Các thành phần chính của hệ thống thông tin quang học

MỤC LỤC

Sợi đa mode và đơn mode

Trong sợi tryền một mode sóng nên độ tán sắc do nhiều đường truyền bằng không và sợi đơn mode có dạng phân bố triết suất nhẩy bậc. Song vỡ kớch thước lừi sợi đơn mode quỏ nhỏ nờn đũi hỏi kớch thước của các linh kiện quang cũng phải tương ứng và các thiết bị hàn nối sợi đơn mode phảicó độ chính xác cao.

Các thông số của sợi quang

Các nguyên nhân gây suy hao

- Do mặt phõn cỏch giữa lừi và lớp bọc (vỏ) khụng hoàn hảo: Hiện tượng này xẩy ra khi mặt phõn cỏch giữa lừi và lớp vỏ khụng hoàn hảo, làm cho tia sỏng khụng phản xạ toàn phần trong lừi mà cú một phần khúc xạ ra vỏ do không thoả mãn điều kiện phản xạ toàn phần. Những chỗ uốn cong nhỏ thì suy hao của sợi quang lớn do tia sáng tự lệch trục, sự phân bố thường bị sáo trộn khi đi qua những chỗ tự uốn cong nhỏ dẫn tới sự phỏt xạ năng lượng ra khỏi lừi sợi quang.

Tán sắc

Các thành phần ánh sáng lan truyền nhờ các mode riêng rẽ với thời gian khác nên có sự chênh lệch thời gian, sinh ra méo xung. Độ tán sắc chất liệu cho biết mức độ giãn xung của mỗi mm bề rộng nguồn quang qua mỗi km sợi với đơn vị là PS/nm.

Cấu trúc sợi quang

Lớp phủ

Thụng thường đường kớnh lớp phủ thứ nhất là 250àm đối với sợi cú đường kớnh lớp bọc là 125 àm.

Lớp vỏ

Cấu trúc ống đệm lỏng có nhiều ưu điểm nên được dùng trong các đường truyền dẫn cần chất lượng cao, trong điều kiện môi trường thay đổi nhiều. Phương pháp này làm giảm đường kính của lớp vỏ do đó giảm kích thước và trọng lượng của cáp, song sợi quang lại chịu ảnh hưỏng trực tiếp khi cáp bị kéo căng, để giảm ảnh hưởng này người ta chèn thêm một lớp đệm mềm ở giữa lớp phủ và lớp vỏ.

Các linh kiện biến đổi quan

    Các điện cực tiếp xúc bằng kim loại phủ kim mặt đáy nên ánh sáng không thể phát ra phía 2 mặt được mà bị giữ trong vùng tích cực có dạng vạch hẹp lớp tích cực rất mỏng bằng thiết bị có triết xuất lớn kép giữa 2 lớp PN có triết suất nhỏ hơn. Tuy nhiên mặt sau của LD được phủ một lớp phản xạ rất cao 99% còn mặt trước được cắt để một phần bức xạ ra ngoài 1 phần ánh sáng phát ra lan truyền như đang được khuyếch đại sẽ đập vào mặt gương phản xạ, một phần bức xạ ra ngoài, Một phản xạ lại hướng đột diện, ánh sáng lại được phản xạ tương tự mặt gương đối diện.

    Đặc tính kỹ thuật của PIN và APD

    PIN APD -

    Cấu trúc hệ thống thông tin quang

    - Hướng phát: Tiếp nhận tín hiệu từ thiết bị ghép kênh đưa đến, đổi tín hiệu điện sang dạng mã thích hợp với đường dây quang và cho tín hiệu điện kích thích nguồn quang phát ra tín hiệu quang. + Biến đổi mã: B/v (Bipalar/ Unipolor): Mã truyền dẫn của tín hiệu điện thường là mã nhị cực có 3 trạng thái + V, 0, - V không phù hợp với đường truyền dẫn quang. + Ngẫu nhiên hóa: (SCR: Scramhler): Có tác dụng trộn chuỗi xung một cách ngẫu nhiên theo một quy luật nhất định để tránh sự lặp lại một chuỗi dài các bít giống nhau.

    Vì dạng mã trên đường dây quang được giữ nguyên chức năng của các khối còn lại tương tự chức năng của các khối tương ứng trong thiết bị trạm đầu cuối.

