1. Trang chủ
  2. » Kinh Doanh - Tiếp Thị

flexible and stretchable electronics materials designs and devices pdf

409 3 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 409
Dung lượng 39,38 MB

Nội dung

Flexible and Stretchable Electronics Materials, Designs, and Devices edited by Run-Wei Li | Gang Liu www.TechnicalPDF.com www.TechnicalPDF.com Flexible and Stretchable Electronics www.TechnicalPDF.com www.TechnicalPDF.com Flexible and Stretchable Electronics Materials, Designs, and Devices edited by Run-Wei Li Gang Liu www.TechnicalPDF.com Published by Jenny Stanford Publishing Pte Ltd Level 34, Centennial Tower Temasek Avenue Singapore 039190 Email: editorial@jennystanford.com Web: www.jennystanford.com British Library Cataloguing-in-Publication Data A catalogue record for this book is available from the British Library Flexible and Stretchable Electronics: Materials, Designs, and Devices Copyright © 2020 by Jenny Stanford Publishing Pte Ltd All rights reserved This book, or parts thereof, may not be reproduced in any form or by any means, electronic or mechanical, including photocopying, recording or any information storage and retrieval system now known or to be invented, without written permission from the publisher For photocopying of material in this volume, please pay a copying fee through the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, USA In this case permission to photocopy is not required from the publisher ISBN 978-981-4800-46-4 (Hardcover) ISBN 978-0-429-05890-5 (eBook) www.TechnicalPDF.com Contents Preface xiii Organic Field-Effect Transistors for Flexible Electronics Application 1 Jung-Yao Chen and Cheng-Liang Liu 1.1 Introduction 1.2 Device Structures and Operation Principle 1.3 Important Device Parameters 1.3.1 Field-Effect Mobility 1.3.2 Current ON/OFF Ratio 1.3.3 Threshold Voltage 1.3.4 Subthreshold Swing 1.4 Materials 1.4.1 Organic Semiconductors 1.4.1.1 p-Type 1.4.1.2 n-Type 10 1.4.2 Gate Dielectric Materials 12 1.4.3 Electrode Materials 12 1.4.4 Substrate Materials 13 1.5 Overview of Processing Techniques 13 1.5.1 Vacuum Deposition 14 1.5.2 Solution-Processed Deposition 14 1.6 Flexible Organic Transistor Device 15 1.7 Flexible Organic Phototransistor 18 1.7.1 Introduction 18 1.7.2 Important Device Parameters of Organic Phototransistor 19 1.7.2.1 Photoconductive gain (G) 19 1.7.2.2 Photocurrent/dark current ratio (P) 20 1.7.2.3 Photosensitivity (R) 20 1.7.2.4 Quantum efficiency (η) 20 1.7.2.5 Photodetectivity (D*) 20 www.TechnicalPDF.com vi Contents 1.7.3 1.8 Examples of Flexible Organic Phototransistors 21 1.7.3.1 Donor–acceptor system 21 1.7.3.2 Photochromism 23 1.7.3.3 Photopolymerization 24 Conclusion 26 Flexible and Organic Solar Cells Bing Cao 2.1 Introduction 2.2 Basic Solar Cell Concepts 2.2.1 Structure of Organic Solar Cells 2.2.2 Operation Principle of Organic Solar Cells 2.2.3 Photovoltaic Parameters 2.3 Donor Materials Development 2.3.1 Conjugated Polymers 2.3.2 Conjugated Small Molecules 2.4 Acceptor Materials Development 2.4.1 Fullerene Derivatives 2.4.2 Non-fullerene Small Molecules 2.5 Interfacial Materials and Device Engineering 2.6 Flexible and Organic Solar Cells 33 33 34 34 35 36 38 39 45 49 49 50 54 56 Flexible Parylene-C Material and Its Applications in MOSFETs, RRAMs, and Sensors 81 Yimao Cai, Min Lin, and Qingyu Chen 3.1 An Introduction to Parylene 82 3.1.1 Types and Growth of Parylene Thin Films 82 3.1.2 Properties of Parylene-C Thin Films 83 3.2 Application of Parylene-C in MOSFETs 84 3.2.1 Gate Dielectric 84 3.2.2 Substrate 87 3.2.3 Encapsulation Gate Dielectric 89 3.3 Application of Parylene-C in RRAM 91 3.4 Application of Parylene-C in Sensors 96 3.4.1 Flow Sensors 96 3.4.2 pH Sensors 98 www.TechnicalPDF.com Contents 3.5 3.4.3 Force Sensors 3.4.4 Pressure Sensors Conclusion 100 101 104 Resistive Switching Phenomenon for Flexible and Stretchable Memories 113 Xiaohui Yi, Shuang Gao, Jie Shang, Bin Chen, Gang Liu, and Run-Wei Li 4.1 Introduction 114 4.2 Design Principle of Flexible Resistive Switching Memory 117 4.3 Flexible Resistive Switching Storage Media Materials 119 4.3.1 Inorganic