Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 12 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
12
Dung lượng
596,91 KB
Nội dung
Trigonometric Substitution In finding the area of a circle or an ellipse, an integral of the form x sa Ϫ x dx arises, where a Ͼ If it were x xsa Ϫ x dx, the substitution u a Ϫ x would be effective but, as it stands, x sa Ϫ x dx is more difficult If we change the variable from x to by the substitution x a sin , then the identity Ϫ sin 2 cos 2 allows us to get rid of the root sign because Խ sa Ϫ x sa Ϫ a sin 2 sa 2͑1 Ϫ sin 2 ͒ sa cos 2 a cos Խ Notice the difference between the substitution u a Ϫ x (in which the new variable is a function of the old one) and the substitution x a sin (the old variable is a function of the new one) In general we can make a substitution of the form x t͑t͒ by using the Substitution Rule in reverse To make our calculations simpler, we assume that t has an inverse function; that is, t is one-to-one In this case, if we replace u by x and x by t in the Substitution Rule (Equation 5.5.4), we obtain y f ͑x͒ dx y f ͑t͑t͒͒tЈ͑t͒ dt This kind of substitution is called inverse substitution We can make the inverse substitution x a sin provided that it defines a one-to-one function This can be accomplished by restricting to lie in the interval ͓Ϫ͞2, ͞2͔ In the following table we list trigonometric substitutions that are effective for the given radical expressions because of the specified trigonometric identities In each case the restriction on is imposed to ensure that the function that defines the substitution is one-to-one (These are the same intervals used in Appendix D in defining the inverse functions.) Table of Trigonometric Substitutions Expression Substitution Identity sa Ϫ x x a sin , Ϫ ഛഛ 2 Ϫ sin 2 cos 2 sa ϩ x x a tan , Ϫ ϽϽ 2 ϩ tan 2 sec 2 sx Ϫ a x a sec , 0ഛϽ EXAMPLE Evaluate y 3 or ഛ Ͻ 2 sec 2 Ϫ tan 2 s9 Ϫ x dx x2 SOLUTION Let x sin , where Ϫ͞2 ഛ ഛ ͞2 Then dx cos d and Խ Խ s9 Ϫ x s9 Ϫ sin 2 s9 cos 2 cos cos (Note that cos ജ because Ϫ͞2 ഛ ഛ ͞2.) Thus, the Inverse Substitution Rule gives cos s9 Ϫ x y x dx y sin 2 cos d y cos 2 d y cot 2 d sin 2 y ͑csc 2 Ϫ 1͒ d Ϫcot Ϫ ϩ C ■ TRIGONOMETRIC SUBSTITUTION Since this is an indefinite integral, we must return to the original variable x This can be done either by using trigonometric identities to express cot in terms of sin x͞3 or by drawing a diagram, as in Figure 1, where is