MỤC LỤC
Đường cong hữu tỷ có độ linh hoạt về hình dáng cao hơn so với các dạng đường cong đa thức chuẩn tắc khác. Đường cong hữu tỷ sẽ có dạng đa thức chuẩn tắc nếu như được biểu diễn theo hệ toạ độ đồng nhất.
Toạ độ Đề các của đỉnh điều khiển đồng nhất Hi trên biểu thức (3.25) tương đương với đỉnh điều khiển Vi, không phụ thuộc vào trọng số wi. Điều kiện biên của đường cong hữu tỷ được xác định bằng cách tính biểu thức (3.26) và đạo hàm của chúng tại u. Như vậy ta đã chỉ ra rằng có thể biểu diễn đường cong Bezier hữu tỷ hoặc dưới dạng đồng nhất (3.26) hoặc dưới dạng hữu tỷ (3.30) và đường cong Bezier hữu tỷ bậc 2 được chuyển đổi thành đường cong chuẩn tắc khi wi = 1 với mọi i.
Mô hình đường cong hữu tỷ bậc 2 được sử dụng rất phổ biến trong phép tham số hoá đường cong mặt cắt cônic.
Về mặt lý thuyết, để dựng đường cong phức hợp có thể sử dụng mô hình đường cong bất kỳ như chương trước đã đề cập. Về cơ bản, giải quyết vấn đề dựng đường cong phức hợp là giải hệ phương trình tuyến tính. Bằng cách đặt điều kiện liên tục bậc 2 tại mỗi điểm Pi, chúng ta thiết lập được hệ phương trình tuyến tính với các ẩn số là hệ số của phương trình đường cong.
Do vậy, để dựng đường cong phức hợp cần thiết phải có các điều kiện liên tục thích hợp và giải được hệ phương trình tuyến tính.
Trong thực tế, hầu hết các trường hợp tiếp tuyến đầu cuối t0, tn không được cho trước. Tiếp tuyến đầu cuối t0, tn được xác định bằng cách dựng đường cong đa thức chuẩn tắc qua các điểm biên ( 3 hoặc 4 điểm). Kết luận: Đối với phương pháp dựng hình này, không phụ thuộc vào điều kiện biên, đường cong phức hợp bậc 3 bao gồm các đoạn đường cong Ferguson và có thể chuyển đổi dễ dàng thành đường cong Bezier bậc 3.
- Đường cong cát tuyến: dùng phương pháp dựng đường cong bậc 3 với hiệu chỉnh sao cho chiều dài cát tuyến được tính đến khi xác định vectơ tiếp tuyến ti. - Đường cong B-spline không đều: dùng phương pháp cho chiều dài cát tuyến như là khoảng cách giữa các điểm nút. Hai phương pháp này đều thích hợp trong việc dựng các đường cong phức hợp trơn láng đi qua chuỗi điểm phân bố không đều.
Mối quan hệ trên được gọi là điều kiện hình học C1, hay được gọi tắt là điều kiện G1. Mối quan hệ giữa các đạo hàm bậc 2 này được gọi là điều kiện liên tục hình học C2 hay được gọi tắt là điều kiện G2.
Do vậy tỷ số độ lớn của các vectơ trở thành tỷ số chiều dài cát tuyến. Phương trình trên có thể biến đổi thành phương trình bậc 3 (3.37) khi ωi = 1 hay một cách khác đường cong cát tuyến trở thành đường cong bậc 3 nếu như tất cả cát tuyến bằng nhau.
Về hình học, nói chung mặt tạo hình của các loại hình thể có cấu trúc đa hợp hình thành bởi sự liên kết các mặt tạo hình cơ sở. Mỗi dạng mặt cơ sở được thiết lập theo qui luật riêng nhưng có cùng đặc điểm chung là có cấu trúc phức hợp từ các phần tử hình học dạng ô lưới mà ta gọi qui ước là mặt lưới. Mô hình này được sử dụng chủ yếu trong mô hình hoá mặt cong phức hợp từ ma trận điểm, trong đó mô hình Ferguson, Bezier và B-spline được sử dụng phổ biến nhất.
Mô hình này nói chung khó duy trì tính liên tục trên các đường biên khi mặt lưới có dạng phức tạp và mặt lưới có xu hướng dao động khi bậc của đa thức tăng.
Kết quả nhận được là phương trình mặt cong Ferguson (3.65) và cũng đạt được kết quả tương tự nếu bắt đầu với các đường biên v = 0,1. Mặt khác nếu mặt cong được xác định hoàn toán bởi điều kiện góc (P, s, t, x) thì được gọi là mặt cong tích tenxơ. Mặt cong tích Tenxơ có cấu hình chữ nhật đối xứng (theo u và v) và có tính chất quan trong nêu trên.
Để xác định mặt cong hiệu chỉnh r3(u,v) cần xác định phương trình mặt cong (3.74) tại các đường biên.
Mặt quét hình được định nghĩa bởi quĩ đạo quét hình đường mặt cắt (đường tạo hình) dọc theo đường định hình (đường dẫn hướng).
Thuật ngữ mặt cong giải tích được sử dụng cho trường hợp mặt cong biểu diễn dưới dạng phương trình ẩn g(x,y,z) = 0, trong đó hàm giải tích g(x,y,z) thường là đa thức với biến toạ độ x, y, z. Thực tế chỉ có mặt cong bậc 2 được sử dụng phổ biến để thể hiện các loại hình thể.
Dễ dàng xác định ý nghĩa hình học của “hằng số tỷ lệ” a, b, c bằng phương pháp thay thế.