Materials 119 4.3.2 Organic Materials 122 4.3.2.1 Organic resistive switching memory with small molecules 124 4.3.2.2 Blends or mixtures of memory polymer materials 127 4.3.2.3 Polymer matrices for electroactive components 129 4.3.2.4 Single-component polymer active materials 134 4.3.3 Inorganic–Organic Hybrid Materials 141 4.3.3.1 Metal-organic frameworks 141 4.3.3.2 Perovskite 144 4.4 Conclusion and Outlook 146 Two-Dimensional Materials for Flexible In-Plane Micro-Supercapacitors 157 Kaiyue Jiang, Chongqing Yang, and Xiaodong Zhuang 5.1 Introduction 157 5.2 In-Plane Micro-Supercapacitors 158 5.3 Graphene 160 5.3.1 Reduced Graphene Oxide 160 5.3.2 Electrochemically Exfoliated Graphene 162 5.3.3 Laser-Scribed Graphene 165 www.TechnicalPDF.com vii viii Contents 5.4 5.5 5.6 5.7 5.3.4 Graphene Composites MXenes Two-Dimensional Metal Oxides 5.5.1 Layered Double Hydroxides 5.5.2 V2O5/MWNT Two-Dimensional Soft Materials 5.6.1 Two-Dimensional Coordination Polymer Framework 5.6.2 Two-Dimensional Thiophene Summary and Outlook Flexible On-Chip Interdigital Micro-Supercapacitors: Efficient Power Units for Wearable Electronics Guozhen Shen, Kai Jiang, and Di Chen 6.1 Introduction 6.2 Fabrication Methods 6.2.1 Conventional Photolithography Method 6.2.2 Laser-Scribing Method 6.2.3 Printing Method 6.3 Stretchable On-Chip MSCs 6.4 Integrated Systems 6.5 Conclusion 168 173 174 175 177 178 180 180 181 191 192 195 196 199 203 205 209 213 Flexible and Stretchable Sensors 221 Tie Li, Yudong Cao, Chunyan Qu, and Ting Zhang 7.1 Introduction 222 7.2 Classes of Architectural Strategies for Flexible and Stretchable Sensors 223 7.2.1 One-Dimensional Fibrous Configuration 224 7.2.2 Two-Dimensional Planar Configuration 228 7.2.3 Three-Dimensional Blocks Configuration 230 7.2.4 Nature-Inspired Structure for Flexibility and Stretchability 233 7.3 Classes of Functional Materials for Flexible and Stretchable Sensors 234 www.TechnicalPDF.com References Huang, Y 2014 Experimental and theoretical studies of serpentine microstructures bonded to prestrained elastomers for stretchable electronics, Adv Funct Mater., 24(14), pp 2028–2037 17 Fan, Z., Zhang, Y., Ma, Q., Zhang, F., Fu, H., Hwang, K.-C., and Huang, Y 2016 A finite deformation model of planar serpentine interconnects for stretchable electronics, Int J Solids Struct., 91, pp 46–54 18 Kim, D.-H., Song, J., Choi, W M., Kim, H.-S., Kim, R.-H., Liu, Z., Huang, Y Y., Hwang, K.-C., Zhang, Y.-W., and Rogers, J A 2008 Materials and noncoplanar mesh designs for integrated circuits with linear elastic responses to extreme mechanical deformations, Proc Nat Acad Sci., 105(48), pp 18675–18680 19 Su, Y., Wu, J., Fan, Z., Hwang, K.-C., Song, J., Huang, Y., and Rogers, J A 2012 Postbuckling analysis and its application to stretchable electronics, J Mech Phys Solids, 60(3), pp 487–508 20 Kim, D H., Choi, W M., Ahn, J H., Kim, H S., Song, J., Huang, Y., Liu, Z., Lu, C., Chan, G K., and Rogers, J A 2008 Complementary metal oxide silicon integrated circuits incorporating monolithically integrated stretchable wavy interconnects, Appl Phys Lett., 93(4), p 1459 21 Song, J., Huang, Y., Xiao, J., Wang, S., Hwang, K., Ko, H., Kim, D.-H., Stoykovich, M., and Rogers, J 2009 Mechanics of noncoplanar mesh design for stretchable electronic circuits, J Appl Phys., 105(12), p 123516 22 Lacour, S P., Jones, J., Wagner, S., Li, T., and Suo, Z 2005 Stretchable interconnects for elastic electronic surfaces, Proc IEEE, 93(8), pp 1459–1467 23 Su, Y., Wang, S., Huang, Y., Luan, H., Dong, W., Fan, J A., Yang, Q., Rogers, J A., and Huang, Y 2015 Elasticity of fractal inspired interconnects, Small, 11(3), pp 367–373 24 Zhang, Y., Fu, H., Xu, S., Fan, J A., Hwang, K.-C., Jiang, J., Rogers, J A., and Huang, Y 2014 A hierarchical computational model for stretchable interconnects with fractal-inspired designs, J Mech Phys Solids, 72, pp 115–130 25 Hsu, Y.