interpreted as an angle of a right triangle Since sin x͞3, we label the opposite side and the hypotenuse as having lengths x and Then the Pythagorean Theorem gives the length of the adjacent side as s9 Ϫ x 2, so we can simply read the value of cot from the figure: x ă 9- FIGURE sin ă= cot x s9 Ϫ x x (Although Ͼ in the diagram, this expression for cot is valid even when Ͻ 0.) Since sin x͞3, we have sinϪ1͑x͞3͒ and so y ͩͪ x s9 Ϫ x s9 Ϫ x dx Ϫ Ϫ sinϪ1 x x ϩC EXAMPLE Find the area enclosed by the ellipse x2 y2 ϩ 1 a2 b2 y SOLUTION Solving the equation of the ellipse for y, we get (0, b) y2 x2 a2 Ϫ x2 Ϫ b2 a2 a2 (a, 0) x yϮ or b sa Ϫ x a FIGURE Because the ellipse is symmetric with respect to both axes, the total area A is four times the area in the first quadrant (see Figure 2) The part of the ellipse in the first quadrant is given by the function b y sa Ϫ x 0ഛxഛa a ¥ ≈ + =1 b@ a@ and so Ay a b sa Ϫ x dx a To evaluate this integral we substitute x a sin Then dx a cos d To change the limits of integration we note that when x 0, sin 0, so 0; when x a, sin 1, so ͞2 Also Խ Խ sa Ϫ x sa Ϫ a sin 2 sa cos 2 a cos a cos since ഛ ഛ ͞2 Therefore A4 b a y a 4ab y ͞2 [ sa Ϫ x dx b a cos 2 d 4ab y 2ab ϩ 12 sin 2 y ͞2 ͞2 ] ͞2 ͩ 2ab a cos ؒ a cos d ͑1 ϩ cos 2 ͒ d ͪ ϩ0Ϫ0 ab We have shown that the area of an ellipse with semiaxes a and b is ab In particular, taking a b r, we have proved the famous formula that the area of a circle with radius r is r NOTE Since the integral in Example was a definite integral, we changed the limits of integration and did not have to convert back to the original variable x ■ TRIGONOMETRIC SUBSTITUTION ■ EXAMPLE Find y x sx 2 ϩ4 dx SOLUTION Let x tan , Ϫ͞2 Ͻ Ͻ ͞2 Then dx sec 2 d and Խ Խ sx ϩ s4͑tan 2 ϩ 1͒ s4 sec 2 sec sec Thus, we have dx y x sx y ϩ4 2 sec 2 d tan ؒ sec sec y tan d To evaluate this trigonometric integral we put everything in terms of sin and cos : sec cos 2 cos ؒ 2 tan cos sin sin 2 Therefore, making the substitution u sin , we have y dx x sx ϩ 4 +4 x ă FIGUR E tan ă= cos d sin y ͩ ͪ Ϫ u y ϩCϪ du u2 ϩC sin csc ϩC We use Figure to determine that csc sx ϩ 4͞x and so x dx y x sx EXAMPLE Find y sx ϩ4 Ϫ sx ϩ ϩC 4x x dx ϩ4 SOLUTION It would be possible to use the trigonometric substitution x tan here (as in Example 3) But the direct substitution u x ϩ is simpler, because then du 2x dx and y NOTE x dx sx ϩ du y su su ϩ C sx ϩ ϩ C Example illustrates the fact that even