THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng | |
---|---|
Số trang | 57 |
Dung lượng | 2,48 MB |
Nội dung
Ngày đăng: 12/12/2021, 21:02
Nguồn tham khảo
Tài liệu tham khảo | Loại | Chi tiết |
---|---|---|
1. Ahuja, D., Dhiman, S., Rattan, G., Monga, S., Singhal, S., Kaushik, A., 2021. Superhydrophobic modification of cellulose sponge fabricated from discarded jute bags for oil water separation. J. Environ. Chem. Eng. 9, 105063.https://doi.org/10.1016/j.jece.2021.105063 | Link | |
3. Boinovich, L.B., Emelyanenko, A.M., Ivanov, V.K., Pashinin, A.S., 2013. Durable icephobic coating for stainless steel. ACS Appl. Mater. Interfaces 5, 2549–2554. https://doi.org/10.1021/am3031272 | Link | |
4. Collazzo, G.C., Jahn, S.L., Carreủo, N.L.V., Foletto, E.L., 2011. Temperature and reaction time effects on the structural properties of titanium dioxide nanopowders obtainedvia the hydrothermal method. Brazilian J. Chem. Eng. 28, 265–272. https://doi.org/10.1590/S0104-66322011000200011 | Link | |
5. Czyzyk, S., Dotan, A., Dodiuk, H., Kenig, S., 2020. Processing effects on the kinetics morphology and properties of hybrid sol-gel superhydrophobic coatings.Prog. Org. Coatings 140, 105501.https://doi.org/10.1016/j.porgcoat.2019.105501 | Link | |
6. Dimitrakellis, P., Travlos, A., Psycharis, V.P., Gogolides, E., 2017. Superhydrophobic Paper by Facile and Fast Atmospheric Pressure PlasmaEtching. Plasma Process. Polym. 14, 1–8.https://doi.org/10.1002/ppap.201600069 | Link | |
9. Hooda, A., Goyat, M.S., Kumar, A., Gupta, R., 2018. A facile approach to develop modified nano-silica embedded polystyrene based transparent superhydrophobic coating. Mater. Lett. 233, 340–343.https://doi.org/10.1016/j.matlet.2018.09.043 | Link | |
10. Hou, W., Shen, Y., Tao, J., Xu, Y., Jiang, J., Chen, H., Jia, Z., 2020. Anti-icing performance of the superhydrophobic surface with micro-cubic array structures fabricated by plasma etching. Colloids Surfaces A Physicochem. Eng. Asp. 586, 124180. https://doi.org/10.1016/j.colsurfa.2019.124180 | Link | |
11. Hu, R., Jiang, G., Wang, X., Xi, X., Wang, R., 2013. Facile preparation of superhydrophobic surface with high adhesive forces based carbon/silica composite films. Bull. Mater. Sci. 36, 1091–1095.https://doi.org/10.1007/s12034-013-0577-6 | Link | |
13. Jamalludin, M.R., Hubadillah, S.K., Harun, Z., Othman, M.H.D., Yunos, M.Z., Ismail, A.F., Salleh, W.N.W., 2020. Facile fabrication of superhydrophobic and superoleophilic green ceramic hollow fiber membrane derived from waste sugarcane bagasse ash for oil/water separation. Arab. J. Chem. 13, 3558–3570.https://doi.org/10.1016/j.arabjc.2018.12.007 | Link | |
15. Jia, S., Chen, H., Luo, S., Qing, Y., Deng, S., Yan, N., Wu, Y., 2018. One-step approach to prepare superhydrophobic wood with enhanced mechanical and chemical durability: Driving of alkali. Appl. Surf. Sci. 455, 115–122.https://doi.org/10.1016/j.apsusc.2018.05.169 | Link | |
16. Lai, Y., Tang, Y., Gong, J., Gong, D., Chi, L., Lin, C., Chen, Z., 2012. Transparent superhydrophobic/superhydrophilic TiO 2-based coatings for self- cleaning and anti-fogging. J. Mater. Chem. 22, 7420–7426.https://doi.org/10.1039/c2jm16298a | Link | |
18. Li, S., Huang, J., Ge, M., Cao, C., Deng, S., Zhang, S., Chen, G., Zhang, K., Al- Deyab, S.S., Lai, Y., 2015. Robust Flower-Like TiO2@Cotton Fabrics with Special Wettability for Effective Self-Cleaning and Versatile Oil/WaterSeparation. Adv. Mater. Interfaces 2, 1–11.https://doi.org/10.1002/admi.201500220 | Link | |
19. Lin, Y., Han, J., Cai, M., Liu, W., Luo, X., Zhang, H., Zhong, M., 2018. Durable and robust transparent superhydrophobic glass surfaces fabricated by a femtosecond laser with exceptional water repellency and thermostability. J.Mater. Chem. A 6, 9049–9056. https://doi.org/10.1039/c8ta01965g | Link | |
20. Linh, N.T.B., Lee, K.H., Lee, B.T., 2011. Fabrication of photocatalytic PVA- TiO2 nano-fibrous hybrid membrane using the electro-spinning method. J.Mater. Sci. 46, 5615–5620. https://doi.org/10.1007/s10853-011-5511-y | Link | |
21. Liu, C., Wang, S., Shi, J., Wang, C., 2011. Fabrication of superhydrophobic wood surfaces via a solution-immersion process. Appl. Surf. Sci. 258, 761–765.https://doi.org/10.1016/j.apsusc.2011.08.077 | Link | |
25. Nguyen, H.H., Tieu, A.K., Wan, S., Zhu, H., Pham, S.T., Johnston, B., 2021. Surface characteristics and wettability of superhydrophobic silanized inorganic glass coating surfaces textured with a picosecond laser. Appl. Surf. Sci. 537, 147808. https://doi.org/10.1016/j.apsusc.2020.147808 | Link | |
27. Nguyen, T.H., Lee, K.H., Lee, B.T., 2010. Fabrication of Ag nanoparticles dispersed in PVA nanowire mats by microwave irradiation and electro-spinning.Mater. Sci. Eng. C 30, 944–950. https://doi.org/10.1016/j.msec.2010.04.012 28. Parsaie, A., Mohammadi-Khanaposhtani, M., Riazi, M., Tamsilian, Y., 2020 | Link | |
32. Raimondo, M., Veronesi, F., Boveri, G., Guarini, G., Motta, A., Zanoni, R., 2017. Superhydrophobic properties induced by sol-gel routes on copper surfaces. Appl.Surf. Sci. 422, 1022–1029. https://doi.org/10.1016/j.apsusc.2017.05.257 | Link | |
33. Scientific, B., n.d. Contact angle measuremment [WWW Document]. URL https://www.biolinscientific.com/measurements/contact-angle | Link | |
34. Scientific, T.F., n.d. Principles of Scanning Electron Microscopy [WWW Document]. URL https://www.thermofisher.com/sg/en/home/materials-science/learning-center/applications/scanning-electron-microscope-sem-electron-column.html | Link |
TÀI LIỆU CÙNG NGƯỜI DÙNG
TÀI LIỆU LIÊN QUAN