-Y., Gonzalez, M., Bossuyt, F., Axisa, F., Vanfleteren, J., and De Wolf, I 2009 In situ observations on deformation behavior and stretchinginduced failure of fine pitch stretchable interconnect, J Mater Res., 24(12), pp 3573–3582 26 Duan, Y., Huang, Y., Yin, Z., Bu, N., and Dong, W 2014 Non-wrinkled, highly stretchable piezoelectric devices by electrohydrodynamic direct-writing, Nanoscale, 6(6), pp 3289–3295 www.TechnicalPDF.com 377 378 Mechanics and Control of Smart Flexible Structures 27 Xu, S., Zhang, Y., Cho, J., Lee, J., Huang, X., Jia, L., Fan, J A., Su, Y., Su, J., Zhang, H., Cheng, H., Lu, B., Yu, C., Chuang, C., Kim, T.-I., Song, T., Shigeta, K., Kang, S., Dagdeviren, C., Petrov, I., Braun, P V., Huang, Y., Paik, U., and Rogers, J A 2013 Stretchable batteries with self-similar serpentine interconnects and integrated wireless recharging systems, Nat Commun., 4, p 1543 28 Choi, W M., Song, J., Khang, D., Jiang, H., Huang, Y., and Rogers, J A 2007 Biaxially stretchable “Wavy” silicon nanomembranes, Nano Lett., 7(6), pp 1655–1663 29 Wang, X., Zeng, W., Hong, L., Xu, W., Yang, H., Wang, F., Duan, H., Tang, M., and Jiang, H 2018 Stress-driven lithium dendrite growth mechanism and dendrite mitigation by electroplating on soft substrates, Nat Energy, 3(3), pp 227–235 30 Xu, S., Yan, Z., Jang, K.-I., Huang, W., Fu, H., Kim, J., Wei, Z., Flavin, M., McCracken, J., Wang, R., Badea, A., Liu, Y., Xiao, D., Zhou, G., Lee, J., Chung, H U., Cheng, H., Ren, W., Banks, A., Li, X., Paik, U., Nuzzo, R G., Huang, Y., Zhang, Y., and Rogers, J A 2015 Assembly of micro/nanomaterials into complex, three-dimensional architectures by compressive buckling, Science, 347(6218), pp 154–159 31 Yan, Z., Zhang, F., Wang, J., Liu, F., Guo, X., Nan, K., Lin, Q., Gao, M., Xiao, D., Shi, Y., Qiu, Y., Luan, H., Kim, J H., Wang, Y., Luo, H., Han, M., Huang, Y., Zhang, Y., and Rogers, J A 2016 Controlled mechanical buckling for origami-inspired construction of 3D microstructures in advanced materials, Adv Funct Mater., 26(16), pp 2629–2639 32 Yan, Z., Zhang, F., Liu, F., Han, M., Ou, D., Liu, Y., Lin, Q., Guo, X., Fu, H., Xie, Z., Gao, M., Huang, Y., Kim, J., Qiu, Y., Nan, K., Kim, J., Gutruf, P., Luo, H., Zhao, A., Hwang, K.-C., Huang, Y., Zhang, Y., and Rogers, J A 2016 Mechanical assembly of complex, 3D mesostructures from releasable multilayers of advanced materials, Sci Adv., 2(9), p e1601014 33 Zhang, Y., Yan, Z., Nan, K., Xiao, D., Liu, Y., Luan, H., Fu, H., Wang, X., Yang, Q., Wang, J., Ren, W., Si, H., Liu, F., Yang, L., Li, H., Wang, J., Guo, X., Luo, H., Wang, L., Huang, Y., and Rogers, J A 2015 A mechanically driven form of Kirigami as a route to 3D mesostructures in micro/nanomembranes, Proc Nat Acad Sci., 112(38), pp 11757–11764 34 Hung, P J., Jeong, K., Liu, G L., and Lee, L P 2004 Microfabricated suspensions for electrical connections on the tunable elastomer membrane, Appl Phys Lett., 85(24), pp 6051–6053 35 Dinyari, R., Rim, S.-B., Huang, K., Catrysse, P B., and Peumans, P 2008 Curving monolithic silicon for nonplanar focal plane array applications, Appl Phys Lett., 92(9), p 091114 www.TechnicalPDF.com References 36 Huang, K and Peumans, P 2006 Stretchable silicon sensor networks for structural health monitoring, Proc Smart Structures and Materials 2006: Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems, International Society for Optics and Photonics, p 617412 37 Someya, T., Kato, Y., Sekitani, T., Iba, S., Noguchi, Y., Murase, Y., Kawaguchi, H., and Sakurai, T 2005 Conformable, flexible, large-area networks of pressure and thermal sensors with organic transistor active matrixes, Proc Natl Acad Sci U.S.A., 102(35), pp 12321–12325 38 Song, J., Jiang, H., Huang, Y., and Rogers, J 2009 Mechanics of stretchable inorganic electronic materials, J Vac Sci Technol A, 27(5), pp 1107–1125 39 Song, J 2015 Mechanics of stretchable electronics, Curr Opin Solid State Mat Sci., 19(3), pp 160–170 40 Song, J., Jiang, H., Liu, Z J., Khang, D Y., Huang, Y., Rogers, J A., Lu, C., and Koh, C G 2008 Buckling of a stiff thin film on a compliant substrate in large deformation, Int J Solids Struct., 45(10), pp 3107–3121 41 Cheng, H and Song, J 2013 A simply analytic study of buckled thin films on compliant substrates, J Appl Mech., 81(2), pp 024501024501-024503 42 Sun, Y., Choi, W M., Jiang, H., Huang, Y Y., and Rogers, J A 2006 Controlled buckling of semiconductor nanoribbons for stretchable electronics, Nat Nanotechnol., 1(3), p 201 43 Jiang, H., Sun, Y., Rogers, J A., and Huang, Y 2007 Mechanics of precisely controlled thin film buckling on elastomeric substrate, Appl Phys Lett., 90(13), p 133119 44 Song, J., Jiang, H., Choi, W., Khang, D., Huang, Y., and Rogers, J 2008 An analytical study of two-dimensional buckling of thin films on compliant substrates, J Appl Phys., 103(1), p 014303 45 Choi, W M., Song, J., Khang, D.