www.EngineeringEBooksPdf.com Precast Concrete Structures www.EngineeringEBooksPdf.com www.EngineeringEBooksPdf.com Precast Concrete Structures Boca Raton London New York CRC Press is an imprint of the Taylor & Francis Group, an informa business www.EngineeringEBooksPdf.com CRC Press Taylor & Francis Group 6000 Broken Sound Parkway NW, Suite 300 Boca Raton, FL 33487-2742 © 2017 by Taylor & Francis Group, LLC CRC Press is an imprint of Taylor & Francis Group, an Informa business No claim to original U.S Government works Printed on acid-free paper Version Date: 20160405 International Standard Book Number-13: 978-1-4987-2399-2 (Hardback) This book contains information obtained from authentic and highly regarded sources Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot assume responsibility for the validity of all materials or the consequences of their use The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint Except as permitted under U.S Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers For permission to photocopy or use material electronically from this work, please access www.copyright.com (http:// www.copyright.com/) or contact the Copyright Clearance Center, Inc (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400 CCC is a not-for-profit organization that provides licenses and registration for a variety of users For organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation without intent to infringe Library of Congress Cataloging‑in‑Publication Data Names: Elliott, Kim S Title: Precast concrete structures / Kim S Elliott Description: Boca Raton : Taylor & Francis, CRC Press, 2017 | Includes bibliographical references and index Identifiers: LCCN 2016010309 | ISBN 9781498723992 Subjects: LCSH: Precast concrete construction Classification: LCC TA683.7 E43 2017 | DDC 624.1/83414 dc23 LC record available at https://lccn.loc.gov/2016010309 Visit the Taylor & Francis Web site at http://www.taylorandfrancis.com and the CRC Press Web site at http://www.crcpress.com www.EngineeringEBooksPdf.com Contents Preface to the First Edition Preface to the Second Edition Acknowledgement About the Author Notation What is precast concrete xiii xvii xxi xxiii xxv 1.1 Why is precast different? 1.2 Precast concrete structures 1.3 Why choose a precast structure? 12 References 19 Materials used in precast structures 2.1 2.2 21 Concrete 21 2.1.1 Concrete for precast production 21 2.1.2 Concrete for precast floor elements 28 2.1.3 Young’s modulus and modular ratios 31 2.1.4 Shrinkage and creep 32 2.1.5 Fire resistance and axis distance to rebars and tendons 36 2.1.5.1 Columns 37 2.1.5.2 Unbraced columns 42 2.1.5.3 Walls 42 2.1.5.4 Beams 43 2.1.5.5 Reduced additional axis distance Δa 44 2.1.5.6 Floor slabs 46 Mix design 47 2.2.1 Exposure, cover and strength 47 2.2.2 Mortars and grouts 49 2.2.3 Dry pack 50 2.2.4 Aggregates 50 2.2.5 Substitute materials 50 2.2.6 Admixtures 51 2.2.7 Water 52 v www.EngineeringEBooksPdf.com vi Contents 2.3 Steel reinforcement 52 2.3.1 Rebars 52 2.3.2 Mesh 54 2.3.3 Stainless steel rebars 55 2.3.4 Prestressing tendons 55 2.4 Structural steel, welding, inserts and bolts 57 2.4.1 Structural steelwork 57 2.4.2 Welding 58 2.4.3 Cast-in fixings and lifting devices 59 2.4.4 Bolting 59 2.4.5 Cast-in sockets and anchorage 60 2.5 Non-cementitious materials 60 References 61 Precast frame analysis 65 3.1 3.2 3.3 Types of precast concrete structures 65 Simplified frame analysis 71 Substructuring methods 76 3.3.1 Two-dimensional plane frames 76 3.3.2 Design loads on beams and frames 79 3.3.2.1 Serviceability limit state 81 3.3.2.2 Ultimate limit state 83 3.3.2.3 Instability limit state 84 3.3.2.4 Accidental limit state 85 3.3.3 Gravity and horizontal ultimate loads on frames 85 3.3.3.1 Permanent, variable and wind actions 85 3.3.3.2 Horizontal forces due to imperfections 87 3.3.4 Beam subframe 90 3.3.5 Upper floor column subframe 92 3.3.6 Ground floor column subframe 92 3.4 Connection design 94 3.5 Stabilising methods 97 3.6 Comparison of standard designs to BS 8110 and Eurocodes 108 3.6.1 Reinforced concrete rectangular beam 108 3.6.2 Reinforced concrete rectangular column 111 3.6.3 Prestressed concrete slab 115 3A Appendix A: Summary of Eurocode EC2: Design of concrete structures – General rules and rules for buildings, BS EN 1992, Part 1-1 120 Summary of Eurocode EC2: Design for fire BS EN 1992, Part 1-2 122 2B Appendix B: Summary of relevant items in PD 6687-1:2010 122 References 124 Precast concrete floors 4.1 4.2 125 Precast concrete flooring options 125 Flooring arrangements 136 www.EngineeringEBooksPdf.com Contents vii 4.2.1 Definitions of precast floor units and slab fields 136 4.2.2 Lateral load distribution in discrete precast floor units 138 4.2.3 Discritization of floor slab loads in individual units 141 4.3 Structural design of individual units 147 4.3.1 Flexural capacity 148 4.3.2 Serviceability limit state of flexure 150 4.3.3 Serviceability limit state of flexure: Calculation model 153 4.3.4 Serviceability limit state of bending 154 4.3.5 Ultimate limit state of flexure 161 4.3.6 Deflection 166 4.3.7 Ultimate shear capacity 170 4.3.7.1 Shear capacity in the uncracked region, V Rd,c 171 4.3.7.2 Shear capacity in the flexurally cracked region V Rd,cr 175 4.3.7.3 Shear capacity of hollow core units due to combined stress in the webs 175 4.3.8 Bearing capacity 178 4.4 Design of composite floors 181 4.4.1 Precast floors with composite toppings 181 4.4.2 Flexural analysis for composite prestressed concrete elements 183 4.4.2.1 Serviceability state of stress 183 4.4.2.2 Relative shrinkage between in situ topping to precast unit 187 4.4.2.3 Ultimate limit state of bending 188 4.4.2.4 Ultimate shear capacity of composite sections 190 4.4.3 Propping 192 4.4.3.1 Deflections in composite slabs 194 4.4.4 Interface shear stress in composite slabs 196 4.5 Calculation of crack width in prestressed concrete sections 200 4.6 Composite plank floor 202 4.6.1 Types of composite planks: reinforced and prestressed 202 4.6.2 Design for flexure during handling