợi để các nhà kỹ thuật nghiên cứu ứng dụng nhằm ngày càng nâng cao chất lượng của hệ thống điều khiển tự động, nhất là đối với các hệ thống lớn, hệ có tính phi tuyến mạnh và khó mô hình hoá.

            LOGIC MỜ VÀ ĐIỀU KHIỂN MỜ .1 Khái quát về lý thuyết điều khiển mờ

              Suy luận mờ: Suy luận mờ thường được gọi là suy luận xấp xỉ (Fuzzy reasoning or approximate reasoning) là thủ tục suy luận (inference procedure) để suy diễn kết quả từ tập các quy tắc Nếu. Khi quá trình của hệ tiến gần đến điểm đặt (sai lệch e(t) và đạo hàm của nó e’(t) xấp xỉ bằng 0) vai trò của bộ điều khiển mờ (FLC) bị hạn chế nên bộ điều khiển sẽ làm việc như một bộ điều chỉnh PID bình thường. Trên hình 3.10 thể hiện ý tưởng thiết lập bộ điều khiển mờ lai F-PID và phân vùng tác động của chúng. Sự chuyển đổi giữa các vùng tác động của FLC và PID có thể thực hiện nhờ khoá mờ hoặc dùng chính FLC. Nếu sự chuyển đổi dùng FLC thì ngoài nhiệm vụ là bộ điều chỉnh FLC còn làm nhiệm vụ giám sát hành vi của hệ thống để thực hiện sự chuyển đổi. Việc chuyển đổi tác động giữa FLC và PID có thể thực hiện nhờ luật đơn giản sau:. Để thực hiện chuyển đổi mờ giữa các mức FLC và bộ chuyển đổi PID, ta có thể thiết lập. Hình 3.11 Vùng tác động của các bộ điều khiển. b) Vùng tác động của các bộ điều khiển. Luận văn thạc sỹ. Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn. n) mà mỗi bộ được chọn để tối ưu chất lượng theo một nghĩa nào đó để tạo ra đặc tính tốt trong 1 vùng giới hạn của biến vào (hình 3.11). Qua nghiên cứu ta thấy rằng bộ điều khiển mờ có tính phi tuyến mạnh, khả năng chống nhiễu cao, nó rất phù hợp với hệ có tính phi tuyến, phụ thuộc thời gian, có tham số rải và thời gian trễ lớn.

              Đồ thị mô tả các phép toán hợp, giao và bù của hai tập mờ như hình (3.2)
              Đồ thị mô tả các phép toán hợp, giao và bù của hai tập mờ như hình (3.2)

              ĐIỀU KHIỂN THÍCH NGHI .1 Giới thiệu tổng quan

                Các chỉ tiêu chất lượng theo yêu cầu đặt trước IP*, cho vào khâu so sánh với những giá trị đã được đo lường và tính toán theo các thông số thực trạng của hệ thống điều chỉnh (các tín hiệu của đại lượng vào, đại lượng ra, các nhiễu). Mạch vòng thích nghi thông qua cơ cấu thích nghi để điều khiển thông số của hệ thống điều chỉnh, hay thay đổi các đầu vào theo cơ cấu thích hợp để tiêu chuẩn đặt trước IP* và tiêu chuẩn (Index of Performance) có sai lệch nhỏ nhất. Bài toán tổng hợp hệ điều khiển thích nghi được đặt ra ở đây là xác định các ma trận Ku, Km sao cho với cặp Am, Ap, Bm, Bp thì các đại lượng trạng thái của hệ thống điều khiển bám theo các đại lượng trạng thái của mô hình.

                Hình 3.13  Điều chỉnh hệ số khuếch đại.
                Hình 3.13 Điều chỉnh hệ số khuếch đại.