-Y., Jiang, H., Huang, Y Y., and Rogers, J A 2007 Biaxially stretchable “wavy” silicon nanomembranes, Nano Lett., 7(6), pp 1655–1663 46 Huang, Z., Hong, W., and Suo, Z 2005 Nonlinear analyses of wrinkles in a film bonded to a compliant substrate, J Mech Phys Solids, 53(9), pp 2101–2118 47 Huang, Z., Hong, W., and Suo, Z 2004 Evolution of wrinkles in hard films on soft substrates, Phys Rev E, 70(3), p 030601 www.TechnicalPDF.com 379 380 Mechanics and Control of Smart Flexible Structures 48 Chen, X and Hutchinson, J W 2004 A family of herringbone patterns in thin films, Scripta Mater., 50(6), pp 797–801 49 Chen, X and Hutchinson, J W 2004 Herringbone buckling patterns of compressed thin films on compliant substrates, J Appl Mech Trans ASME, 71(5), pp 597–603 50 Huang, R and Im, S H 2006 Dynamics of wrinkle growth and coarsening in stressed thin films, Phys Rev E, 74(2), p 026214 51 Song, Z., Ma, T., Tang, R., Cheng, Q., Wang, X., Krishnaraju, D., Panat, R., Chan, C K., Yu, H., and Jiang, H 2014 Origami lithium-ion batteries, Nat Commun., 5, p 3140 52 Stafford, C M., Vogt, B D., Harrison, C., Julthongpiput, D., and Huang, R 2006 Elastic moduli of ultrathin amorphous polymer films, Macromolecules, 39(15), pp 5095–5099 53 Lamoureux, A., Lee, K., Shlian, M., Forrest, S R., and Shtein, M 2015 Dynamic kirigami structures for integrated solar tracking, Nat Commun., 6, p 8092 54 Song, Z., Wang, X., Lv, C., An, Y., Liang, M., Ma, T., He, D., Zheng, Y J., Huang, S Q., and Yu, H 2015 Kirigami-based stretchable lithium-ion batteries, Sci Rep., 5, p 10988 55 Wu, C., Wang, X., Lin, L., Guo, H., and Wang, Z L 2016 Paper-based triboelectric nanogenerators made of stretchable interlocking kirigami patterns, ACS Nano, 10(4), pp 4652–4659 56 Zhang, Y., Zhang, F., Yan, Z., Ma, Q., Li, X., Huang, Y., and Rogers, J A 2017 Printing, folding and assembly methods for forming 3D mesostructures in advanced materials, Nat Rev Mater., 2, p 17019 57 Schroeder, T B., Guha, A., Lamoureux, A., VanRenterghem, G., Sept, D., Shtein, M., Yang, J., and Mayer, M 2017 An electric-eel-inspired soft power source from stacked hydrogels, Nature, 552(7684), p 214 58 Rafsanjani, A and Bertoldi, K 2017 Buckling-induced kirigami, Phys Rev Lett., 118(8), p 084301 59 Bertoldi, K., Vitelli, V., Christensen, J., and van Hecke, M 2017 Flexible mechanical metamaterials, Nat Rev Mater., 2(11), p 17066 60 Lv, C., Krishnaraju, D., Konjevod, G., Yu, H., and Jiang, H 2014 Origami based mechanical metamaterials, Sci Rep., 4, p 5979 61 Yan, Z., Zhang, F., Liu, F., Han, M., Ou, D., Liu, Y., Lin, Q., Guo, X., Fu, H., and Xie, Z 2016 Mechanical assembly of complex, 3D mesostructures from releasable multilayers of advanced materials, Sci Adv., 2(9), pp e1601014–e1601014 www.TechnicalPDF.com References 62 Xu, S., Yan, Z., Jang, K I., Huang, W., Fu, H., Kim, J., Wei, Z., Flavin, M., Mccracken, J M., and Wang, R 2015 Assembly of micro/nanomaterials into complex, three-dimensional architectures by compressive buckling, Science, 347(6218), pp 154–159 63 Liu, Y., Yan, Z., Lin, Q., Guo, X., Han, M., Nan, K., Hwang, K C., Huang, Y., Zhang, Y., and Rogers, J A 2016 Guided formation of 3D helical mesostructures by mechanical buckling: Analytical modeling and experimental validation, Adv Funct Mater., 26(17), p 2909 64 Yan, Z., Han, M D., Yang, Y Y., Nan, K W., Luan, H W., Luo, Y Y., Zhang, Y H., Huang, Y G., and Rogers, J A 2017 Deterministic assembly of 3D mesostructures in advanced materials via compressive buckling: A short review of recent progress, Extreme Mech Lett., 11, pp 96–104 65 Gong, S and Cheng, W 2017 Toward soft skin-like wearable and implantable energy devices, Adv Energy Mater., 7(23), p 1700648 66 Liu, W., Song, M.