and in service 205 4.6.3 Shear capacity 208 4.6.4 Interface shear stress due to Stage loads 213 References 214 Precast concrete beams 5.1 5.2 215 Types of precast beams 215 Non-composite reinforced concrete beams 222 5.2.1 Ultimate moment of resistance 223 5.2.1.1 Type I beam 223 5.2.1.2 Type II beam 225 5.2.2 Calculating As and A¢s from the design moment M Ed 225 5.2.3 Ultimate shear resistance 226 5.2.4 Minimum areas and bar diameters and spacing 232 5.2.5 Section properties in cracked and uncracked sections 234 5.2.6 Boot design 236 www.EngineeringEBooksPdf.com viii Contents 5.3 Composite reinforced beams 239 5.3.1 Design in flexure of composite reinforced concrete beams 243 5.3.2 Deflections in composite r.c beams 244 5.4 Non-composite prestressed beams 252 5.4.1 Flexural design 255 5.4.2 Ultimate flexural design 262 5.4.3 Anchorage length for ultimate limit state in beams with strands 266 5.4.4 Shear in prestressed beams 266 5.5 Composite prestressed beam design 269 5.5.1 Flexural design 270 5.6 Propping 278 5.7 Horizontal interface shear 280 5.8 Precast reinforced concrete deep beam walls 283 5.8.1 Definitions and background information 283 5.8.2 Equivalent strut-and-tie analogy 285 5.8.3 Deep beam walls with cantilevers 298 5.8.4 Bottom-loaded deep beam walls 304 5.8.5 Continuous spans in deep beam walls 308 References 310 Precast concrete columns 313 6.1 Precast concrete columns 313 6.1.1 Geometry, strength and general requirements 313 6.1.2 Fire requirements for reinforced concrete columns 318 6.1.2.1 Method A for first-order e fi /h ≤ 0.15 319 6.1.2.2 Method B for first-order e fi /h ≤ 0.25 319 6.1.2.3 Unbraced columns 320 6.2 Column design 321 6.2.1 Column design for factory handling 322 6.2.2 Column design for pitching and erection 324 6.2.3 Ultimate limit state design of columns 329 6.2.4 Ultimate column N–M capacity 332 6.2.5 Design rules in BS EN 1992-1-1 for columns in precast structures 336 6.2.6 Slender columns and second-order moments 337 6.2.7 Columns subjected to biaxial bending moments 340 6.2.8 Reduction factors for imposed load in several storeys 341 6.2.9 Columns in unbraced structures 346 6.2.10 Columns in partially braced structures 352 References 357 Shear walls 7.1 7.2 7.3 7.4 359 Horizontal and vertical stability of precast concrete structures 359 Precast concrete shear walls 359 Distribution of horizontal loading 362 Infill shear walls 374 www.EngineeringEBooksPdf.com Contents ix 7.4.1 Precast concrete infill walls 376 7.4.2 Brickwork (or blockwork) infill walls 383 7.5 Cantilever walls 388 References 394 Horizontal floor diaphragms 395 8.1 8.2 8.3 8.4 Introduction to floor diaphragms 395 Shear transfer mechanism 407 Edge profile and tie steel details 411 Design of floor diaphragm 413 8.4.1 Limiting stresses 413 8.4.2 Reinforcement design 416 8.5 Shear stiffness 417 8.6 Diaphragm action in composite floors with structural toppings 420 References 428 Joints and connections 429 9.1 9.2 9.3 Definitions 429 Basic mechanisms 431 Compression joints 433 9.3.1 Bearing in plain concrete 438 9.3.2 Concentrated loads in bearing 444 9.3.3 Reinforced and plate-reinforced concrete bearings 454 9.3.4 Bearing pads 460 9.4 Shear joints 462 9.4.1 Shear adhesion and bonding 463 9.4.2 Shear friction 463 9.4.3 Shear keys 467 9.4.4 Dowel action 469 9.4.5 Mechanical shear devices 473 9.5 Tension joints 477 9.6 Pin-jointed connections 482 9.6.1 Pinned connections between vertical and horizontal elements 484 9.6.2 Simply supported slabs on beams or walls 486 9.7 Moment-resisting connections 488 9.7.1 Design philosophy for moment-resisting connections 488 9.7.2 Structural elements in a moment-resisting connection 491 9.7.3 Floor connections at load-bearing walls 496 9.7.4 Beam-to-column face connections 498 9.7.4.1 Welded plate connector 500 9.7.4.2 Steel billet connector 502 9.7.5 Semi-rigid beam-to-column face connections 504 9.7.5.1 Theoretical derivations for the connection flexural strength and stiffness 508 References 510 www.EngineeringEBooksPdf.com 680 Precast Concrete Structures Design width at mid-span beff = average{799;1106;799} = 901 mm Loading at landing Service Ultimate (Exp 6.10b) (kN/m2) Self-weight of landing Screed 50 mm (24 kN/m3) Finishes and services Imposed live Total UDL 5.00 1.20 0.25 4.00 10.45 6.25 1.50 0.31 6.00 14.06 Loading at landing Service Ultimate (Exp 6.10b) (kN/m2) Self-weight of steps Finishes and services Imposed live Total UDL 8.05 0.25 4.00 12.30 10.06 0.31 6.00 16.38 Service edge reaction from flights Start = 0.280 m and end = 1.180 from centre of support Dead = 11.38/0.900 = 12.65 kN/m Live = 6.03/0.900 = 6.70 kN/m Proportion of UDL within the design widths In landings = 0.799 × 14.06 = 11.24 kN/m In steps = 0.901 × 16.38 = 14.76 kN/m Flexural design at mid-span MEd at mid-span = 39.0 kNm K = 39.0 ´ 106 /(32 ´ 901 ´ 1642 ) = 0.050 z /d = 0.5 + Ö (0.25 - 0.050 /1.133) = 0.95 z = 155.8 mm As = 39.0 ´ 106 /(155.8 ´ 0.87 ´ 500) = 575 mm2 As,min = max{0.0013 ´ 901 ´ 164; 0.26 ´ 3.02 ´ 901 ´ 164/500} = 232 mm2 A s per full 1340 mm width = 855 mm Use H12 at 180 mm spacing (905) l /d check ro = 0.0057, r = As /bd = 0.0039, l /d = [11 + (1.5 ´ Ö 32 ´ 1.45)] ´ (905/575) = 30.6 ro /r = 1.45 d > 120.6 mm < 164 OK Flexural design at end of landing M Ed at end of landing/bottom of steps = 37.4 kNm K = 37.4 ´ 106 /(32 ´ 799 ´ 1642 ) = 0.054 z = 155.7 mm www.EngineeringEBooksPdf.com Design exercise for 10-storey precast skeletal frame As = 37.4 ´ 106 /(155.7 ´ 0.87 ´ 500) = 553 mm2 A s per full 1340 mm width = 927 mm Use H12 at 160 mm spacing (1018) Shear design at supports k = {min(2.00, + Ö 200/164} = 2.00 As /bd = 905/(1340 ´ 164) = 0.0041 VRd ,c = 2.00 ´ 0.12 ´ (100 ´ 0.0041 ´ 32)1/ ´ 1340 ´ 164/1000 = 124.6 kN VRd ,c,min = 0.035 ´ 2.001.5 ´ 320.5 ´ 1340 ´ 164/1000 = 123.1 kN V Ed for full width = 55.6 kN < 124.56 kN 12.9.3 Floor landing Clear span = 4000 − beam 300 = 3700 mm leff = 3700 + 100 = 3800 mm Figure 12.25 Depth h = 200 mm d = 200−30−6 = 164 mm Design width at mid-span (as landing-flight) beff = 901 mm Loading at landing