when trigonometric substitutions are possible, they may not give the easiest solution You should look for a simpler method first ■ EXAMPLE Evaluate y sx dx , where a Ͼ Ϫ a2 SOLUTION We let x a sec , where Ͻ dx a sec tan d and Ͻ ͞2 or Ͻ Ͻ 3͞2 Then Խ Խ sx Ϫ a sa 2͑sec 2 Ϫ 1͒ sa tan 2 a tan a tan Therefore y sx dx a sec tan y d Ϫa a tan Խ Խ y sec d ln sec ϩ tan ϩ C ■ TRIGONOMETRIC SUBSTITUTION The triangle in Figure gives tan sx Ϫ a 2͞a, so we have x ≈-a@ y sx ă sec ă= x a Խ ln x ϩ sx Ϫ a Ϫ ln a ϩ C a FIGU RE Ϳ dx x sx Ϫ a ln ϩ ϩC Ϫa a a Writing C1 C Ϫ ln a, we have y sx EXAMPLE Find y s3͞2 dx ln x ϩ sx Ϫ a ϩ C1 Ϫ a2 Խ Խ x3 dx ͑4x ϩ 9͒3͞2 SOLUTION First we note that ͑4x ϩ 9͒3͞2 ͑s4x ϩ )3 so trigonometric substitution is appropriate Although s4x ϩ is not quite one of the expressions in the table of trigonometric substitutions, it becomes one of them if we make the preliminary substitu3 tion u 2x When we combine this with the tangent substitution, we have x tan , which gives dx sec d and s4x ϩ s9 tan 2 ϩ sec When x 0, tan 0, so 0; when x 3s3͞2, tan s3, so ͞3 y s3͞2 27 x3 ͞3 tan dx y 3͞2 ͑4x ϩ 9͒ 27 sec3 163 y sec 2 d tan 3 ͞3 sin d 163 y d sec cos2 ͞3 163 y Ϫ cos 2 sin d cos 2 ͞3 Now we substitute u cos so that du Ϫsin d When 0, u 1; when ͞3, u 12 Therefore y s3͞2 1͞2 Ϫ u 1͞2 x3 3 dx Ϫ du 16 y ͑1 Ϫ u Ϫ2 ͒ du y 16 3͞2 1 ͑4x ϩ 9͒ u ͫ ͬ 163 u ϩ EXAMPLE Evaluate x y s3 Ϫ 2x Ϫ x u 1͞2 163 [( 12 ϩ 2) Ϫ ͑1 ϩ 1͒] 323 dx SOLUTION We can transform the integrand into a function for which trigonometric substi- tution is appropriate by first completing the square under the root sign: Ϫ 2x Ϫ x Ϫ ͑x ϩ 2x͒ ϩ Ϫ ͑x ϩ 2x ϩ 1͒ Ϫ ͑x ϩ 1͒2 This suggests that we make the substitution u x ϩ Then du dx and x u Ϫ 1, so x y s3 Ϫ 2x Ϫ x dx y uϪ1 du s4 Ϫ u TRIGONOMETRIC SUBSTITUTION ■ We now substitute u sin , giving du cos d and s4 Ϫ u cos , so x y s3 Ϫ 2x Ϫ x 2 sin Ϫ cos d cos dx y y ͑2 sin Ϫ 1͒ d Ϫ2 cos Ϫ ϩ C ͩͪ Ϫs4 Ϫ u Ϫ sinϪ1 u ϩC ͩ ͪ Ϫs3 Ϫ 2x Ϫ x Ϫ sinϪ1 xϩ1 ϩC Exercises A Click here for answers Click here for solutions S y 21 y 23 y s5 ϩ 4x Ϫ x 25 y s9x 27 y ͑x 29 y x s1 Ϫ x 1–3 Evaluate the integral using the indicated trigonometric substitution Sketch and label the associated right triangle yx yx dx ; sx Ϫ x sec s9 Ϫ x dx ; x sin y sx ■ x3 dx ; ϩ9 ■ ■ 4–30 x tan ■ ■ ■ ■ ■ ■ ■ ■ Evaluate the integral y y s3 s2 x dx s16 Ϫ x dt t st Ϫ 1 dx x s25 Ϫ x y y sx dx ϩ 16 11 y s1 Ϫ 4x 13 y x sx ϩ dx y y st 2 t5 dt ϩ2 dx dx