    Mã hóa hệ thống thông tin quang

      * Thiết bị tiếp vận: Khác với thiết bị trạm đầu cuối, thiết bị trạm tiếp vận giao tiếp với đường dây quang ở cả 2 phía. Trong thiết bị tiếp vận không có các khối mã B/V ngẫu nhiên mã hóa và các bộ biến đổi ngược lại. - Đối với hệ thống có dung lượng lớn, tốc độ bít từ 34 Mb/s trở lên thì cần thực hiện đối mã phức tạp tránh làm tăng độ rộng băng truyền.

      Để làm tăng tốc độ truyền do số bít tăng lên sau khi được mã hóa và không làm tăng độ rộng băng truyền dẫn lên nhiều.

      Bảng gồm một cột 5B và 2 cột 6B. Các tổ hợp 6 bit được dùng có số bit,
      Bảng gồm một cột 5B và 2 cột 6B. Các tổ hợp 6 bit được dùng có số bit,

      Tính toán thiết kế tuyến

      Độ tán sắc của sợi đơn Mode rất nhỏ, đặc biệt khi dùng ở bước sóng 1300nm, nên giải thông của sợi đơn mode rất rộng. Trong nhiều trường hợp người ta không cần thiết tính cự ly giới hạn do dải thông.

      Ví dụ về tính toán

      • Kĩ thuật điều chế xung mã
        • Kỹ thuật TDM và tiêu chuẩn ghép kênh ở Việt Nam

          Theo thuyết lấy mẫu của Shanon, các tín hiệu ban đầu có thể được khôi phục khi tiến hành công việc lấy mẫu trên các phần tử tín hiệu được truyền đi ở chu kì nhanh hơn hai lần tần số cao nhất Τmax< 1/2ƒmax. Ví dụ trong trường hợp cần phải ghép 3 kênh số để đưa lên cùng một đường dây, thì mỗi bit trên đường dây này chỉ được dùng trên trong khoảng thời gian bit thứ 3 của mỗi bit nguyên thuỷ. Khi sử dụng phương pháp ghép kênh phân chia theo thời gian, liên lạc không có lỗi chỉ có thể thực hiện được nếu các bit, các khung và các kênh được đồng bộ hoá cùng một kiểu như nhau tại nơi phát và nơi thu.

          Các tín hiệu PDH có thể ghép vào SDH và được truyền dẫn thông qua hệ thống này, điều này giải thích tại sao CCITT đề xuất ra STM-1 vì tất cả các tín hiệu PDH 1,5Mb/s đến 140Mb/s có thể ghép vào trở thành tín hiệu SDH theo kiến nghị G.707.

          Sơ đồ so sánh giữa bộ phối luồng của PDH và SDH, qua sơ đồ ta thấy việc phối hợp luồng của PDH từ tín hiệu cấp cao (140 Mb/s, 34Mb/s, 8Mb/s) phải chuyển qua tất cả các cấp cao tương ứng xuống cấp thấp nhất (cấp 1-2 Mb/s) rồi mới có thể thực hiện các luồng
          Sơ đồ so sánh giữa bộ phối luồng của PDH và SDH, qua sơ đồ ta thấy việc phối hợp luồng của PDH từ tín hiệu cấp cao (140 Mb/s, 34Mb/s, 8Mb/s) phải chuyển qua tất cả các cấp cao tương ứng xuống cấp thấp nhất (cấp 1-2 Mb/s) rồi mới có thể thực hiện các luồng

          Cấu trúc các khối

          - Tất cả các Container khi được ghép trong một Container lớn hơn thì được gọi là Container cấp thấp tương ứng có Container ảo cấp thấp. - Tất cả các Container truyền trực tiếp trong khung STM-1 gọi là container cấp cao là VC-4, nếu VC-3 truyền trực tiếp trong khung thì VC-3 cũng được gọi là container cấp cao. - VC-12: Gồm 34 byte dữ liệu cộng với một byte POH được sử dụng để tương thích với luồng 2Mb/s theo tiêu chuẩn châu Âu và được xắp xếp theo 4 hàng dọc 9 byte.

          • VC-3: Gồm 756 byte dữ liệucộng với 9 byte POH xắp xếp thành một hàng dọc trong đó mỗi byte POH được thực thực hiện một chức năng riêng của mình.