Service Ultimate (Equation 6.11) (kN/m2) Self-weight of landing Screed 75 mm (24 kN/m3) Finishes and services Imposed live Total UDL 5.00 1.80 0.25 4.00 11.05 6.25 2.25 0.31 6.00 14.81 Loads from flights and proportion of UDL in design widths same as landing-flight unit Flexural design at mid-span MEd = 38.4 kNm K = 38.4 ´ 106 /(32 ´ 901 ´ 1642 ) = 0.049 z = 155.8 mm As = 38.4 ´ 106 /(155.8 ´ 0.87 ´ 500) = 566 mm2 A s per full 1200 mm width = 754 mm Use H12 at 190 mm spacing (792) l /d check ro = 0.0057, r = As /bd = 0.0038, l /d = [11 + (1.5 ´ Ö 32 ´ 1.48)] ´ (792/566) = 30.9 ro /r = 1.48 d > 122.8 mm < 164 OK Shear design less critical than mentioned earlier www.EngineeringEBooksPdf.com 681 www.EngineeringEBooksPdf.com Index Accidental loading or action, 80, 599−602, 607−616, 623 Accompanying loads and load factors, see Dominant Actions, 1, 80−85, 103, 122, 233 Adhesion, 463 Admissible damage, 610 Admixtures, 51 Aggregate interlock, 408−413 Aggregates, types, size and grading, 31, 50, 138, 158, 318−319, 380, 491 Alternative load path, 601−603, 608−613, 623 Anchorage bars, 147, 166, 173, 207−208, 266, 414, 450, 540, 550, 563, 571, 585, 595−597, 613 development length (connections), 507−508 Anchor bars and bolts, 140, 494, 597 Architectural precast, 1, 8, 17−18, 314−315, 630 ASSAP Manual, 167 Axial load-moment (N-M) interaction, 332−335, 343, 390−394, 634 Axial load ratio or stress ratio, 319, 339 Axis distance to bars for fire resistance, see Fire resistance Background document to National Annex, 28 Balanced section (columns), 333, 335, 339 Bar bend radius, 439, 447−450, 479, 549, 562 Bar spacing column links, 318−320 flexural requirement, 207, 232−233 shear stirrups requirement, 230, 237 Base plate, see Foundation, base plate Beam bar spacing, 109, 221, 225, 232−233, 236, 281 deflections, 81−83, 108−111, 234, 236, 244−248, 251−252, 279 design, 108−111, 223−283 prestressed beams, 252−283 composite beams, 269−283, 659−665 interface shear, 280−283 propping, 278−280 serviceability, 255−262, 270−280 tabulated resistances, 257 tests, 273 ultimate flexure, 262−266 ultimate shear, 266−269 reinforced beams, L-beams, rectangular, inverted-tee, 222−252, 654−659 boot design, 236−239 composite beams, 239−252 deflection, 244−252 flexure, 223−226 reinforcement details, 222−223 shear, 226−232 end design, 524−525, 528−529, 556−574 deep recess, 556, 562−567 mechanisms, 556−560 shallow recess, 556, 560−562, 567−570 shear box, 529, 556, 570−575 load vs span charts, 632−633 subframing, 90−92 types, 215−220, 274 Beam-line, see Semi-rigid connections Beam to column connections, see Connections, beam to column Bearing bedded, wet bedding, 435−437, 441 capacity, 178−181, 438−441 compression, 435 concentrated, 437−439, 444−455 eccentric, 452 load distribution, 448 stress contours, 444−445 confined, 447, 449 (see also Confinement factor) dry, 435−437 elastomeric, 61, 179, 435, 449, 460−462, 486−487 extended, 5, 435 flexural bearing stress factor (αcc), 436−437, 441, 446−449, 456 683 www.EngineeringEBooksPdf.com 684 Index ledge, 215−217, 237−239, 545 length, 178−181, 438−451, 548 excessive length, 443 net length, ineffective distances, deviations, 178−181, 438−441, 449−451 line, 439 loss of, narrow, 130, 436−437 pads, strips, 179, 460−462 partially loaded, 435, 438, 446 plate, reinforced, 455−460 steel, plates, 435−437 stress, 179−181, 378, 436−438, 441, 446−449, 548, 558−561, 572, 578, 587 types, 436−437 welded transverse bar, 450 wide, slab 178−180, 436−437, 531 width, breadth, 179, 441, 452 Bending moment diagrams, 144, 194, 280, 331−332, 339 Bending moment distribution, 331−332 Biaxial bending (column), 340−341, 355, 588 Billet connector, see Connections, billet Blocks infiller, 134, 179, 202, 210, 213 masonry, 360, 375, 382−387 Bolted joint, 469, 473−475, 480, 491−494, 500, 546 Bolts, 59−60, 475, 480; see also High-strength friction-grip Bond; see also Anchorage length, 228, 242, 362, 412, 429, 478, 485−487, 492−493, 507, 540, 542−543, 561, 577 stress, 174, 207−208, 266, 297 Boot design (beam), 216−217, 236−239 Braced structure, frame, column, 7, 88, 100, 104, 336, 360, 367 Bracing positions, 100−107, 366−371, 398, 400 Breadth of webs, 127, 130−131, 149, 171, 176, 189, 217, 221, 226, 232, 234 Brickwork strength, 384−388 Bridging elements, 602−603 Buildability, 14 Building Regulations, 602−603, 676 Buckling (rebar), 206 Bursting, 1; see also Lateral bursting Calcium chloride, 31 Camber, 154, 166−169, 181, 185−186, 195−196, 252, 278−279 Cantilever span, 84, 629, 651−654 Cantilever core, 364, 366−367 Cantilever wall, see Walls, cantilever Carbonation, 47 Castellated joint, 281, 467−469, 585−586 Cast in fixings and sockets, 58−60, 475, 480, 491, 521, 526, 530 Casting methods, 21−31, 126, 133−134, 316−317 Categorization of buildings, 607−608 Categorization of consequences classes, 609−610 Catenary action critical deflection, 611−612 forces, 603, 606−607, 611−612, 616−617 non-linear static analysis, 616−617 Cement, 21, 33, 49, 116, 152, 154, 156, 189 Characteristic load, 57, 81−83, 149−150, 200, 636 Chemical admixtures, 51 Chlorides, 47, 50 Chloroprene, see Neoprene Cladding panel, see Faỗade panels Clear height or length (columns, walls), 112114, 331332, 336, 344, 378−379, 390 Clear span, 69, 84, 108, 141, 177−178, 204−205, 258, 648, 654, 660, 677−681 Cleat connector, see Connections, cleat Coefficient of friction, 198, 213, 237, 243, 281−282, 292, 378−379, 464, 587 bearings, joints at slabs, 416, 455, 496 Cohesion (shear resistance), 198, 243, 281−282, 378−379, 463−466 bearings, 455 Column bending moment diagrams, 112, 331−332, 339, 342, 347 biaxial moments, 340−341, 355 cantilever, 104, 346, 352 curvature, 112−113, 329, 338−339, 347, 669, 673, 776 design, 111−115, 321−357, 655−675 design charts, 116, 334, 343, 590 haunch, 98, 489 head, 484, 525−526 effective length (or height) factor, 104−105, 113, 336−337, 352, 390 factory handling, 322−323 fire resistance, 318−321 first order end moments, 337−339, 666, 669, 673 flexibilities, 336−337, 344 foundations and base (see Foundations) imperfection, 