                SƠ ĐỒ CẤU TRÚC HỆ THỐNG

                • TỔNG HỢP HỆ THỐNG SỬ DỤNG CÁC BỘ ĐIỀU KHIỂN KINH ĐIỂN

                  Tốc độ của tuabin được ổn định khi tốc độ gió thay đổi trong một giới hạn cho phép quanh giá trị tốc độ định mức V0, vì vậy ta có thể giả thiết K = f(V) = V0 + V với V là nhiễu tốc độ gió ngẫu nhiên dừng tác động vào hệ thống làm thay đổi tốc độ quay của tuabin. Điều khiển thích nghi là tổng hợp các kỹ thuật nhằm chỉnh định các bộ điều chỉnh trong mạch điều khiển nhằm thực hiện hay duy trì chất lượng của hệ thống ở một mức độ nhất định khi thông số của quá trình điều khiển không biết trước hoặc thay đổi theo thời gian. Với hệ thống điều khiển cánh gió tuabin ổn định tốc độ quay thì nhiễu tác động vào hệ thống (tốc độ gió) thay đổi liên tục theo thời gian, do đó cần phải có bộ điều khiển thay đổi được thông số như bộ điều khiển thích nghi.

                  Hình 4.3  Sơ đồ mô phỏng hệ thống điều khiển vị trí góc cánh
                  Hình 4.3 Sơ đồ mô phỏng hệ thống điều khiển vị trí góc cánh

                  TỔNG HỢP HỆ THỐNG SỬ DỤNG BỘ ĐIỀU KHIỂN MỜ THÍCH NGHI

                  • KHÁI NIỆM .1 Định nghĩa
                    • TỔNG HỢP BỘ ĐIỀU KHIỂN MỜ THÍCH NGHI ỔN ĐỊNH .1 Cơ sở lý thuyết
                      • TỔNG HỢP BỘ ĐIỀU KHIỂN MỜ THÍCH NGHI TRÊN CƠ SỞ LÝ THUYẾT THÍCH NGHI KINH ĐIỂN
                        • XÂY DỰNG CƠ CẤU THÍCH NGHI THEO MÔ HÌNH MẪU CHO BỘ ĐIỀU KHIỂN MỜ
                          • THIẾT KẾ KHỐI MỜ CƠ BẢN .1 Sơ đồ khối mờ

                            Quá trình nhận dạng thông số của đối tượng có thể thực hiện bằng cách thường xuyên đo trạng thái của các tín hiệu vào/ra của đối tượng và chọn 1 thuật toán nhận dạng hợp lý, trên cơ sở mô hình đã biết trước hoặc mô hình mờ. Do đó cần phải có mô hình thô của đối tượng, mô hình này dùng để tính toán giá trị đầu vào tương ứng với 1 giá trị đầu ra cần đạt được của bộ điều khiển ta có thể xác định và hiệu chỉnh các nguyên tắc điều khiển để đảm bảo chất lượng hệ thống. Mục đích của việc thiết kế bộ điều khiển mờ là tạo ra tín hiệu điều khiển u sao cho quĩ đạo đầu ra của đối tượng (y) bám theo quĩ đạo cho trước (yd) cho dù có sự thay đổi thông số và cấu trúc của đối tượng.

                            Trong điều khiển kinh điển, ta đã biết một Algorithm điều khiển thích nghi theo mô hình mẫu sử dụng phương pháp Gradient hay phương pháp Lyapunov rất thích hợp cho việc điều khiển một quá trình không nhận biết được, đặc biệt là đối với hệ phi tuyến. Định nghĩa 2: Bộ điều khiển mờ cơ sở (Basis Fuzzy Control - BFC) là bộ điều khiển mờ có hai đầu vào và một đầu ra, số tập mờ của các đầu vào và đầu ra bằng nhau, luật hợp thành được sử dụng là luật hợp thành tuyến tính.

                            Hình 4.11 Cấu trúc phương pháp điều khiển thích nghi trực tiếp.
                            Hình 4.11 Cấu trúc phương pháp điều khiển thích nghi trực tiếp.