          Cấu trúc VC-2

          Các vùng mạng SDH

            Là đường kết nối logic từ điểm mà tín hiệu luồng số được đi vào container ảo VC của nó đến điểm mà nó được lấy ra Container ảo VC. - Là mức mà ở đó mạng SDH có thể thi hành các chức năng khác nhau trong các trường hợp khác nhau như hư hỏng thiết bị hay làm giảm chất lượng đường truyền dẫn. - Mạch dự phòng là các kênh dự phòng bao gồm các phương tiện truyền dẫn, các bộ lặp và thiết bị đầu cuối vùng ghép kênh.

            Trong mạng SDH, vùng lặp bao gồm các phương tiện truyền dẫn từ các thiết bị liên quan giữa một phần tử mạng và một bộ lặp hoặc giữa hai bộ lặp với nhau.

            Các vùng mạng

            Hai thành phần chủ yếu của mạng đồng bộ

              - Thiết bị sử lý VC ở cấp bậc cao, các đơn vị có liên quan đến các hệ thống đường dây và các hệ thống kết nối chéo cấp bậc cao. - Các đơn vị sử lý nội dung của các VC-4: các bộ ghép kênh truy xuất và các hệ thống kết nối chéo cấp bậc thấp. Các hệ thống đường dây gồm các bộ ghép kênh tốc độ cao và các phần tử đầu cuối hệ thống đường dây.

              Các vùng mạng SDH

              Các bộ ghép kênh truy xuất và thiết bị kết nối chéo cấp bậc thấp

              - Các bộ ghép kênh truy xuất thiết kế để chèn các tín hiệu bất đồng bộ vào các khung STM-1. - Thiết bị kết nối chéo cấp bậc thấp chuyển mạch các VC cấp bậc thấp giữa các điểm truy xuất của chúng. - Do cấu trúc khung đồng bộ nên có thể chuyển mạch các VC mà không cần phải ghép hay phân kênh.

              - Các điểm truy xuất của đơn vị chuyển mạch có thể là đường dẫn STM-1, hai là các điểm truy xuất cận đồng bộ thông qua truy xuất các bộ ghép kênh.

              Kết nối chéo số

              Mạng

              Với sự phát triển không ngừng của các ngành khoa học nói chung và của ngành thông tin nói riêng, con người cảm thấy thế giới như thu hẹp lại. Ngày nay có rất nhiều dịch vụ viễn thông như mạng Telex, mạng số liệu công cộng, mạng chuyển mạch gói.

              Mạng vòng Ring SDH

                Mỗi luồng tín hiệu công tác ở mức tín hiệu nhánh đều được dự phòng bởi một tín hiệu nhánh tương ứng theo chiều ngược lại và được mô tả như hình (a). Khi có sự cố trên đường truyền (VD đoạn BC) thì tín hiệu C đến A vẫn được giữ nguyên, còn tín hiệu từ A đến C, sẽ đi theo tuyến A-E-D-C. Khi có sự cố sảy ra (VD trên đoạn BC) thiết bị ADM tại B và C sẽ tự động đấu vòng tại chỗ ở phía sự cố, kết quả là luồng tín hiệu B-C sẽ chuyển sang luồng tín hiệu B-A-E-D-C.

                Mạng vòng hai hướng tự bảo vệ theo đoạn này tuỳ thuộc theo số lượng sợi được sử dụng mà có các phương án khác nhau.

                Mạng Ring trong 3 vùng ứng dụng của ALCATEL

                Trong mạng nội hạt, các bộ ghép kênh 1641 SM được kết thông đồng bộ nhau theo mạch vòng Ring, hoặc có thể theo đường thẳng với tốc độ 155,52 Mb/s. Với cấu trúc vòng Ring đảm bảo cho luồng tín hiệu không bị ngắt quãng trong trường hợp dây gặp phải sự cố bằng cách định tuyến luồng tín hiệu theo một đường khác của vòng Ring không bị sự cố. Vòng Ring này có thể kết nối đến các vòng Ring nội hạt (hay các đường kết nối thẳng) của các bộ ghép kênh 1641 SM.

                Đường kết nối đến mạng quốc gia được tạo thông qua các thiết bị kết nối chéo cấp cao như 1644 SX được bổ sung thêm cho mạng quốc gia.