337−340, 665−669, 674 insert, 16, 330 moment distribution, 111, 331 links, 115, 318−320 pitching (on site), 324−329 reinforcement (main), 115, 318, 321, 327, 333−334, 345, 668, 670, 674 second order moments, deflections, 337−340, 668, 673 www.EngineeringEBooksPdf.com Index slenderness, 113, 336−340, 666−667, 672−674 splice, 98, 313, 318, 434, 492−493, 596 subframing, 92−94 sway profile, 10, 336, 374 ties (see Ties, column) types, geometry, 313−318 worked examples, 327−329, 333−335, 341−357, 665−675 Combination load factor, 81−83, 149, 636 Compaction problems, 22 Comparison of BS8110 and Eurocode reinforced concrete rectangular beam, 108−111 reinforced concrete rectangular column, 111−116 prestressed concrete slab, 115−119 Composite beam and plank, plank (lattice) floor, 133−134, 202−213, 241 worked example, 209−212 composite slab, floor, 133, 181−200, 202 prestressed beams, 263, 269−283 reinforced beams, 239−252 steelwork beams, 282 Compound section properties, 117, 157−158, 166−168, 183−185, 195−196, 256, 262, 273, 276 Compressibility, 61, 460−462 Compression, see Bearings, compression; Joints, compression Compression field, zones, 101, 431, 434, 445, 467, 502 Concentrated bearing load, see Bearings, concentrated Concentrated load, see Line and point loads Concrete, 21−36 bearing stress, 179−181, 237 bond stress, 174, 208, 266 creep (see Creep) dry cast, 28, 152 early strength, 23−24, 31−32, 151−152, 189 fibre reinforced, 202 parameter (ρ 0, span/depth), 235−236, 656, 658−659, 679 recycled, 21, 50−52 self compacting, 24−26 self weight, 79−80, 83, 108, 113, 116, 129, 131, 153−155, 182−183, 192−195, 206, 238, 243, 249, 272, 278, 284, 292, 324−325, 327, 383, 631−633, 640, 650, 680 shear stress, strength, 175, 191, 208 shrinkage, 32−36 strains, 21−23, 163 strength, and compressive strength class, 21, 23, 26 column, 313, 318 infill, 242, 244, 380, 412, 416, 492, 578 685 plain concrete (infill wall), 376 slabs and beams, 129−131, 149−152, 161, 221, 225, 257 wall, 376, 389 tensile strength, 30, 119, 149, 151−152 Confinement factor (bearing stress), 436−438, 446, 449, 454−458, 531−535, 538−541, 559, 572 Confinement links, 4, 449, 529, 587−588, 594 Connections beam end (see Beam, end design) beam to column, 16, 430, 432, 484−485, 489, 498−509, 513−515, 519−574 billet, 330, 432, 499, 502−505, 508, 521, 529, 670−671, 675−676 insert design (in column), 530−543 types, 530−531 welded rebars, 538−543 cleat, 16, 521 corbel, 3, 95, 316, 330, 432, 489, 504, 508 shallow, 522, 544−554 deep, 523, 554−555 mechanical connectors, 546−547 hidden, 519, 526 narrow plate, 521−522, 543 tests, 501, 504−505 types, 519−523 welded plate, 499−502, 505, 521 column to column, splice, 434, 492−493, 596 column to foundation, 513−516, 575−597 base plate, 98, 489, 515−516, 575, 577−584 non symmetrical, 580−582 optimized, 584 steel shoe (Peikko), 595−597 grouted sleeve, 516, 576, 593−595 pocket, 96, 98, 318, 322, 489, 576, 584−591 types, 575− 576 definitions and types, 94, 98−99, 429−432 design philosophy, 94−97 mechanisms, 431−435, 455 moment resisting, 95−96, 430, 488−504 floor to walls, 496−498 generic types, 488−496 bolted, 492, 494 grouted, 491−493 threaded bars, 493−495 welded, 495−496 column head, 488−490, 526 partial strength, 99, 501, pinned jointed, 96, 482−488, 526−556 beam to column, 484−485 column head, 484, 525 slab to beam or wall, 485−488 semi-rigid (see Semi-rigid connections) slab to beam, 440, 443, 486−488 wall to column, 379−381 www.EngineeringEBooksPdf.com 686 Index Construction tolerance, 178−181, 330, 439 Construction traffic load, 185, 209−210 Contact area in compression, 434, 444−452 Contact length (wall to frame), 375 Continuity reinforcement, 203, 220, 309, 488−489, 498−499 stability ties, 599−601, 604−605, 608, 611−613, 618−620, 623 Contraflexure, 72−76, 298, 308 Corbel, see Connections, corbel Cores (frame stability), see Cantilever core Corrugated pressed sheet sleeves, 594 COST C1 research project (connections), 124, 482, 510−511 Cost effectiveness, relative costs, 15, 125, 181, 221, 242, 318, 359 Coupled joint, 433−434, 493 Coupling bars, 408−412 Cover rebars, links, 48, 108, 112, 203, 208, 221, 243, 293, 318−320, 346, 391, 434, 449, 479, 495, 501 tendons, 115, 117, 129, 135, 144, 158, 201 Crack(s) control (bar spacing), 232−233 floor diaphragm, 408, 414−415 pre-crack (shear friction, dowel action), 463−465, 470 spacing and width, 111, 200−202 width limits, 149, 200, 202, 233 Cracking moment of resistance, 175, 191, 234 Creep definition, 32−36 creep factor, coefficients, 110, 118, 154−155, 167−169, 194−195, 234, 250 column, 339 loss of prestress, 154−155, 159 viscoelastic (deflections), 194−195 Cross wall loads, see Line and point loads Curing, 24, 31, 35, 118, 126, 152, 155−156, 248, 261 Dead load(s), 37, 80−82, 85, 114−115, 141, 155, 166−169, 190−195, 197, 201, 233, 238, 243, 636, 640 Debonded tendons, 255 Decompression moment, point, 173 Deep beam analogy, 395, 404−405 Deep beam end recess, 526−528 Deep beams walls, 283−310 active height, 286−287 bottom loaded, 304−308 cantilevers, 298−304 continuous, 308−310 effective width, 288−291, 298 lateral bursting, 289−290 load reduction factor, slenderness, 291−292, 295 nodes, 287−292 shear strength, 293, 305 strut and tie model, 285−287, 294, 299, 301−302, 304, 309−310 types, 283−285 worked example, 293−298, 300−304, 306−308 Deep corbel, see Connection, corbel Deep horizontal beam (floor diaphragm), 101, 395−397, 404−405 Deep recess, see Beam, deep recess Deflected tendons, 129 Deflection differential movement (slabs), 138 movement after installation, 166−170, 194−196, 236 reinforced, prestressed beam (see Beam, deflection) Deflection induced moments, see Second order moments Deformability in tension, 479 Demoulding, 24, 31, 35, 221 Depth factor (shear), 175, 232 Design concrete strength, 23, 163−165, 179, 230, 281, 288−292, 318, 337−339, 376, 380, 436−441, 447−451, 466, 472, 479, 484−487, 531, 550, 558−562, 578 Design exercise for 10 storey frame, 629−681 design charts beams and slabs, 631−633 column and infill shear