Thuyết động học và Phương trình Van der Waals

MỤC LỤC

PHƯƠNG TRÌNH VAN DER WAALS

Quá trình va chạm giữa hai phân tử

TOP a) Mô tả hiện tượng : Xét hai phân tử A và B, do chuyển động nhiệt chúng đang tiến lại gần nhau. Theo tính tương đối của chuyển động ta xem phân tử A đứng yên (so với B) và phân tử B tiến lại gần A theo phương AB. Vậy khi B tiến đến gần A, ngoài thế năng tổng cộng ứng với lực hút và lực đẩy:. b) Ðồ thị của thế năng tổng hợp. Nếu xảy ra trường hợp va chạm "tay ba" có một phân tử thứ ba lấy bớt năng lượng của phân tử B sao cho đường mức năng lượng E đi qua D thì phân tử B sẽ đứng cân bằng tại L, nhưng trạng thái này rất hiếm xảy ra và sẽ không bền vì do chuyển động nhiệt sẽ có phân tử khác "va chạm" vào phân tử B và trạng thái cân bằng nói trên bị phá vỡ ngay.

Phương trình Van der Walls ( phương trình trạng thái của khí

Nếu xảy ra trường hợp va chạm "tay ba" có một phân tử thứ ba lấy bớt năng lượng của phân tử B sao cho đường mức năng lượng E đi qua D thì phân tử B sẽ đứng cân bằng tại L, nhưng trạng thái này rất hiếm xảy ra và sẽ không bền vì do chuyển động nhiệt sẽ có phân tử khác "va chạm" vào phân tử B và trạng thái cân bằng nói trên bị phá vỡ ngay. Bây giờ ta hãy tính giá trị của b. Phép tính chính xác về giá trị của b rất phức tạp, dưới đây ta nêu ra một cách tính đơn giản và gần đúng. Trong đó k là hệ số tỷ lệ phụ thuộc vào số va chạm của các phân tử. Tóm lại giá trị của b ứng với 1 mol khí thực gần đúng bằng 4 lần tổng thể tích của các phân tử khí có trong một mol khí đó. b) Hiệu chỉnh do lực tương tác tổng hợp là lực hút. Phương trình (9.34) gọi là phương trình Van der walls đối với một mol khí thực. Các số hạng hiệu chỉnh Van der Walls a và b trong công thức (9.35) đối với một lượng khí bất kỳ M có cùng giá trị như đôi với một mol khí và là các hằng số đối với một chất khí cho trước trong phạm vi nhất định.

SỨC CĂNG MẶT NGOÀI

Hiện tượng dính ướt và không dính ướt

TOP Ta đã nói, lực căng mặt ngoài tồn tại ở cả chỗ tiếp giáp giữa chất lỏng và chất rắn. Ta xét một phân tử A nằm tại chỗ tiếp giáp giữa 3 môi trường: Rắn, lỏng, khí (hoặc hơi).

SỰ BIẾN ÐỔI PHA CỦA VẬT CHẤT

Nói cách khác, đường cong S xác định điều kiện cho hai chất: lỏng và hơi, cùng tồn tại cân bằng nhiệt bên cạnh nhau. Nếu giữa pha lỏng và pha hơi đang có sự cân bằng nhiệt còn cung cấp nhiệt lượng cho hệ (+Q) thì pha lỏng biến thành pha hơi. Ví dụ: Họ đường đẳng nhiệt Van der Waals thực nghiệm là đường biểu diễn của p theo V khi nhiệt độ T không đổi, có phần nằm ngang, diễn tả sự biến đổi pha (hình. 9.27a) Ở nhiệt độ thấp đường đẳng nhiệt có một đoạn nằm ngang.

