1. Trang chủ
  2. » Khoa Học Tự Nhiên

Tài liệu Physics exercises_solution: Chapter 42 ppt

21 258 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 21
Dung lượng 209,78 KB

Nội dung

42.1: a) K)J1038.1(3 )eVJ1060.1)(eV109.7(2 3 2 2 3 23 194      k K TkTK K1.6   T b) K.600,34 )KJ1038.1(3 )eVJ1060.1()eV48.4(2 23 19       T c) The thermal energy associated with room temperature (300 K) is much greater than the bond energy of 2 He (calculated in part (a)), so the typical collision at room temperature will be more than enough to break up .He 2 However, the thermal energy at 300 K is much less than the bond energy of 2 H , so we would expect it to remain intact at room temperature. 42.2: a) .eV0.5 4 1 2 0  r e πε U b) .eV2.4)eV5.3eV3.4(eV0.5      42.3: Let 1 refer to C and 2 to O. nm1128.0,kg10656.2,kg10993.1 0 26 2 26 1   rmm )carbon(nm0644.0 0 21 2 1            r mm m r )carbon(nm0484.0 0 21 1 2            r mm m r b) ;mkg1045.1 2462 22 2 11   rmrmI yes, this agrees with Example 42.2. 42.4: The energy of the emitted photon is ,eV1001.1 5  and so its frequency and wavelength are GHz44.2 )sJ1063.6( )eVJ1060.1)(eV1001.1( 34 195       h E f .m123.0 Hz)1044.2( )sm1000.3( λ 9 8     f c This frequency corresponds to that given for a microwave oven. 42.5: a) From Example 42.2, 24623 1 mkg10449.1andJ10674.7meV479.0   IE srad1003.12givesand 12 1 2 2 1  IEωEKIωK b) (carbon)sm3.66)srad1003.1)(m100644.0( 129 111   ωrv (oxygen)sm8.49)srad1003.1)(m100484.0( 129 222   ωrv c) s106.102 12  ωπT 42.6: a) J10083.2)eV2690.0( 2 1 2 1 20 0   ωE  sm1091.1 kg10139.1 )J10083.2(2 2 gives 2 1 3 26 2 r 0 max 2 maxr0       m E vvmE b) According the Eq. 42.7 the spacing between adjacent vibrational energy levels is twice the ground state energy: . ,) 2 1 ( 1 hfωEEE ωnE nn n      Thus, using the E  specified in Example 42.3, it follows that its vibrational period is s.1054.1 )eVJ1060.1)(eV2690.0( )sJ1063.6(1 14 19 34          E h f T c) The vibrational period is shorter than the rotational period. 42.7: a) 2 HLi HLi 2 r r mm mm rmI           eV.1053.7J1020.1 mkg1069.3 )sJ10054.1(4 4 ))13()3()14(4( 2 mkg1069.3 )kg1067.1kg1017.1( )m1059.1)(kg1067.1)(kg1017.1( 321 247 234 22 34 247 2726 2102726                E E II EEE  b) .m1066.1λ J1020.1 s)m1000.3)(sJ1063.6( λ 4 21 834          E hc 42.8: Each atom has a mass m and is at a distance 2L from the center, so the moment of inertia is .mkg1021.22)2)((2 24422   mLLm 42.9: a) I l llll I E I ll E I ll E ll 2 22 22 1 2 )( 2 2 )1( , 2 )1(        b) . πI l π E h E f 2 2 ΔΔ    42.10: a) ,mk hc E r λ    and solving for ,k  m.N205 λ 2 r 2          m πc k 42.11: Energy levels are I ll ωnEEE ln 2 )1( 2 1 2            eV)10395.2()1(eV)269.0( 2 1 4         lln where the values are from Examples 42.2 and 42.3. a) :2,11,0      lnln .m10592.4 )eVJ10602.1)(eV2700.0( )sm10998.2)(sJ10626.6( λ eV2700.0)eV10395.2)(4()eV2690.0)(1( 6 19 834 4            E hc EEE if b) :1,12,0      lnln m10627.4λ )eVJ10602.1)(eV2680.0( )sm10998.2)(sJ10626.6( λ eV2680.0)eV10395.2)(4()eV2690.0)(1( 6 19 834 4            E hc EEE if c) :2,13,0      lnln m.10634.4 )eVJ10602.1)(eV2676.0( )sm10998.2)(sJ10626.6( λ eV2676.0)eV10395.2)(6()eV2690.0)(1( 6 19 834 4          ΔE hc EEE if 42.12: 2where,eV196.0J1014.32 r 20 r mmmkmkω        