-S., Kong, B., and Cui, Y 2017 Flexible and stretchable energy storage: Recent advances and future perspectives, Adv Mater., 29(1), p 1603436 www.TechnicalPDF.com 381 www.TechnicalPDF.com Index acceptor 19, 21, 22, 35, 36, 38–40, 49–51, 54, 123, 134, 135 fullerene-based 50 perylene-based 51 small-molecule 44, 50, 52 acceptor unit 40–42, 46, 48 active layer 2, 8, 19, 22, 23, 34, 57, 90, 92, 94, 130, 131, 134, 323 actuator 224, 246, 273, 285 adhesion 13, 120, 267, 272–274, 284, 285 AEC see aluminum electrolytic capacitor all-solid-state supercapacitor (ASSS) 174, 180, 181 aluminum electrolytic capacitor (AEC) 180, 199 annealing 40, 131, 145, 297, 325 antenna 212, 276, 277, 305, 346 array 101, 163, 246, 253, 371 biofuel cell 230 close-packed 212 EGaIn line 276 epidermal electrode 114 flexible pH-sensing 99 high-density crossbar memory 147 on-chip micro-supercapacitor 207 parylene-C-based high-density electrode 99 passive crossbar 114 patterned ZnO nanowire 311 photopolymerized organic phototransistor 25 pH-sensing 100 printed flexible TFT circuit 323 printed SWNT-based TFT 304 printed top-gate SWCNT TFT 324 serpentine structure 228 ASSS see all-solid-state supercapacitor bandgap 23, 24, 35, 38–41, 50–53 barrier 12, 15, 90, 123, 319 bathocuproine 55 bathophenanthroline 55 bending angle 169, 170, 172, 176, 177, 272 bending condition 88, 118, 126, 127, 130, 132, 142, 147, 165, 181, 246, 281, 328 bending cycle 24, 117, 126, 127, 132, 140, 141, 144, 145, 164, 165, 167, 168, 172, 177, 178, 272 bending deformation 121, 178, 208, 225 bending energy 348, 352 bending radius 17, 24, 92, 93, 117, 119–122, 126, 130, 131, 138–141, 143–147, 165, 168, 177, 178 bending state 144, 145, 169, 177, 272 bending strain 117, 120, 359, 360 bending stress 145, 146, 310 benzocyclobutene 15, 85 benzodithiophene 41 benzothiadiazole 41 BGBC see bottom-gate bottomcontact BGTC see bottom-gate top-contact www.TechnicalPDF.com 384 Index BHJ see bulk heterojunction bias 6, 19 lateral 18, 21 negative 124 operating 20 vertical 21, 22 bias voltage 119, 133, 145 biosensors 17, 253, 254 biosignals 213, 222 bottom-gate bottom-contact (BGBC) 3, bottom-gate top-contact (BGTC) 3, bridge 161, 229, 279, 347, 355–358 buckling 233, 235, 349, 353, 359, 366, 373 bulk heterojunction (BHJ) 19, 35, 39, 51, 53, 54 capacitance 5, 7, 159–162, 168, 174, 177, 178, 198, 201, 250 double-layer 158 electrical double-layer 182 intrinsic 165 intrinsic double-layer 160 capacitance retention 164–166, 169, 171–174, 176–178, 200, 207 carbide-derived carbon (CDC) 169, 193, 195 carbon nanomaterial 127, 129, 132, 137, 298, 309, 311 carbon nanotube (CNT) 132, 133, 177, 182, 198, 199, 225, 226, 229, 237, 240, 241, 247, 268, 270, 309, 310, 312, 319, 321 carbon nanotube field-effect transistor (CFET) 85, 86, 89–91 CBF see cerebral blood flow CDC see carbide-derived carbon cerebral blood flow (CBF) 97, 98 CF see conductive filament CFET see carbon nanotube fieldeffect transistor charge transport 5, 242 ambipolar 144 efficient in-plane 177 thin-film 10 chemical vapor deposition (CVD) 82, 183, 199 chronic eye disease 101 circuit 85, 167, 221, 222, 273, 276, 285 analog complementary logic 10 complex LM 285 computer-designed 166 electrical 271 flexible multilayer 297 flexible silicon-integrated 254 interdigitated graphene 166 LM soft-matter 275 micro-precision 273 printed LM 285 resonant 102 self-destructive 285 semi-flexible 286 CNT see carbon nanotube coil 210, 211, 279, 281, 374 copper 281 copper wire 281 electronic 281 induction 281 stretchable 268, 279 conducting polymer 3, 13, 56, 118, 175, 178, 180, 198 conductive filament (CF) 92, 94, 116, 120, 122 conductive ink 306, 311, 313 conductivity 56, 160, 161, 225, 238, 241, 243, 245, 269–271, 274, 282, 284, 306, 307, 311, 313–315, 318, 319 crack 126, 132, 235, 243, 362 CVD see chemical vapor deposition www.TechnicalPDF.com Index device 12, 13, 24, 25, 84, 85, 90, 120, 121, 132, 133, 137–140, 145–147, 159, 160, 164–167, 171–173, 200, 201, 207–209, 246, 