+ Nén hơi đẳng nhiệt, điểm đặc trưng cho trạng thái của hệ sẽ di chuyển về phía bên trái, song song với trục hoành V. Hệ tiếp tục toả nhiệt, toàn thể pha lỏng sẽ chuyển sang pha rắn và kết thúc quá trình kết tinh là sự xuất hiện trạng thái cân bằng nhiệt giữa hai pha rắn và hơi bão hòa. Nếu từ trạng thái kết tinh ứng với điểm B, ta không để hệ truyền nhiệt ra ngoài mà lại truyền nhiệt cho hệ thì hệ sẽ từ trạng thái rắn kết tinh chuyển sang pha lỏng, tức là nóng chảy.

Ðiểm nóng chảy, đặc trưng cho sự cân bằng nhiệt giữa pha rắn và pha lỏng, dịch chuyển lên trên và vẽ nên đường nóng chảy hay đường đông đặc (gần như đường thẳng). Ðộ dốc của đường nóng chảy có thể âm hay dương tuỳ thuộc dấu vào sự thay đổi thể tích của chất rắn khi nóng chảy. Ðiểm B, nằm tại giao điểm của 3 đường cong biến đổi pha hoá hơi nóng chảy và thăng hoa được gọi là điểm Ba. Ðiểm Ba xác định điều kiện cân bằng giữa ba pha. + Nếu đường nóng chảy lệch về phía trái của điểm Ba thì có hiện tượng dị thường : Nén khí đẳng nhiệt thì áp suất tăng, hệ trãi qua từ pha hơi sang phá rắn, rồi mới sang pha lỏng. Hiện tượng đổi pha và thuyết động học phân tử. Nóng chảy và đông đặc. Trong thực tế, các hạt cấu thành chất rắn và tinh thể chịu hai ảnh hưởng ngược nhau:. 1) Chuyển động nhiệt có xu hướng làm tách rời các hạt xa nhau ra, phá vỡ trật tự trong mạng tinh thể. 2) Lực tương tác giữa cá hạt có xu hướng liên kết các hạt lại với nhau, buộc chúng ở tại vị trí cân bằng. Nhiệt độ đông đặc phải bằng nhiệt độ nóng chảy và cũng không đổi trong suốt thời gian sự đông đặc xảy ra, mặc dù hệ cứ toả nhiệt. Sự thăng hoa cũng được giải thích theo quan điểm của thuyết động học phân tử .Ở một nhiệt độ và áp suất nào đó các phân tử hoặc ion trong mạng tinh thể chuyển động nhiệt với vận tốc khác nhau và bao giờ cũng có một số phân tử có đủ năng lượng để vượt ra khỏi tinh thể ,bay vào môi trường xung quanh.

Một chất lỏng ở bất cứ nhiệt độ nào, cũìng có chứa những phân tử có động năng đủ lớn để thắng lực hút xung quanh, thoát ra khỏi mặt thoáng. Nếu sự bay hơi và quá trình ngược xảy ra trong bình kín, thì đến một lúc nào đấy, số phân tử hoá thành hơi trong một đơn vị thời gian bằng số phân tử hơi đi vào chất lỏng. + Sự có mặt của các chất khí hoặc hơi khác làm ảnh hưởng tới tốc độ bay hơi, kéo dài thời gian bay hơi để đạt tới trạng thái bão hòa, nhưng không làm thay đổi sự cân bằng động giữa pha lỏng và pha hơi.

Các bọt hơi được tạo thành ở đáy và thành bình, và lớn lên trong lòng chất lỏng, đi lên mặt thoáng, và vở ra tại mặt thoáng để cho hơi trong các bọt thoát ra ngoài. Càng đun nóng do hiện tượng đối lưu hơi chất lỏng nóng đều khi nhiệt độ tăng, áp suất hơi bão hòa trong bọt tăng, thể tích V của bọt tăng lên. KhiĠđã lớn hơn lựcĠdo lực tương tác giữa các phân tử chất lỏng quanh bọt, bọt sẽ chuyển động lên mặt thoáng và bị vỡ ra ở đó.