MỤC LỤC
Sự thay đổi pH không chỉ dẫn đến sự thay đổi về bản chất chất bị hấp phụ (các chất có tính axit yếu, bazơ yếu hay trung tính phân li khác nhau ở các giá trị pH khác nhau) mà còn làm ảnh hưởng đến các nhóm chức trên bề mặt chất hấp phụ[1], [3], [4]. Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn 14 ♦ Bề mặt chất hấp phụ là đồng nhất, nghĩa là năng lượng hấp phụ trên các tiểu phân là như nhau và không phụ thuộc vào sự có mặt của các tiểu phân hấp phụ trên các trung tâm bên cạnh.
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn 16 tin cậy và được sử dụng nhiều trong kiểm tra sản xuất hoá học, luyện kim và trong nghiên cứu hoá địa, hoá sinh, môi trường và nhiều lĩnh vực khác [2]. Nguyên tắc chung của phương pháp phân tích trắc quang là muốn xác định một cấu tử X nào đó, chuyển nó thành hợp chất có khả năng hấp thụ ánh sáng rồi đo sự hấp thụ ánh sáng của nó và suy ra hàm lượng chất cần xác định X. Tuy nhiên, do những yếu tố ảnh hưởng đến sự hấp thụ ánh sáng của dung dịch (bước sóng của ánh sáng tới, sự pha loãng dung dịch, nồng độ H+, sự có mặt của các ion lạ) nên đồ thị trên không có dạng đường thẳng với mọi giá trị của nồng độ.
Trong phân tích người ta chỉ sử dụng vùng nồng độ tuyến tính giữa A và C, vùng tuyến tính này rộng hay hẹp phụ thuộc vào bản chất hấp thụ quang của mỗi chất và các điều kiện thực nghiệm [2], [4]. Các phương pháp phải sử dụng máy quang phổ như: phương pháp đường chuẩn, phương pháp dãy tiêu chuẩn, phương pháp chuẩn độ trắc quang, phương pháp cân bằng, phương pháp thêm, phương pháp vi sai,… Tùy theo từng điều kiện và đối tượng phân tích cụ thể. Phương pháp đường chuẩn: Từ phương trình cơ sở A = k.(Cx)b về nguyên tắc, để xây dựng một đường chuẩn phục vụ cho việc định lượng một chất trước hết phải pha chế một dãy dung dịch chuẩn có nồng độ chất hấp thụ ánh sáng nằm trong vùng nồng độ tuyến tính (b = 1).
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn 18 mà ta chọn phương pháp thích hợp. Sau khi có đường chuẩn, pha chế các dung dịch cần xác định trong điều kiện giống như khi xây dựng đường chuẩn. Đo độ hấp thụ quang A của chúng với điều kiện đo như khi xây dựng đường chuẩn (cùng dung dịch so sánh, cùng cuvet, cùng bước sóng) được các giá trị Ax.
Hàm lượng phần trăm các thành phần hoá học chính của bã mía được chỉ ra trong bảng 1.3 Bảng 1.3 Thành phần hoá học của bã mía [7]. Xenlulozơ: Xenlulozơ là polisaccarit do các mắt xích α-glucozơ [C6H7O2(OH)3]n nối với nhau bằng liên kết 1,4-glicozit. Hemixenlulozơ: Về cơ bản, hemixenlulozơ là polisaccarit giống như xenlulozơ, nhưng có số lượng mắt xích nhỏ hơn.
Nhóm nghiên cứu ở trường đại học Putra (Malaysia) đã tiến hành nghiên cứu và đề xuất qui trình xử lý bã mía thành VLHP để tách loại màu trong dung dịch keo bằng phương pháp hấp phụ. Nghiên cứu này cho thấy đây là một phương pháp có hiệu quả để loại bỏ màu trong nước thải và có những điểm vượt trội so với những phương pháp khác vì quá trình xử lý không để lại cặn và hoàn toàn loại bỏ được màu ra khỏi nước thải thậm chí cả dung dịch loãng [13]. Các tác giả [14] đã tiến hành nghiên cứu và so sánh khả năng tách loại các thuốc nhuộm axit trong dung dịch nước của các loại VLHP như: than bã mía, than vỏ lạc, than lá chè… Kết quả thu được cho thấy các VLHP đều có khả năng hấp phụ các thuốc nhuộm axit với hiệu suất khá cao.
Riêng đối với metyl đỏ còn có thể sử dụng các VLHP chế tạo từ các phụ phẩm nông công nghiệp khác có thành phần hóa học chủ yếu giống như bã mía để tách loại ra khỏi dung dịch nước. Nhóm nghiên cứu ở trường đại học Karpagam (Ấn Độ) đã nghiên cứu chế tạo than hoạt tính từ hạt na, các kết quả thu được cho thấy đây có thể là một lựa chọn hấp dẫn cho quá trình tách loại phẩm nhuộm trong dung dịch loãng. Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn 21 trường đại học Sains (Malaysia) sử dụng xơ chuối để tách loại metyl đỏ từ dung dịch nước [10] và nghiên cứu ứng dụng than hoạt tính chế tạo từ dưa chuột để hấp phụ động học thuốc nhuộm cation trong môi trường nước của nhóm tác giả [15].