ϩ 6x Ϫ dx ϩ 2x ϩ 2͒2 ■ ■ y sx Ϫ dx x3 14 y u s5 Ϫ u 15 y x2 dx ͑a Ϫ x ͒3͞2 16 y 17 y sx x dx Ϫ7 18 y ͓͑ax͒ dx ■ ■ y sx 22 y 24 y st 26 y s4x Ϫ x 28 y ͑5 Ϫ 4x Ϫ x 30 y dt sx ϩ dx dt Ϫ 6t ϩ 13 x2 dx dx ■ ■ cos t dt s1 ϩ sin t ͞2 ■ ■ ■ dx Ϫ b ͔ 3͞2 ■ dx ln ( x ϩ sx ϩ a ) ϩ C ϩ a2 y sx ͩͪ dx x sinhϪ1 ϩ a2 a ϩC dx x s16x Ϫ ■ These formulas are connected by Formula 3.9.3 du ͒ 5͞2 (b) Use the hyperbolic substitution x a sinh t to show that 2 y s25 Ϫ t 31 (a) Use trigonometric substitution to show that x sx ϩ dx y 2 12 x 3s4 Ϫ 9x dx sx Ϫ a dx x4 dx 2͞3 t 20 ■ ■ 10 ■ s1 ϩ x dx x 19 32 Evaluate y ͑x x2 dx ϩ a ͒3͞2 (a) by trigonometric substitution (b) by the hyperbolic substitution x a sinh t ■ ■ TRIGONOMETRIC SUBSTITUTION 33 Find the average value of f ͑x͒ sx Ϫ 1͞x, ഛ x ഛ 34 Find the area of the region bounded by the hyperbola 9x Ϫ 4y 36 and the line x where is the charge density per unit length on the rod and 0 is the free space permittivity (see the figure) Evaluate the integral to determine an expression for the electric field E͑P͒ y 35 Prove the formula A r 2 for the area of a sector of a circle with radius r and central angle [Hint: Assume Ͻ Ͻ ͞2 and place the center of the circle at the origin so it has the equation x ϩ y r Then A is the sum of the area of the triangle POQ and the area of the region PQR in the figure.] y P (a, b) L x P 39 Find the area of the crescent-shaped region (called a lune) bounded by arcs of circles with radii r and R (See the figure.) ă O Q R x ; 36 Evaluate the integral r R y dx x sx Ϫ Graph the integrand and its indefinite integral on the same screen and check that your answer is reasonable ; 37 Use a graph to approximate the roots of the equation x s4 Ϫ x Ϫ x Then approximate the area bounded by the curve y x s4 Ϫ x and the line y Ϫ x 38 A charged rod of length L produces an electric field at point P͑a, b͒ given by E͑P͒ y LϪa Ϫa b dx 4 0 ͑x ϩ b ͒3͞2 40 A water storage tank has the shape of a cylinder with diameter 10 ft It is mounted so that the circular cross-sections are vertical If the depth of the water is ft, what percentage of the total capacity is being used? 41 A torus is generated by rotating the circle x ϩ ͑ y Ϫ R͒2 r about the x-axis Find the volume enclosed by the torus TRIGONOMETRIC SUBSTITUTION ■ Answers S Խ Խ 19 ln (s1 ϩ x Ϫ 1)͞x ϩ s1 ϩ x ϩ C Click here for solutions 21 23 sinϪ1͑͑x Ϫ 2͒͞3͒ ϩ ͑ x Ϫ 2͒s5 ϩ 4x Ϫ x ϩ C ln 3x ϩ ϩ s9x ϩ 6x Ϫ ϩ C Խ Խ sx