247, 280–282 artificial intelligent 165 as-fabricated 131, 137 biocompatible 244 bioimplantable 100, 101 biointegrated 222 energy-harvesting 223 environmental sensor 213 fibrous 228 flexible 56, 58, 87, 89, 93, 95, 120, 126, 134, 141, 143, 146, 173, 175, 181 flexible photosensitive 19 flexible sensing 247 human-made 233 ionic-effect-induced 116 light-emitting 298 memory 91, 95, 96, 121, 124, 126–128, 130–132, 134, 138, 142–145 microelectromechanical 83, 242 molecular 8, 127 MSC 171 multicell 239 near-field communication 347 non-doped 167 OFET 1, 2, 8, 12, 13, 15, 26 parylene-C-based 104 photosensing 18, 22 polymer-based 134 printed stretchable 328 switching 132, 145, 146 wireless power transfer 281 disease diagnosis 221, 247, 249, 252, 253 donor material 35, 38, 39, 46, 54 donor unit 41, 42, 46 drain 3–5, 7, 21, 296 DSSC see dye-sensitized solar cell dye-sensitized solar cell (DSSC) 325 EEG see electrochemically exfoliated graphene elastomer 224, 227, 231, 271, 275–277 liquid-embedded 276 stretchable 279 electrical double-layer capacitor 193 electrochemical capacitor 158, 165, 166, 193 electrochemically exfoliated graphene (EEG) 162, 205, 278, 279, 282 electrolyte 83, 100, 161, 163, 165, 166, 168, 170–172, 182, 193–195, 254 aqueous 183, 198 drop-cast polymer 162 gelled polymer 165 printed 163 solid-state 162, 205 solid-state polymer 133 electronic skin (e-skin) 192, 205, 242, 246–248, 250, 254, 268, 269, 279, 282, 286 energy payback time (EPBT) 58, 59 energy storage 182, 238, 240 electrochemical 179, 227 flexible 157, 167 high-performance 176 miniaturized 177 optimum 182 EPBT see energy payback time e-skin see electronic skin exciton 19, 35, 36 exfoliation 164, 174, 176 www.TechnicalPDF.com 385 386 Index fabrication method 6, 194, 195, 197, 199, 201, 203, 240, 269 fabrication process 7, 166, 174, 197, 226, 232, 275, 296, 314, 325, 327 FEA see finite element analysis FET see field-effect transistor field-effect transistor (FET) 18, 21, 84, 86, 88, 98, 240, 241, 311 finite element analysis (FEA) 207, 361, 363, 364 flexible resistive switching memory 114, 115, 117–120, 146, 147 fractal interconnect 362–366, 375 fullerene 39, 49, 50 gallium 212, 240, 267, 269, 275, 308 gate 3, 21, 86, 90, 324 gate bias 4, 25 gauge factor (GF) 233, 239, 240, 249 gel electrolyte 161, 197, 201, 202, 204, 206 GF see gauge factor graphene 160, 161, 163–169, 171, 177, 179, 182, 183, 198–200, 223, 226, 230, 231, 237–242, 246, 247, 271, 273, 310 graphene oxide 56, 160, 168, 202, 226, 310 HCM see hierarchical computational model hierarchical computational model (HCM) 363, 365 highest occupied molecular orbital (HOMO) 8, 35, 36, 38, 40, 41, 50, 135 high-resistance state (HRS) 91–95, 115, 121, 128, 132, 136, 140, 141, 144, 146 hole 5, 8, 19, 24, 35, 36, 54, 56 hole mobility 10, 40, 44 HOMO see highest occupied molecular orbital HOMO level 13, 23, 24, 45, 56 HRS see high-resistance state hydrogel 224, 228, 246, 278 indium 212, 269, 308, 320 ion-sensitive field-effect transistor (ISFET) 98, 100 ISFET see ion-sensitive field-effect transistor island–bridge design 347, 355–359, 361, 363, 375 jugular venous pulses 250 kirigami 370, 372, 373 laser-scribed graphene (LSG) 160, 165, 169, 171, 181 LED see light-emitting diode LIB see lithium-ion battery light-emitting diode (LED) 144, 210, 243, 246, 320, 326, 368 lithium-ion battery (LIB) 367, 370 lowest unoccupied molecular orbital (LUMO) 10, 35, 36, 38, 40, 41 low-resistance state (LRS) 91, 93–95, 115, 121, 123, 132, 139–141, 144, 146 LRS see low-resistance state LSG see laser-scribed graphene LUMO see lowest unoccupied molecular orbital memory 1, 91, 95, 114, 115, 117, 141, 147 flexible 120, 127 flexible crossbar-structured 121 www.TechnicalPDF.com Index flexible electronic information 141 flexible ternary 125 inorganic-materials-based 146 multilevel 24 nonvolatile write-once-readmany 115 resistive random-access 115 rewritable 115 sandwich structure 132 thermal-effect-controlled 116 metal-oxide-semiconductor fieldeffect transistor (MOSFET) 4, 81, 82, 84–92, 94, 96, 98, 100, 102, 104 micro-supercapacitor (MSC) 158–160, 162–164, 166, 167, 