walls 634−635 design of connections beam to column, billet, 670−671, 675−676 design of elements beams edge and gable, 654−659 internal beams, 659−665 columns, 655−675 floor slab, 648−654 shear walls, 642−645 feasibility, proposed plans and elevations, 629−631, 649 frame stability horizontal force, imperfections, 637−641 wind loads, 641−645, 648 distribution of horizontal force, 642−644 horizontal floor diaphragm, 645−648 loads, materials and other data, 636−637 positions of shear walls, 629−630, 638 ties, 676−677 staircase, landings, 629−630, 677−681 Design life, 48, 69, 108, 115, Design stress in tendons, 161−166, 262−264, 273 Development length, see Transmission length www.EngineeringEBooksPdf.com Index Deviations (site, manufacture), 88−89, 179−180, 290, 330, 439 Diagonal bracing concrete strut, 364 steel, 365 Diagonal strut theory (infill walls), 374−375, 385−387 Diaphragm (floor plate), see Horizontal floor, diaphragm Differential floor camber, 413 Domestic housing, 3, 9, 12–13, 67−68 Dominant and accompanying loads and load factors, 83 Double boot beam, see Inverted-tee beam Double tee floor units (slabs) bearing on beams, 179−181, 487 comparison with hollow core, 131−132 design deflection, 166−169, 194−195 serviceability, 147−157, 183−187 ultimate flexural, 161−166, 188−189 ultimate shear, 170−175, 190−191 worked example, 181 floor diaphragm, 101, 420−422 lateral load distribution, 140−141 load vs span graph, 183, 632 production, 130 widths, depths, shapes, capacities, 130−131 Doubly reinforced (beam), 225−226 Dowels action, 199, 380, 408, 413−414, 416, 469−473, 499 in sleeves, 488, 496 Drawn strand, see Strand Drift (sway) criterion, 490 Dry (building) envelope, 216 Dry bearings, 179 Dry packing, 50, 377, 435−438 Ductility, 96, 190, 286, 359, 411, 429, 489, 517−518, 601−606, 612−613, 617 Durability, see Exposure condition Early strength of concrete, 23−24, 31−32, 151, 154, 189, 221, 255, 322, Eccentricity column (of load or sway), 318−319, 330−331, 340, column pocket, 586−587 horizontal load, 369−373 tendon (of prestress), 128, 151−158, 167−170, 176−177, 195−196, 256 vertical load, 290−291, 461 Edge beam, 215−220, 222−232 Edge profiles (floors), 412 Effective area in tension, 201 Effective breadth, 178, 184, 188−191, 225, 273−275 687 Effective coefficient (factor) of shear friction, 405, 454 Effective creep factor (column), 337 Effective depth, 163−166, 188−190, 207−208, 223−225, 243−244, 273, 333, 390, 549, 594 Effective length and height factors, 104−105, 113, 336−337, 352 Effective second moment of area, 110, 245−252 Effective span deep beam walls, 286 slabs and beams, 84, 109 Effective stiffness, rigidity, 233−234, 244−246, 251 Effective width (deep beam wall), 288−291 Elastic shortening, 118, 152−154, 256 Elastomeric bearing, see Bearings, elastomeric Electrodes (for welding), see Welding, electrodes Elongation, 53, 56−57, 61, 122, 153, 414, 507, 613 Embedment of bars, dowels, 376, 379−380, 470 Epoxy material, 60−61 Erection speed, 14, 125, 365, 637 Execution deviations, possible deviations, see Deviations Expanding agent, 529 Expansion joint, 61 Exposure condition and classes (durability), 47−49, 108, 117, 157, 200, 221, 256 Exposed steelwork, 57 Extended bearing, 435 Extruded concrete, 2931, 198 Faỗade panels, 1213 Fabric, see Mesh Favourable and unfavourable loads and load factors, 83−84 Felt bearing pad, 429, 458, 460 Ferreira classification (semi-rigid), 506 Fibre reinforced concrete, 202 Final prestress, 118, 156, 256, 650 Fire resistance axis distance to bars, 117 beams, 43−46, 108 columns, 37−42, 112−113 slabs, 46−47, 117, 178, summary of BS EN 1992−1−2, 122 walls, 38, 42 First moment of area, 119, 171, 176, 190−191, 402 Fixed end moments, 506−508 Fixity factor, see Semi-rigid connections, fixity factor Flange thickness (of floors), 127−128, 131, 141, 177 Flexural design, 109, 118−119, 161−166, 189−191, 207, 223−226, 231−232, 243−244, 500, 502, 507, 656–657, 659, 679−681 www.EngineeringEBooksPdf.com 688 Index Flexural stiffness connections, 505−509 floors and beams, 166−170 walls, 359, 361−362, 365, 370−371, 374 Floors; see also Composite beam and plank; Double tee floor units; Half slab; Hollow core floor units; Multi-rib units; Plank floor composite (see Composite floors) definitions (units, slabs, field), 136 design bearing, 178−181 deflection, 166−170 serviceability flexural, 148−161 ultimate flexural, 161−166 ultimate shear, 170−178 diaphragm (see Horizontal floor, diaphragm) production methods, 28−30 ties, 101 (see also Ties) types, 125−135 Floor usage category, load factors, 82, 341 Flow table, 24, 26 Folded plate roof, 69−71 Force path, 95−96, 434, 527 Foundations, 98 pad, 322, 588, 591−593 wall foundation, 388 Frame analysis, 71−76 Frequent load factor, 81−83, 149, 157, 201, 318 Friction, see Coefficient of friction Friction force, 236−238, 292, 305, 557−558, 561 Friction-grip bolts, 474 Frictionless bearings, 61 Fully tied method, solution, 603, 608−614 Gable beam, 604 Gable end ties, 603−605, 619 Gas explosion, 599 Grade of concrete, see Concrete, strength class Grandstands, 75−76 Gravity load, 9, 65, 72−74, 85−90, 114, 166, 368 Grout, grouted bearing, 429−430, 486, 514 connections, 478, 482, 484−480, 491−495, 500, 502, 507, 515, 520, 522, 525−526, 529−530, 534, 547, 551, 564 definitions, 429 material, 49−50 connections, 94, 97−99 floor, 136, 138, 432 floor diaphragm, 389, 395, 416 foundations base plate, 577−580 pocket, 516, 575−576, 585−588 sleeve, 575−576, 593−594 steel shoe, 546, 597 shear, shear key, 178, 464 sleeve (or hole), 293, 456, 478−479, 493 ties, sleeve, 623 walls, sleeves, 379−380, 389 Half-joint, 129−130 Half slab, see Composite, plank floor Hardness, 460−462 Haunch (column), 70, 98, 330, 489, 519 Heat curing, 31; see also Curing Helical strand, see Strand H-frame, 74 Hidden connector, 519; see also Connections, beam to column High-strength friction-grip bolts, 474−475 High tensile bar, 52−55 Hoisting, flat handling, 313, 323 Holding down bolts, 577−578, 580, 597 Holes in slabs, 141−144 Hollow core floor units