Ϫ 9͑͞9x͒ ϩ C ͑x Ϫ 18͒ sx ϩ ϩ C 25 ͞24 ϩ s3͞8 Ϫ Ϫs25 Ϫ x 2͑͞25x͒ ϩ C 27 ͓tanϪ1͑x ϩ 1͒ ϩ ͑x ϩ 1͒͑͞x ϩ 2x ϩ 2͔͒ ϩ C ln (sx ϩ 16 ϩ x) ϩ C 11 sinϪ1͑2x͒ ϩ x s1 Ϫ 4x ϩ C Ϫ1 13 sec ͑x͞3͒ Ϫ sx Ϫ 9͑͞2x 2͒ ϩ C 15 (x͞sa Ϫ x ) Ϫ sinϪ1͑x͞a͒ ϩ C 17 sx Ϫ ϩ C 1 64 1215 29 sinϪ1 x ϩ 14 x s1 Ϫ x ϩ C 33 (s48 Ϫ secϪ1 7) 37 0.81, 2; 2.10 39 r sR Ϫ r ϩ r ͞2 Ϫ R arcsin͑r͞R͒ 2 41 2 2Rr ■ TRIGONOMETRIC SUBSTITUTION Solutions: Trigonometric Substitution Let x = sec θ, where ≤ θ < π or π ≤ θ < 3π Then dx = sec θ tan θ dθ and p p √ p x2 − = sec2 θ − = 9(sec2 θ − 1) = tan2 θ = |tan θ| = tan θ for the relevant values of θ Z √ dx = x2 x2 − Z sec θ tan θ dθ = sec2 θ · tan θ R cos θ dθ = Note that − sec(θ + π) = sec θ, so the figure is sufficient for the case π ≤ θ < Let x = tan θ, where − π2 < θ < p Z x2 + = p tan2 θ + = π q sin θ + C = √ x2 − +C x 3π Then dx = sec2 θ dθ and 9(tan2 θ + 1) = √ sec2 θ = |sec θ| = sec θ for the relevant values of θ Z Z 33 tan3 θ sec2 θ dθ = 33 tan3 θ sec θdθ = 33 tan2 θ tan θ sec θ dθ sec θ R¡ ¢ ¢ 3R ¡ =3 sec2 θ − tan θ sec θ dθ = 33 u − du [u = sec θ, du = sec θ tan θ dθ] # " ¡ ¢3/2 √ ¢ ¢ x2 + 3¡ 3¡ 3 x +9 − +C = 3 u − u + C = 3 sec θ − sec θ + C = 3 33 x3 √ dx = x2 + Z = ¡ x2 + ¢3/2 −9 p x2 + + C Let t = sec θ, so dt = sec θ tan θ dθ, t = Z √ Z √ or ⇒ θ= π , ¡ ¢p x2 − 18 x2 + + C and t = ⇒ θ = π Then Z π/3 Z π/3 1 cos2 θ dθ sec θ tan θ dθ = dθ = θ tan θ sec θ π/4 π/4 π/4 R π/3 £ ¤π/3 1 = π/4 (1 + cos 2θ) dθ = θ + sin 2θ π/4 h³ ³ ´ √ √ √ ´ ¢i ¡ π π = 12 π3 + 12 23 − π4 + 12 · = 12 12 + 43 − 12 = 24 + 83 − 14 √ dt = t3 t2 − π/3 sec3 Let x = sin θ, so dx = cos θ dθ Then Z Z 1 √ cos θ dθ dx = 52 sin2 θ · cos θ x2 25 − x2 R 1 csc2 θ dθ = − 25 cot θ + C = 25 √ 25 − x2 =− +C 25 x TRIGONOMETRIC SUBSTITUTION ■ 9 Let x = tan θ, where − π2 < θ < π Then dx = sec2 θ dθ and p √ √ x2 + 16 = 16 tan2 θ + 16 = 16(tan2 θ + 1) √ = 16 sec2 θ = |sec θ| = sec θ for the relevant values of θ Z Z sec2 θ dθ = sec θ dθ = ln |sec θ + tan θ| + C1 sec θ ¯ ¯√ ¯ x2 + 16 ¯√ ¯ x¯ + ¯¯ + C1 = ln ¯ x2 + 16 + x¯ − ln |4| + C1 = ln ¯¯ 4 ¡√ ¢ = ln x2 + 16 + x + C, where C = C1 − ln dx √ = x2 + 16 (Since Z √ x2 + 16 + x > 0, we don’t need the absolute value.) 