169–171, 173–175, 177–180, 182, 192, 193, 195, 197, 200–202, 204, 206–213 MOSFET see metal-oxidesemiconductor field-effect transistor MSC see micro-supercapacitor nanoparticles 144, 306, 312, 313, 315, 327 nanosheets 129, 158, 169, 170, 174, 180–182, 239, 311 nanowires 177, 179, 210, 223, 231, 235, 242, 307, 321, 346 near-field communication device (NFC device) 280, 374 NFA see non-fullerene acceptor NFC device see near-field communication device non-fullerene acceptor (NFA) 45, 50–54 OFET see organic field-effect transistor Ohm’s law 5, 271 on-chip MSC 180, 193, 194, 196–198, 200, 201, 205–208, 213 OPV see organic photovoltaic organic field-effect transistor (OFET) 1–10, 12–18, 20, 22, 24, 26, 84, 85, 87, 88, 90 organic phototransistor 1, 19, 21–23, 25 organic photovoltaic (OPV) 34, 58, 59, 324 organic semiconductor 2–4, 6, 8–15, 22, 26, 35, 242, 323 organic solar cell (OSC) 33–38, 40, 42–44, 46, 48–50, 52, 54–60, 325 organic solvent 9, 10, 14, 49, 83, 137, 305, 310, 324 OSC see organic solar cell parylene see poly(para-xylylene) parylene-C 81–87, 89–93, 95–104 pattern 103, 166, 196, 200, 202, 247, 251, 302–305, 307, 310, 311, 318, 319, 322, 352, 370, 373 complex 228, 328 conductive 309, 310, 312, 315, 317, 322, 327 cut-and-shear 370 cut-and-twist 370 engraved 321 fine 301 herringbone wave 353 high-conductivity Ag 319 high-resolution 322 kirigami 370 printed 300, 301, 303, 307, 311, 314–316, 318, 320 printed panda 328 screen-printed stretchable 328 sintered 318 surface wrinkle 224 www.TechnicalPDF.com 387 388 Index wave-shaped 206 PCB see printed circuit board PCE see power conversion efficiency PDMS see poly(dimethylsiloxane) PDMS substrate 206, 207, 238, 282, 348, 350, 352, 353, 355, 358 PET see polyethylene therephthalate PET substrate 59, 119, 125, 145, 161, 162, 169, 173, 174, 178, 196, 197, 202, 240, 317, 324 photolithography 103, 183, 192, 196–198, 210, 276 photonic sintering 314, 316, 318 photoreduced graphene oxide (PRG) 202, 203 phototransistor 3, 18 Poisson’s effect 228 Poisson’s ratio 349, 370 poly(dimethylsiloxane) (PDMS) 206, 207, 209, 223, 228, 229, 231, 247, 271–273, 275, 279, 281, 313, 347, 348, 353, 356 poly(para-xylylene) (parylene) 81–83, 86, 94, 95, 97, 99, 103 polyethylene therephthalate (PET) 13, 16, 24, 58, 161, 164, 176, 180, 197, 203, 204, 296, 303, 310, 311, 321, 324 polymer 8, 40–46, 48, 50, 53–55, 82, 83, 91, 92, 122, 123, 127, 129, 134, 136–139, 181, 244, 246 conductive 172, 321 elastic 328 elastoplastic 224, 228 electroactive 134 flexible 81 hyperbranched 135 thermoplastic 82 triphenylamine-containing 137 polymer solar cell 45, 324 power conversion efficiency (PCE) 38–42, 44, 45, 47, 48, 50, 51, 53–55, 58, 59, 307, 324, 325 PRG see photoreduced graphene oxide printed circuit board (PCB) 276, 296 printing 183, 192, 203–205, 268, 274–278, 285, 295–299, 301–303, 305, 311, 312, 316, 320, 322, 323, 325–329 aerosol-jet 299–301 digital 299, 302 flexographic 299, 302–304 gravure 237, 296, 299, 302–304, 321, 322 hybrid 321 hybrid flexible 285 inkjet 196, 204, 276, 296, 299–302, 307, 309, 310, 312, 321–323, 325–327 jet 299, 302 mechanical 267, 275 offset 299, 302–304 piezoelectric 300 planar 285 planar electronics 267, 274 roll-to-roll 34, 56, 296, 305 screen 196, 224, 296, 299, 302, 303, 312, 313, 324–326, 328 single-layer 306 spray 276, 282 tapping mode 275 thermal bubble-jet 300 Ragone plot 162, 163, 165, 167, 171, 176, 179 Raman spectrum 236 resin 305, 306 resistive random access memory (RRAM) 81, 84, 91, 104, 115, 117, 118, 139, 140 www.TechnicalPDF.com Index room-temperature liquid metal (RTLM) 267–269, 278, 279 RRAM see resistive random access memory RTLM see room-temperature liquid metal Schottky barrier 116 sensing 18, 95, 96, 101, 102, 228, 233, 242, 249, 252, 279, 280, 282 sensing array 96, 99, 239 sensitivity 98, 102, 222, 225, 230, 234, 241, 242, 247–249, 253 chemical 100 high-pressure sensing 242 ionic 98 linear 247 optimal 242 spectral 23 sensor 81, 82, 84, 86, 88, 90, 92, 96–104, 227, 228, 234, 235, 237–239, 241, 248, 250, 253, 279, 280 biodegradable piezoelectric 245 chemical 241 electrochemical impedancebased