bearing on beams, 486−487 in composite beams, 240−243, 248, 275 depths, self weight, capacities, 129 design composite floors, deflection, 194−196 serviceability, 183−187 ultimate flexure, 188−190 ultimate shear, 190−192 deflection, 166−170 serviceability, 147−161, ultimate flexural, 161−166 ultimate shear, 170−178 combined stress in webs, 175−177 discritization of floor slab, 141−147 floor diaphragm (see Horizontal floor, diaphragm) lateral load distribution, 136−140 production, 29−30, 126, 152 propping, 192 trimmer angles, 137, 142 tests, 149, 172, 174, types, widths, shapes, profiles, 125−129, 158, 412 worked examples, 157−161, 165−166, 169−170, 174−175, 177, 180, 185−187, 192–194, 196, 202, 623, 648−654 Hollow core wall, see Walls, hollow core Horizontal floor diaphragm, 11, 100−102, 367, 395−428 action, mechanism, 11, 397, 407−411 bending moment, 398, 401−402, 404, 406, 416, 427 chord, 395−397, 400−404, 408−409, 411, 416 complete design, 423−428 deep beam, 397, 404−405 www.EngineeringEBooksPdf.com Index forces due to imperfection, 398−400 hollow core floors, 396, 404, 408−412, 423 interface shear, 408, 411, 413, 426 load reactions, 368−371 ring beam, 395–397 roof diaphragm, 399 shear force, 398, 401−404, 406, 417−419, 424−426 shear stiffness, 417−419 structural topping, 420−423 surface roughness, 413 tests, 405, 408−409, 418 ties, tie force, 400, 404−405, 411−412, 416−417, 608, 676−677 transverse shear force, 402−404 types and arrangements, 395−398 Virendeel truss, 397 distribution of horizontal load, 362, 365−374, 642−644 wind force or pressure, 365, 368−371 Horizontal force due to imperfection, see Imperfection Horizontal stability, 72−75, 87−90, 100−108, 359, 365−374; see also Horizontal floor, diaphragm Hot dipped galvanised steel, 57 Housing, see Domestic housing Impact forces, actions, 601 Imperfection geometric, 88−89, 114, 338 horizontal force due to, 87, 89, 338, 368, 376, 398−400 inclination, 88, 338, 399 Imposed load, 9; see also Variable action Inaccuracies, 79, 429, 433 Indented wire, 152, Ineffective bearing length, 178−180, 438−439, 444, 449−450, 486 Infill wall, see Walls, infill Informative Annexes in Eurocodes, 120, 122, 138, 147 Initial crack width (diaphragm), 408, 414−418 Initial prestress, 117, 153, 158, 255, 259, 650, 652, 664 Instability limit state, 84 Insulated wall element, 17−18 Interface shear, 196−200 reinforcement, 198−200, 204, 209, 213, 226, 239−241, 243, 270−271, 281 distribution and spacing, 281−282 stress, 196−198, 200, 204, 213, 270, 281 Internal beams, 66, 78−79, 91, 98, 215, 239, 604, 613, 617, 620, 638, 659−661 Inverted-tee beam, see Beams Isolated elements, 178 Interface friction, 1, 198, 213, 243, 405, 413 689 Joints bolted (see Bolted joint) castellated (see Castellated joint) compression, 431, 434 (see also Bearings, compression) coupled, 433−434 grouted dowel, bar, 293, 456, 478−479, 493, 575−576, 593−594 half joint (see Half-joint) loops, 381 shear, 197−198, 462−477 adhesion, bonding, 463 dowel action, 469−473 friction, 463−467 key, 404, 467−469 mechanical devices, 473−477 mechanism, 462−463 slab to beam, 440, 443, 486−488 tension, 477−482 laps, 477−479, 488 projecting loops, hooks, 477−479 welded bar (see Welded, connections, reinforcement) Key elements, 601−603 Keyed joint, see Shear, key Kinking (of dowel), 408, 416, 470 Labour rates, 13 Lacer bars, 380−381, 477−478 Lack of fit, 517 Lapped reinforcement, 222, 271, 318, 389, 416, 428, 477−481, 488−489, 492−493, 501, 560, 597, 604−605, 613, 620 Lateral bursting or splitting, 1, 4, 12 coefficient, 289, 451−452, 485, 533, 560, 585 reinforcement, 180, 290, 452, 485, 528, 533, 560, 563, 569 stress ratios, 445 Lateral load factors, see Load, distribution Lateral instability (beams), 215−216 Lattice girders (steel), 203−213 L-beams, see Beams Leg length (weld), see Welding, size Levelling shim, 179, 435, 456, 484, 495, 500−501, 563, 565, 575−576, 594 L-frame, 76 Lifting, factory handling, 59, 205−206, 313, 322−323, Limits of deflection, 167, 169, 248 Line, cross wall and point loads, 137−147, 169, Live load, 80−83, 87, 108, 115, 138, 141, 155, 166−170, 193−195, 233, 238, 243−244, 614, 636, 640 www.EngineeringEBooksPdf.com 690 Index Load bearing walls, 9, 12−13, 66−69 combinations, 80−83, 85−86, 114−115, 249, 637 distribution, factors (in floors), 136−141 factors (see Partial load factors) load vs span data, diagrams, 148, 178, 183, 258, 631−633 reduction factors deep beam walls, 283, 291−292, 295 number of storeys, 341, 666, 668, 671 infill walls, 377−378 Localised failure, 601−603, 608−610 Long line extrusion/slip forming, 29−31, 125, 198 Longitudinal slip, 417−419, 464 Long span beams, 17 Loops, U-bars, 226, 239−243, 270−271, 292, 305, 379−383, 421, 439, 449−450, 456, 470, 477−480, 484−488, 528, 530, 578, 619−621 Losses of prestress, 117−118, 152−156, 260−262 Loss of bearing, Machine produced concrete, see Extruded; Long line Market share, 12 Material partial safety, see Partial safety factors, material Maturity of concrete, 151, 159, 248−250 Measurement of prestressing force, 153 Mechanical shear joint, 473−477 Mesh reinforcement, 54, 181−182, 202, 207, 289, 420−422, 428 Microwave curing, 31 Minimum shear, 230, 657 Mix design, 32, 47−49 Mixed precast construction, 13−15 Modular dimensions, 66 Modular ratio, 32, 109, 117, 184, 201, 234, 244−245, 276 Moment-axial load (M-N) interaction, see Axial load-moment; Column, design charts Moment continuity, 73, 220, 488−489, 497; see also Connections, moment resisting Moment distribution factors (in columns), 111, 331 Moment of resistance, see Serviceability; Ultimate moment Moment redistribution, 224 Moment resisting columns, 69, 332−336, 346−352 foundations, 69, 513, 584−593 Mortar bearing, 178−179, 318, 429, 435−439, 460, 478, 487, 594 brickwork, 384 connection, 94, 478, 480, 484, 507, 525−484, 529, 575, 578, 594 material, 49−50 slab joints, 136, 408, 412 Moulds, 21−28, 101, 152, 198, 253, 313−318 Movement gap, 106 Multi-rib units (slabs), 131 Narrow plate (BSF connector), see Connection, narrow plate National Annex to UK