THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng | |
---|---|
Số trang | 62 |
Dung lượng | 2,17 MB |
Nội dung
Ngày đăng: 06/12/2021, 10:31
Nguồn tham khảo
Tài liệu tham khảo | Loại | Chi tiết |
---|---|---|
[1] Python Machine Learning By Example by Yuxi Liu, 2017 | Khác | |
[2] Neural Network Embeddings Explained by Will Koehrsen, 2018 | Khác | |
[3] Using latent semantic analysis to improve access to textual information, ST Dumais-GW Furnas-TK Landauer-S. Deerwester-R. Harshman, Released 1922 | Khác | |
[4] Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of word representations in vector space. ICLR Workshop, 2013 | Khác | |
[5] A Beginner’s Guide to Latent Dirichlet Allocation(LDA) [6] XinRong, Word2vec Parameter Learning Explained, 2014 | Khác | |
[7] Chris McCormick - Word2Vec Tutorial - The Skip-Gram Model, 2016 | Khác | |
[8] Word2Vec Tutorial: The Continuous Bag-of-Words Model bt Alex Minnaar, 2015 | Khác | |
[9] Introduction to N-grams by Tobias Sterbak, 2019 | Khác | |
[10] Introduction to word embeddings and its applications, 2020 | Khác | |
[11] Deep Learning: Recurrent Neural Networks in Python: LSTM, GRU, and more RNN machine learning architectures in Python and Theano , 2016 | Khác | |
[12] Andrew Ng, Machine Learning course ,2020 | Khác | |
[13] Christopher Olah (2015), Understanding LSTM networks in Colah’s blog [14] Improved Semantic Representations FromTree-Structured Long Short-Term Memory Networks ,2015 | Khác |
TỪ KHÓA LIÊN QUAN
TÀI LIỆU CÙNG NGƯỜI DÙNG
TÀI LIỆU LIÊN QUAN