has been used. 42.13: a) r 2 1 2 m k ππ ω f       mN963 )kg1015.3kg1067.1( )]Hz1024.1(2)[kg1015.3()kg1067.1( 2 2 2627 2142627 21 2 21 2 r               k π k mm πfmm πfmk b) hfωωnωnE                 2 1 2 3     eV513.0 J1022.8Hz1024.1sJ1063.6 201434    E c)   infraredm1042.2 Hz1024.1 sm1000.3 λ 6 14 8      f c 42.14: a) As a photon,        nm.200.0 eVJ1060.1eV1020.6 sm1000.3sJ1063.6 λ 193 834       E hc b) As a matter wave,         nm200.0 eVJ1060.1eV6.37kg1011.92 sJ1063.6 2 λ 1931 34       mE h p h and c) as a matter wave,         nm200.0 eVJ1060.1eV0205.0kg1067.12 sJ1063.6 2 λ 1927 34       mE h . 42.15: The volume enclosing a single sodium and chlorine atom     3 10 m102.822 329 m104.49   . So the density .mkg102.16 m1049.4 kg105.89kg1082.3 33 329 2626 ClNa         ρ V mm ρ 42.16: For an average spacing a, the density is 3 amρ  , where m is the average of the ionic masses, and so   329 33 2526 3 m1060.3 )mkg1075.2( 2kg1033.1kg1049.6       ρ m a , and nm330.0m1030.3 10   a . b) The larger (higher atomic number) atoms have the larger spacing. 42.17: J1014.2 m1031.9 )sm1000.3()sJ1063.6( λ 13 13 834        hc E eV101.34 6  So the number of electrons that can be excited to the conduction band is eV12.1 eV1034.1 6   n 6 1020.1  electrons. 42.18: a) nm227m1027.2 7    E hc , in the ultraviolet. b) Visible light lacks enough energy to excite the electrons into the conduction band, so visible light passes through the diamond unabsorbed. c) Impurities can lower the gap energy making it easier for the material to absorb shorter wavelength visible light. This allows longer wavelength visible light to pass through, giving the diamond color. 42.19: a) To be detected the photon must have enough energy to bridge the gap width eV12.1   E         m1011.1 eVJ1060.1eV12.1 sm1000.3sJ1063.6 λ 6 19 834          E hc , in the infrared. b) Visible photons have more than enough energy to excite electrons from the valence to conduction band. Thus visible light is absorbed, making silicon opaque. 42.20: sm1017.13 5 rms  mkTv , as found in Example 42.9. The equipartition theorem does not hold for the electrons at the Fermi energy. Although these electrons are very energetic, they cannot lose energy, unlike electrons in a free electron gas. 42.21: a) Eψ z ψ y ψ x ψ m                  2 2 2 2 2 22 2  where L πzn L πyn L πxn A ψ z y x sinsinsin , 2 2 2 ψ L πn x ψ x          and similarly for 2 2 2 2 and z ψ y ψ     .   2 22222 2 2 2 2 2 2 mL πnnn E E ψψ L πn L πn L πn m zyx z y x                                     b) Ground state 2 22 2 3 1 mL π Ennn zyx   , The only degeneracy is from the two spin states. The first excited state    1 ,2,1or1,1,2   2 22 3 2,1,1or mL π E   and the degeneracy is     632  . The second excited state       2 22 2 9 2,2,1or2,1,2or1,2,2 mL π E   and the degeneracy is     632  . 42.22:   dVψ 2 1 , 2 sinsinsin 3 2 0 2 0 2 0 22                                                      L A dz L πzn dy L πyn dx L πxn A L z L y L x so   23 2 LA  (assuming A to be real positive). 42.23: Density of states:          eV.states105.1 eVJ1060.1Jstates105.9 s)J10054.1(2 )eVJ101.60(eV)5.0)(m101.0(kg))109.11(2( 2 2 22 1940 3342 211921362331 21 32 23          π Eg E π Vm Eg  42.24: Equation (42.13) may be solved for     πLmEn  21 rs 2 , and substituting this into Eq. (42.12), using VL  3 , gives Eq. (42.14). 