Eurocodes, 65, 80−86, 121−123, 153, 156, 200, 224, 289, 321, 341, 376, 384, 389, 417, 439, 615−618, 666 National Structural Concrete Specification, 28−29 Neoprene, 61, 178, 181, 460−462, 486−488 Neutral axis, 163−166, 223−225, 246, 263−264, 333−335, 390 Nib, 3, 442, 523 Nodal point, 331−332, 527 Nodes column nodes, 287−292 bearing stresses, 179, 446−449, 548, 562 Non cementitious materials, 60−61 Non isolated elements, 178 Non shrink grout, mortar, 492 Non symmetrical base plate, see Connections, base plate Normal force, 378−379, 468−469 No-sway frames, see Braced structure Notional column removal, 601 Notional depth or thickness, 32, 152−155, 250 Notional horizontal load, 368 Overturning bending moment, 346−347, 352 Pad foundation, see Foundation, pad Partial load factors (Ψ0 etc), 81−83, 86, 109, 157, 167, 201, 221, 330, 341, 592 fire, 318 Partially braced structures or frame, 12, 73−75, 105, 352−355 Partially cracked section, stiffness, 233, 245−251γ Partial safety factors (γm etc) load, 83, 85−86, 114, 149, 166, 171, 615, 621 material, 22, 161, 206, 475 Permanent formwork, 202 Permanent loading, action, 80, 85−86 Permissible flexural tensile stress, 149, 151−152, 157, 184, 200, 256 Pinned joint, 73−75, 91−92; see also Connections, pinned www.EngineeringEBooksPdf.com Index Pitching (columns), 313, 324−329 Plain concrete bearings, 431, 435, 438−444 walls, 376 Plank floor (solid), 115, 132−135, 202, 243 Pocket foundation, 98, 120 depth, 576, 585−591 Pocketed beam end, 524−525, 560−564 Point loads, see Line and point loads Poisson’s ratio, 438, 444−445 Polyester resin mortar, 61 Polystyrene, 61 Polystyrene blocks, 134, 202 Polysulphide sealant, 61 Portal frame, 69−71, 76 Precast framework, 7−11, 66−67, 70, 73−77, 98, 104−105, 107, 316, 325−327, 360, 367, 374, 396, 649 Precast housing, see Domestic housing Precast vs insitu concrete (stability), 365 Preload torque in bolts, 475 PRESSS program, 359 Pressure grouting, 478, 493 Prestressed concrete beam, 17, 252−283, 659−665 (see also Beams, prestressed) column, 317 plank, 133−135, 181−196, 202 rafter, 69−70 slab, 115−119, 147−161, 183−196 (see also Hollow core, double tee) Prestressing tendons, 44−46, 55−57, 204, 221; see also Strand, wire Product Standards, 36, 46−47, 147, 176−177, 190, 215 Production methods, 25, 28−31, 125, 198, 253, 316−317 Profiled metal decking, 15 Progressive collapse, 599−607, 615 Propping slabs and beams, 192−195, 207, 210−212, 278−280 columns and walls, 285, 325−326, 389 Protection of structures, 601 PTFE, 61 Quasi-permanent load factor, 81−83, 149, 221, 318, 339, 615 Radial bursting stress, 479 Rafter, 69−70 Rapid hardening Portland cement, 21, 31 Recessed beam end, 520−521 527−530, 545, 556−570 Recycled concrete aggregate, 21, 50−51 Recycled slurry and water, 52 Reinforced bearing pad, 460−462 Reinforced concrete bearings, 454−459 Reinforcement buckling, slenderness, 206 dowels (see Dowels) mesh, 54, 181−182 maximum area, 318 minimum area, 199, 207, 210, 221, 232 deep beam wall, 289 shear stirrups, 230 walls, 389 rebar, 52−54, 204, 221 specification, 53 stainless steel bars, 55 starter bars, 577−578, 593 tendons, strand, wire, 55−57, 204, 221 Relative flexibilities, see Column flexibilities Relative humidity, 32−36, 154−155 Relative stiffness parameter (infill wall), 375 Relaxation of prestressing force, 117–118, 152−153, 156, 255 Restrained movement, Ribbed floors, 179−181 Rigid joint, see Connections, moment resisting Robustness, 599, 602−603, 608 Rolled hollow steel section insert, 529−543, 570−575 Rolled steel sections, 365, 474−475, 480, 493−495, 503, 529−538, 558, 564, 570−571, 661, 667, 670−676 Ronan Point, 599−600 Rotation, 461, 501, 505, 507−508 Roughened surface, 413, 455, 585 Rubber bearing pad, see Bearings, elastomeric Saw tooth model, 464 Sealants, 61 Second moment of area beams, slabs, sections, 110, 117, 171, 176, 190−191, 234, 245−251 bracing, cores, walls, 365, 370, 377, 402 Second order moments, deflections, 9, 112, 332, 337−340, 577 Section modulus elastic, 110, 117, 129, 131−132, 151−157, 162, 175, 183−187, 191−192, 234, 255−256, 273, 279 plastic, 476, 534 Self compacting concrete, 24−26 Self weight (floors) effect on design, 141, 154−155, 167−169, 182−183, 193−195, 201, 204, 215, 235, 249, 272, 278 self weight itself 116, 125, 129, 131, 206 www.EngineeringEBooksPdf.com 691 692 Index Semi-rigid connections beam line, 96−99, 504−505 classification, 506 COST C1 research project, 482 design method, 96−99 fixity factor, 506 moment-rotation behaviour, 99, 501, 504−509 tests, 220, 501 Semi-rigid frame, columns, 8, 336 Serviceability limit state, 81−83, 117−118 Serviceability moment of resistance, beams, 256−257, 273, 280 slabs, 118, 129, 131, 144, 157, 185, 192, 194, 651, 654 Shallow corbel, see Connection, corbel Shallow recess, see Beam, shallow recess Shape factor (elastomeric bearing), 461 Shear box (see Connections, shear box) capacity (see Ultimate shear capacity) capacity of walls, 377−383, 386−388 centre (horizontal floor), 368 core, 106, 364, 366−367, 377, 398 displacement, 417−419, 465 flow, 196 friction, 379, 405, 413, 463−467 interface, 196−200, 402−404, 409, 417−419, 464 joint (see Joints, shear) key, 198, 434, 467−469 modulus, 419 reinforcement, stirrups, links, 109, 208−209, 220, 228−232, 250, 547−548, 562 stiffness, 397, 411, 417−419 strength column insert, 539 deep beam walls, 293, 305 dowel, 470−472 slab, 129, 138, 171−178, 190−192 beams, 228−232, 238, 267−269, 277−278, 282 stress, 175, 191, 228, 267, 465, 546, 555, 588 stress or capacity distribution, 227−228, 268 studs (on steel beams), 282 transfer mechanism, beams 407−411, 420, 464−465 walls, 104−105, 400 (see Walls) wedging, 405, 408, 411−417, 433−434 Shear compaction method, 29 Shore hardness, 460, 462 Shrinkage, 32−36, 118 between precast and topping or insitu, 187, 245, 530 Shrinkage loss of prestress, 152, 155−156 Site cast precast concrete, 1−3 Size coefficient (for creep losses), 156 Skeletal structure, 7−11, 15, 18, 66−67, 74−75, 88, 98, 104−105, 316, 322, 325−327, 360, 363−365, 630−639, 649 Slab to