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn 22 CHƯƠNG 2.
Để khảo sát đặc điểm bề mặt của VLHP 1, VLHP 2 chúng tôi tiến hành chụp ảnh kính hiển vi điện tử quét (SEM) bề mặt của VLHP 1, VLHP 2 và nguyên liệu. Như vậy sơ bộ có thể đánh giá được khả năng hấp phụ của VLHP 1 là tốt hơn so với nguyên liệu. Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn 26 Qua ảnh SEM của VLHP 2 ở hai độ phóng đại và phân giải khác nhau có thể thấy: ở VLHP 2 có cấu trúc mao quản tương đối đồng đều do đó nó có độ bền cơ học cao.
Như vậy sơ bộ có thể đánh giá được khả năng hấp phụ của VLHP 2 là tốt hơn so với nguyên liệu. Cấu trúc của VLHP 1, VLHP 2 được phân tích qua phổ hồng ngoại của VLHP 1, VLHP 2 và so sánh với phổ hồng ngoại của nguyên liệu. Nói chung các dải phổ của các nhóm này đều có nguồn gốc từ nhóm OH trong cấu trúc của nguyên liệu, làm tăng các vị trí hấp phụ của VLHP [9].
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn 29. Co, Ccb: nồng độ metyl đỏ ban đầu và sau khi hấp phụ tương ứng (mg/l) V: thể tích của dung dịch metyl đỏ (l). Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn 30 Bảng 2.2 Các thông số hấp phụ của nguyên liệu và các VLHP.
Nhận xét: Kết quả ở bảng 2.2 cho thấy cả nguyên liệu và hai loại VLHP đều có khả năng hấp phụ metyl đỏ. Tuy nhiên, so sánh dung lượng hấp phụ, hiệu suất hấp phụ của nguyên liệu với hai loại VLHP đối với metyl đỏ chúng tôi nhận thấy khả năng hấp phụ của hai loại VLHP tốt hơn nguyên liệu. Cụ thể: hiệu suất hấp phụ và dung lượng hấp phụ của VLHP 1 cao hơn gần 2 lần, của VLHP 2 cao hơn gần 3 lần so với nguyên liệu.
Khi nồng độ metyl đỏ ban đầu cao thì hiệu suất hấp phụ tăng chậm, khi nồng độ metyl đỏ ban đầu thấp thì hiệu suất hấp phụ tăng nhanh (ảnh hưởng của thời gian là rừ ràng). Khi nồng độ metyl đỏ ban đầu thấp thì hiệu suất hấp phụ tăng chậm, khi nồng độ metyl đỏ ban đầu cao thì hiệu suất hấp phụ tăng nhanh (ảnh hưởng của thời gian là rừ ràng). Nhận xét: Kết quả ở bảng 2.6 cho thấy trong các khoảng kích thước của các VLHP khảo sát, khi tăng kích thước thì hiệu suất hấp phụ cũng như dung lượng hấp phụ của các VLHP đều giảm do có sự giảm cả về diện tích bề mặt riêng và các vị trí hấp phụ.
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn 42 Nhận xét: Từ các kết quả thực nghiệm thu được cho thấy đối với cả hai VLHP ở mỗi thời gian hấp phụ khác nhau khi nồng độ metyl đỏ ban đầu tăng thì hiệu suất hấp phụ giảm. Từ đồ thị biểu diễn sự phụ thuộc của Ccb/q vào Ccb đối với metyl đỏ hình 2.14 và 2.16, tính được giá trị dung lượng hấp phụ cực đại qmax và hằng số Langmuir b đối với hai loại VLHP. Để đánh giá khả năng hấp phụ của VLHP 2 tiến hành so sánh dung lượng và hiệu suất hấp phụ của vật liệu này với than hoạt tính CAS 7440-44-0 (Trung Quốc) trong các điều kiện hấp phụ tối ưu của mỗi loại VLHP.
Tiến hành sự hấp phụ tương tự như đối với VLHP 2 kết quả xác định được điều kiện hấp phụ của than hoạt tính đối với metyl đỏ là: pH = 6, thời gian đạt cân bằng hấp phụ là 45 phút. Ngoài ra, chúng tôi cũng nhận thấy so với sự hấp phụ của các than chế tạo từ hạt na [16] và dưa chuột [15] cùng hấp phụ metyl đỏ trong dung dịch nước thì hiệu suất hấp phụ của VLHP 2 là khá tốt.