42.25: Eq.(42.13): 2 222 rs 2 mL πn E   .103.4 )eVJ1060.1()eV7.0()kg109.11(2 )sJ101.054( 010.0 2 7 rs 1931 34 rs        n π m mE π L n  42.26: a) From Eq. (42.22), .eV94.1 5 3 Fav  EE b)     .sm108.25 kg109.11 eVJ101.601.942 2 5 31 19       mE c)       .K1074.3 KJ1038.1 eVJ1060.1eV23.3 4 23 19 F       k E 42.27: a)         R π R E kT π C V                       eVJ1060.1eV48.52 K300KJ1038.1 2 19 232 F 2 K.molJ194.00233.0  RC V b) 3 1068.7 KmolJ25.3 KmolJ0.194   . c) Mostly ions (see Section 18.4). 42.28: a) See Example 42.10: The probabilities are 67 1037.2,1078.1   , and 5 1051.1   . b) The Fermi distribution, Eq. (42.17), has the property that     EfEEf  1 F (see Problem (42.46)), and so the probability that a state at the top of the valence band is occupied is the same as the probability that a state of the bottom of the conduction band is filled (this result depends on having the Fermi energy in the middle of the gap). 42.29:     1 1 F    kTEE e Ef         .eV20.0J1020.3 1 104.4 1 lnK300KJ1038.1 1 1 ln 20 F 4 23 F F                       EEE EE Ef kTEE So the Fermi level is 0.20 eV below the conduction band. 42.30: a) Solving Eq. (42.23) for the voltage as a function of current, .V0645.01 mA3.60 mA40.0 ln1ln S                    e kT I I e kT V b) From part (a), the quantity 11.12 kTeV e , so far a reverse-bias voltage of the same magnitude,   mA30.31 11.12 1 1 SS          IeII kTeV . 42.31:   1 SS 1 1   kTeV kTeV e IeII a)         580.0 K300KJ101.38 V1050.1C1060.1 23 219       kT eV A.0118.0 1 A1025.9 580.0 3 S      e I Now for 387.0,V0100.0   kTeVV     mA56.5A1056.51A0118.0 3387.0   eI b) Now with 580.0,mV0.15  kT eV V     A1018.51A0118.0 3580.0   eI . If 387.0mV0.10  kT eV V     A1077.31A0118.0 3387.0   eI . 42.32: See Problem (42.7): 248 2 2 mkg1014.7 2 λ2     c π h E I  . 42.33: a)     mC103.8m102.4C101.60 291019   qdp b) C10.31 m102.4 mC103.0 19 10 29        d p q c) 78.0eq d) 0590 C104.9 m101.6 mC101.5 12 10 30 .eq d p q         This is much less than for sodium chloride (part (c)). Therefore the bond for hydrogen iodide is more covalent in nature than ionic. [...]... cm  2.297 cm  0.050 cm E  1.12  1014 Hz The force 42. 42: The vibration frequency is, from Eq (42. 8), f  h constant is k   (2πf ) 2 mr  777 N m 1 k 1 2k    E0   42. 43: En   n    2 mr 2 mH   E0  1 2(576 N m) (1.054  10 34 J  s)  4.38  10 20 J  0.274 eV 2 1.67  10 27 kg This is much less than the H 2 bond energy 42. 44: a) The frequency is proportional to the reciprocal... (1.95)  234 μm 42. 38: From the result of Problem (42. 9), the moment inertia of the molecule is 2l hlλ I  2  6.43  10 46 kg  m 2 E 4π c and from Eq (42. 6) the separation is r0  I  0.193 nm mr L2 2l (l  1)  2I 2I E g  0 (l  0), and there is an additional multiplicative factor of 2l + 1 because for each l state there are really 2l  1 ml states with the same energy 42. 39: a) Eex  .. .42. 34: The electrical potential energy is U  5.13 eV, and r 42. 35: 1 e2  2.8  10 10 m 4πε0 U a) For maximum separation of Na  and Cl  for stability: U  e2  5.1 eV  3.6 eV  1.60  10 19 J eV  2.40  10 19 J 4πε0 r  r  (1.60  10 19 C) 2  9.6  10 10 m 19 4πε0 (2.40  10 J ) b) For K  and Br  : U   r 42. 