beam joint, see Joints, slab to beam Slenderness, 113 deep beam walls, 291−292, 295 columns, 336−340, infill walls, walls, 377−378, 390 rebar (lattices), 206 Sliding plate connector, 521, 524; see also Narrow plate connector Slip formed concrete, 29−31 Spalling, 6, 290, 293−294, 436−439, 495 Span, see Clear span; Effective span Span/depth ratio slabs and beams, 110−111, 202−203, 235−236, 244, 656, 658−659, 679−681 deep beam walls, 284 Spandrel beam, 217−219 Specific creep, 152 Splice, see Column, splice Spurious restraint, Squash load, 333−335, 391 Stabilising methods, 97, 100−108, 359−362, 395−398 Stability ties, see Ties Stafford-Smith infill wall design, charts, 375, 386−387 Staircase, 629−630, 677−681 Standard deviation of concrete strength, 21, 24 Static coefficient of friction, 454 Steam curing, 31, 35 Steel base plate (see Connections, column to foundations) bearing, 435−437, 455−460 billet (see Billet) galvanised, 475 moulds, 24−28, 317−318 plate, 435−437, 473−476, 528, 555 reinforcement (see Reinforcement) shoe (see Connections, column to foundation) stainless, 475 trimmer angles, 137, 142 Strains, 162−166, 190, 262−263, 333, 335 Strand, 44−46, 54−57 drawn, 57 patterns, arrangements, 135, 148, 253−254, 259−260, 265 slippage, 31 standard, helical, 54−57, 115, 135, 144, 253, 409, 612−613 super, 55, 57 Strategies for accidental design situations, 602 Stress flow (deep beam wall), 285−288 Stress history (prestressing tendons), 162 Stress reduction factor (rebars), 206 Stress vs strain curve, 23, 53−54, 119, 162, 262 Structural stability, 73−76 www.EngineeringEBooksPdf.com Index Structural steelwork, 14, 57−58 Structural topping, 141, 181−200, 203−213, 271−272, 395, 397, 420−423 Strut and tie, 237, 399−400, 433−434, 545, 549−550, 557−558, 560−563 deep beam walls (see Deep beam walls) Subframing, substructuring, 76−79, 90−94 Summary of Eurocodes BS EN 1992−1−1 (general rules), 120 BS EN 1992−1−2 (fire), 122 UK National Annex to BS EN 1992−1−1, 121 UK National Annex to BS EN 1992−1−2, 122 PD 6687−1, 122−123 Surface finish, texture, roughness, 27−28, 413, 455, 466 Sway column, and frame, 7, 10−12, 73−75, 104, 112, 329, 346−347; see also Unbraced Sway (2nd order) deflection, 9−10, 12, 106, 112, 114, 332, 337−340, 665, 668, 673 Temperature effects, 24, 35, 37−41, 44−45, 80, 122, 155, 202, 262, 319, 396, 454, 601 differential, 31 Temporary stability, 12−14, 316, 321, 324−326, 515, 520, 575 Ten storey frame, see Design exercise for 10 storey frame Tendon, 55−57 Tensile strength bolts, 60, 577 concrete, 30, 119, 149, 151−152, 162, 171, 174, 183−185, 192, 199−201 rebars, 52−55 steelwork, 58 tendons, 55−57, 152, 204, 221 weld, 58, 476 Tension chord, see Horizontal floor, diaphragm, chord Tension joint, see Joints, tension Tension stiffening, 162, 233, Thermal insulation, 12, 16−17, 42 Thin plates, 500, 520, 531, 543, 597 Threaded couplers, 99, 491, 597 rebars, dowels, 491, 493−494, 502, 520, 530, 546 sockets, 480 Three line support (floors), 139 Throat thickness, see Welding, size Tie force (floor diaphragm), see Horizontal floor, ties Ties (stability), 100−102, 599−627, 676−677 horizontal, 603−607, 611 floor, 603−607, 612, 618−620 693 beam, 603−604, 612, 620−621 column, 621−622 mesh in topping, 613 laps, 613 tie force, area, 614−622 vertical, 603, 622−623 worked example complete floor, 623−627 Timber frame, 15 Tolerances, 178−179 Topping, see Structural topping Torsion (horizontal floor), 370−371 Transfer length, see Transmission length Transfer strength, 31−32, 153−154, 173, 255 Transformed section, 110, 234 Transmission length, 119, 154, 171, 174, 266 Transverse displacement, 417−418 Trimmer angles, 137, 142 Two dimensional framework, 72, 76 Types of precast frames, 65, 71 U-beams, 490−491 U-frame, 76 Ultimate limit state, 83 axial load capacity deep beam walls, 287−289 columns, 329, 332−335 walls, 376−378, 386, 390−391 bearing capacity, 178−181, 438−441 horizontal shear stress, 197−198, 377−379, 464−466 moment of resistance, 119, 129, 131, 161−166, 189, 206, 264 columns, 330−335 connections, 496, 498−504, 507−508 design tables (rectangular sections), 165 shear capacity, 119, 170−175, 208−213 shear reinforcement stirrups, 109, 220, 229−231, 238, 254 lattices, 203−205, 208−213 shear stress, 175, 208 Unbraced structure, frame, column, 7, 10−11, 320, 336 Unidirectionally braced structure, 12 Universal beams and columns, 57−58, 530 Unreinforced joints, 412 Unrestrained movement, Upstand, 216−220 Variable loading, action, 80, 85−86 Variable strut inclination (VSI), 209, 226−232 Vertical ties, see Ties, vertical Vintzēleou relationship–crack width, slip, shear stress, 465 Virendeel truss, see Horizontal floor, diaphragm Viscoelastic (deflections), see Creep www.EngineeringEBooksPdf.com 694 Index Visible connector, 513, 519, 522−523, 545 Void ratio, 125−132 Volume ratio of structural concrete, Walls cantilever, 388−394 hollow core, 362, 391−394 infill shear walls, 360−363, 374−388 masonry, 363, 383−388 mechanism, 374−375 precast concrete, 361, 376−383 precast concrete, 360, 363, 367 design charts, 635 reactions, 368−374 ties, 603−604 types, shapes, geometry, 359−362 wall frame, 9, 12−13, 66−69 Wall to floor connections, 496−498 Wall to frame contact length, 375 Water, 52 Water to cement ratio, 48−49 Web thickness, breadth, 125, 171, 190, 226, 235 Welding, welded connections, 470−473, 480, 495−496, 499−502, 561, 597 electrodes, 58, 141, 451, 475−476, 481, 496 inserts (column billet), 538−543 mesh or fabric (see Mesh) plate connector, 470 double-tee slab, 140, 470−471 beams, 499−502, 505, 521 reinforcement, 450−451, 480−481, 495 size, throat thickness, 451, 475−476, 481, 496 specification, 58−59 strength, 58, 476 Wet bedding, see Bearing, wet bedding Wide beam, 274 Wind load, wind action, 9, 80, 85−86 Wind posts, 104 Wind pressure on columns, 325, 328−329 Wire, 55−57, 204 Workability, 24 Workmanship problems, 22 Yield strength, 52, 55, 57−58, 60 Young’s modulus concrete, 23, 31−32, 109, 117, 166, 168 long-tern, 233−234 steel, 53−54, 109, 117, 262 www.EngineeringEBooksPdf.com