contact force 100 epidermal 240 fiber 237 fingertip-skin-inspired microstructured ferroelectric 248 flexible 192, 222, 230, 231, 233, 236, 240, 241, 244, 248, 250, 252, 254 flow 96–98 force 96, 100, 101 glucose 248 high-sensitive 233 human-skin 295 hybrid film 213 mechanical 241 microhair-structured 248 pressure 96, 101, 102, 103, 210, 223, 231, 243–245, 247, 249, 250 pulse wave 281 resistive 247, 271 self-powered 241 sensitive micro-deformation 327 shear stress 96 sheath–core conducting fiber 225 sheath fiber 225 strain 211, 212, 223, 227–229, 239, 268, 278–280, 345 strain gauge 236 stretchable 222–228, 230, 232–235, 240, 242, 243, 250, 254 thermal 239 ultra-stretchable LM 280 serpentine interconnect 356, 359–362 skin 213, 247, 271, 273, 282 artificial 245 electrical 285 flexible electronic tactile 247 human 222, 228, 246, 279, 282 oxide 274 soft 282 solar cell 37, 38, 45, 54, 144, 238, 297, 298, 320, 324, 325 dye-sensitized 325 forward structure 54 inkjet-printed 325 inorganic 34 inorganic hybrid perovskite 326 organic heterojunction 130 perovskite 326 printed perovskite 326 thin-film 371 thin-film GaAs 371 www.TechnicalPDF.com 389 390 Index third-generation 326 solid-state polymer electrolyte 133 strain 142, 143, 226, 227, 229–231, 233, 235–239, 241, 242, 247, 249, 272, 313, 314, 347, 349, 351–355, 359, 368 stretchability 13, 205–207, 221, 223–225, 227, 228, 233, 234, 244, 246, 313, 314, 350, 355, 357–359, 361, 362, 370, 375 stretching 147, 206–208, 225, 228, 231, 246, 249, 271, 273, 280, 355, 358, 361, 366, 370–372 substrate 15, 87, 90–92, 95, 119, 120, 178, 204–206, 272–274, 299–305, 310–312, 315–317, 348–351, 353–357, 360, 373, 374 elastic 224, 313, 328 flexible 1, 2, 12, 15, 58, 59, 90, 92, 93, 118–121, 142, 144, 203, 204, 296, 308, 310, 320, 325, 326 flexible connected 230 flexible film 296 flexible microstructure 252 flexible polymeric 318 heat-sensitive flexible 319 micropatterned flexible 234 nanogrooved polymer 17 PDMS 239 polyimide 17 prestretched 355, 373 pre-stretched elastic 327 quartz 203 stainless steel 127 ultrathin 164 switching 92, 93, 113–120, 123, 130, 132–134, 136, 138, 141, 142, 144, 146, 148 switching behavior 91, 94, 115, 118, 119, 121, 123, 128, 131, 135, 137, 140, 144, 145, 147 switching characteristics 119 switching mechanism 92, 116, 118, 124, 143, 145, 147 TCF see transparent conductive film TCR see temperature coefficient resistance temperature coefficient resistance (TCR) 95, 231 TFT see thin-film transistor TGBC see top-gate bottom-contact thermally activated delayed fluorescence 326 thin-film transistor (TFT) 144, 296, 304, 312, 323, 324 threshold voltage 5, 7, 16, 26, 126, 138 TMD see transition-metal dichalcogenide top-gate bottom-contact (TGBC) 3, transistor 2, 3, 6, 7, 90, 91, 241, 298, 302, 311, 323 all-printed 323 ambipolar 144 bipolar junction 18 conventional inorganic high-speed 238 light-sensitive 22 passivating 90 stretchable 222 transition-metal dichalcogenide (TMD) 235, 311 transparent conducting oxide 308 transparent conductive film (TCF) 297, 307, 320–322 www.TechnicalPDF.com Index transparent electrode 238, 308, 309 twisting 147, 206–208, 230, 328, 366, 368 UV irradiation 147, 202 UV light 23, 203, 210, 213, 297 van der Waals interactions 351 von Kármán approximation 351 von Kármán beam 348, 351 wearable bioelectronics 268, 269, 279, 282, 285 wearable electronics 34, 87, 113, 144, 165, 205, 223, 228, 234, 237, 249, 253, 282, 295 Young’s modulus 273, 359 www.TechnicalPDF.com 391 ...www.TechnicalPDF.com Flexible and Stretchable Electronics www.TechnicalPDF.com www.TechnicalPDF.com Flexible and Stretchable Electronics Materials, Designs, and Devices edited by Run-Wei... architecture are briefly addressed at the end of the chapter Flexible and Stretchable Electronics: Materials, Designs, and Devices Edited by Run-Wei Li and Gang Liu Copyright © 2020 Jenny Stanford Publishing... e-Skin and Wearable Bioelectronics 8.4.4 LM-Conformable Electronics 8.4.5 Other Applications 8.5 Discussion and Conclusion Printing Technology for Fabrication of Flexible and Stretchable Electronics

Ngày đăng: 17/10/2021, 18:02

w