36:  e2  4.3 eV  3.5 eV ... 3 5 2m  V   V 2  dV 42. 51: a) Eav  32 3 π 4 3 2  5m 53 N   V  53 P dEtot 32 3 π 4 3 2  N     5m  V  dV N  8.45  10 28 m 3 V 32 3 π 4 3 (1.054  10 34 J  s) 2  p (8.45  10 28 m 3 ) 5 3 5(9.11  10 31 kg) b)  3.80  1010 Pa  3.76  105 atm (!) c) There is a large attractive force on the electrons by the copper ions 42. 52: a) From Problem (42. 51): 53 32 3 π 4 3 2... (6  12)  hf 2I 3.00  108 m s c λ   4.40  10 6 m 2  3(3.96  1011 Hz)  6.93  1013 Hz     3  2I   f    42. 46: The sum of the probabilities is f ( EF  E )  f ( EF  E )   1 e  E kT 1  E kT e  1 1  1 e E kT 1  E / kT e  1 1  e E kT  42. 47: Since potassium is a metal we approximate E F  E F0  EF  32 3 π 4 3 2 n 2 3 2m But the electron concentration n ... 2.03 eV 31 2(9.11  10 kg) 42. 48: a) First we calculate the number-density of neutrons from the given mass-density: n  (7.0  1017 kg m 3 ) / 1.67  10 27 kg neutron )  4.2  10 44 m 3 Now use Eq 44.21 2 4 1 2 4 2 3 3 π 3 2 n 3 3 3 π 3 (6.63  10 34 J  s 2π ) 2 (4.2  10 44 m 3 ) 3  EF 0   1.8  10 11 J  27 2m 2(1.67  10 kg ) b) Set kT  EF0 (see Exercise 42. 26) to obtain EF 0 (1.8 ... isotope with the deuterium atom is 12 12  m m (mH  mF )   1  (mF mD )  f  f0  F H  m m ( m  m )   f 0  1  (m m )      F D  D F  F H  Using f 0 from Exercise (42. 13) and the given masses, f  8.99  1013 Hz 42. 45: a) I  mr r 2  mH mI r 2  (1.657  10 27 kg) (0.160  10 9 m) 2 mH  mI  4.24  10 47 kg  m 2 b) Vibration-rotation energy levels are: 1 k 2   h    El  l... 1035 m 3  400 so relativistic effects 1.67  1033 m 3 42. 54: a) Following the hint,  1 e2  1 e2   k dr   d  dr  4π r 2  2π 0 r03 0   r r 0 and ω   2k  m   1 e2  1.23  10 19 J  0.77 eV, π 0 mr03 where (m 2) has been used for the reduced mass b) The reduced mass is doubled, and the energy is reduced by a factor of 42. 55: a) U  1 4π 0  i j qi q j rij  q2 4π 0 2 to 0.54... result of Problem (44-4), these are seen to correspond to transition from levels 8, 7, 6, 5 and 4 to the respective next lower levels 2 Then,  0.410  10 21 J , from which I  2.71  10 47 kg  m 2 I 42. 37: a) Pr (44.36) yields I  2.71  10 47 kg  m 2 , and so r  r I  mr I (mH  mCl ) mH mCl (2.71  10 47 kg  m 2 ) (1.67  10 27 kg  5.81  10 26 kg) (1.67  10 27 kg  5.81  10 26 kg)... 34 J  s 2π ) 2 (4.2  10 44 m 3 ) 3  EF 0   1.8  10 11 J  27 2m 2(1.67  10 kg ) b) Set kT  EF0 (see Exercise 42. 26) to obtain EF 0 (1.8  10 11 J )   1.3  1012 K (1.38  10 28 J K ) k 42. 49: a) Each unit cell has one atom at its center and 8 atoms at its corners that are each shared by 8 other unit cells So there are 1  8 8  2 atoms per unit cell 2 n   4.66  10 28 atoms m 3 3 9 .  eV.states105.1 eVJ1060.1Jstates105.9 s)J10054.1(2 )eVJ101.60(eV)5.0)(m101.0(kg))109.11(2( 2 2 22 1940 3 342 211921362331 21 32 23          π Eg E π Vm Eg  42. 24: Equation (42. 13) may be solved for     πLmEn  21 rs 2 , and substituting this into Eq. (42. 12), using VL  3 , gives Eq. (42. 14). 42. 25:. are: cm.050.0cm2.297cm347.2λ:01 cm.025.0cm1.148cm173.1 λ:12         ll ll 42. 42: The vibration frequency is, from Eq. (42. 8), 14 1012.1    h E f Hz. The force constant is .mN777)2( r 2   mπfk 42. 43: H 0 r 2 2 1 2 1 m k E m k nE n          

Ngày đăng: 24/01/2014, 07:20

TỪ KHÓA LIÊN QUAN