11 Let 2x = sin θ, where − π2 ≤ θ ≤ π √ dx = 12 cos θ dθ, and − 4x2 = q Then x = sin θ, − (2x)2 = cos θ ¡ ¢ R√ R R − 4x2 dx = cos θ 12 cos θ dθ = 14 (1 + cos 2θ) dθ ¡ ¢ = 14 θ + 12 sin 2θ + C = 14 (θ + sin θ cos θ) + C h i p = 14 sin−1 (2x) + 2x − 4x2 + C 13 Let x = sec θ, where ≤ θ < π2 or π ≤ θ < 3π Then √ dx = sec θ tan θ dθ and x2 − = tan θ, so Z Z Z √ x −9 tan θ tan2 θ dx = sec θ tan θ dθ = dθ 3 x 27 sec θ sec2 θ R sin2 θ dθ = = = ³x´ 1 sec−1 − 6 15 Let x = a sin θ, where − π2 ≤ θ ≤ Z x2 dx (a2 − x2 )3/2 = = Z Z π R (1 − cos 2θ) dθ = 16 θ − sin 2θ + C = 16 θ − sin θ cos θ + C √ ³ x ´ √x2 − x2 − +C + C = sec−1 − x x 2x2 Then dx = a cos θ dθ and a2 sin2 θ a cos θ dθ = a3 cos3 θ ¡ 12 Z tan2 θ dθ ¢ sec2 θ − dθ = tan θ − θ + C x x =√ − sin−1 + C a a2 − x2 17 Let u = x2 − 7, so du = 2x dx Then Z x √ dx = x2 − Z √ du = u ·2 p √ u + C = x2 − + C 10 ■ TRIGONOMETRIC SUBSTITUTION 19 Let x = tan θ, where − π2 < θ < π2 Then dx = sec2 θ dθ √ and + x2 = sec θ, so Z Z √ Z + x2 sec θ sec θ dx = sec2 θ dθ = (1 + tan2 θ) dθ x tan θ tan θ R = (csc θ + sec θ tan θ) dθ = ln |csc θ − cot θ| + sec θ + C [by Exercise 39 in Additional Topics: Trigonometric Integrals] ¯ √ ¯√ ¯ ¯√ ¯ + x2 − ¯ √ ¯ + x2 + x2 ¯¯ ¯ ¯ + + x2 + C ¯ − ¯+ + C = ln ¯ = ln ¯ ¯ x x x 21 Let u = − 9x2 ⇒ R 2/3 du = −18x dx Then x2 = (4 − u) and √ ¡ 1¢ R0 du = x3 − 9x2 dx = 91 (4 − u)u1/2 − 18 = 162 Or: Let 3x = sin θ, where − π2 ≤ θ ≤ h 3/2 3u − 25 u5/2 i4 = 162 162 £ 64 R4³ − 64 4u1/2 u3/2 du Ô = 64 1215 23 + 4x − x2 = −(x2 − 4x + 4) + = −(x − 2)2 + Let x − = sin θ, − π2 ≤ θ ≤ π2 , so dx = cos θ dθ Then R√ Rp Rp + 4x − x2 dx = − (x − 2)2 dx = − sin2 θ cos θ dθ √ R R = cos2 θ cos θ dθ = cos2 θ dθ R ¡ ¢ = 92 (1 + cos 2θ) dθ = 92 θ + 12 sin 2θ + C = 92 θ + = = 9 sin 2θ + C = 92 θ + 94 (2 sin θ cos ) + C ả + 4x − x2 x−2 −1 x − sin + à à +C 3 ả x−2 sin−1 + (x − 2) + 4x − x2 + C let u = sec θ, where ≤ θ < Z du √3 = u2 − Z = π Z Z du dx √ √3 = Now 9x + 6x − u2 − √ or π ≤ θ < 3π Then du = sec θ tan θ dθ and u2 − = tan θ, so 25 9x2 + 6x − = (3x + 1)2 − 9, so let u = 3x + 1, du = 3dx Then √ ¯ ¯ u + u2 − R sec θ tan θ dθ = 13 sec θdθ = 13 ln|sec θ + tan θ| + C1 = 13 ln¯¯ tan θ ¯ ¯ ¯ ¯ p p ¯ ¯ ¯ ¯ ln¯u + u2 − 9¯ + C = 13 ln¯3x + + 9x2 + 6x − ¯ + C ¯ ¯ ¯ + C1 ¯ 27 x2 + 2x + = (x + 1)2 + Let u = x + 1, du = dx Then Z dx = (x2 + 2x + 2)2 Z R du = (u2 + 1)2 Z sec2 θdθ sec4 θ " where u = tan θ, du = sec2 θ dθ, and u2 + = sec2 θ # R cos2 θ dθ = 12 (1 + cos 2θ) dθ = 12 (θ + sin θ cos θ) + C ¸ · · ¸ 1 u x+1 −1 −1 +C = tan u + tan (x + 1) + +C = + u2 x + 2x + = TRIGONOMETRIC SUBSTITUTION ■ 11 29 Let u = x2 , du = 2x dx Then R √ ¡ R√ ¢ x − x4 dx = − u2 12 du = R (1 R cos θ · cos θ dθ " where u = sin θ, du = cos θ dθ, √ and − u2 = cos θ # + cos 2θ)dθ = 14 θ + 18 sin 2θ + C = 14 θ + 14 sin θ cos θ + C √ √ = 14 sin−1 u + 14 u − u2 + C = 14 sin−1 (x2 ) + 14 x2 − x4 + C = 2 31 (a) Let x = a tan θ, where − π2 < θ < Z π Then √ x2 + a2 = a sec θ and ¯ ¯√ Z ¯ x + a2 x ¯¯ a sec2 θ dθ ¯ = sec θ dθ = ln|sec θ + tan θ| + C1 = ln¯ + ¯ + C1 a sec θ a a ³ ´ p = ln x + x2 + a2 + C where C = C1 − ln |a| dx √ = x2 + a2 Z √ (b) Let x = a sinh t, so that dx = a cosh t dt and x2 + a2 = a cosh t Then Z Z dx x a cosh t dt √ = = t + C = sinh−1 + C a cosh t a x2 + a2 √ 33 The average value of f (x) = x2 − 1/x on the interval [1, 7] is " # Z 7√ Z where x = sec θ, dx = sec θ tan θ dθ, x −1 α tan θ dx = · sec θ tan θ dθ √ 7−1 x sec θ x2 − = tan θ, and α = sec−1 R R α α = 16 tan2 θ dθ = 16 (sec2 θ − 1) dθ h iα = 16 tan θ − θ = 16 (tan α − α) ¡√ ¢ = 16 48 − sec−1 35 Area of 4P OQ = 12 (r cos θ)(r sin θ) = 12 r sin θ cos θ Area of region P QR = Let x = r cos u ⇒ dx = −r sin u du for θ ≤ u ≤ π2 Then we obtain Rr r cos θ √ r − x2 dx R√ R R r2 − x2 dx = r sin u (−r sin u) du = −r sin2 u du = − 12 r (u − sin u cos u) + C p = − 12 r cos−1 (x/r) + 12 x r2 − x2 + C so area of region P QR = = h £ −r cos−1 (x/r) + x ¡ p r − x2 − −r θ + r cos θ r sin θ = 12 r θ 12 r sin cos ÂÔ ir r cos θ and thus, (area of sector P OR) = (area of 4P OQ) + (area of region P QR) = 12 r θ 12 ■ TRIGONOMETRIC SUBSTITUTION √ 37 From the graph, it appears that the curve y = x2 − x2 and the line √ y = − x intersect at about x = 0.81 and x = 2, with x2 − x2 > − x on (0.81, 2) So the area bounded by the curve and the line is A ≈ R Ê Ô2 Ô R2 Ê x − x2 − (2 − x) dx = 0.81 x2 − x2 dx − 2x − 12 x2 0.81 0.81 To evaluate the integral, we put x = sin θ, where − π2 ≤ θ ≤ π Then dx = cos θ dθ, x = ⇒ θ = sin−1 = π2 , and x = 0.81 ⇒ θ = sin−1 0.405 ≈ 0.417 So √ R2 R π/2 R π/2 R π/2 x2 − x2 dx ≈ 0.417 sin2 θ (2 cos θ)(2 cos θ dθ) = 0.417 sin2 2θ dθ = 0.417 12 (1 − cos 4) d 0.81 Ê Ô/2 ÊĂ Â Ă ÂÔ = θ − 14 sin 4θ 0.417 = π2 − − 0.417 − 14 (0.995) ≈ 2.81 £¡  à ÂÔ Thus, A 2.81 à − 12 · 22 − · 0.81 − 12 · 0.812 ≈ 2.10 39 Let the equation of the large circle be x2 + y = R2 Then the equation of the small circle is x2 + (y − b)2 = r , √ where b = R2 − r2 is the distance between the centers of the circles The desired area is √ √ R r ÊĂ Â Ô RrĂ Â A = −r b + r2 − x2 − R2 − x2 dx = b + r − x2 − R2 − x2 dx =2 Rr b dx + Rr√ Rr√ r − x2 dx − R2 − x2 dx √ The first integral is just 2br = 2r R2 − r To evaluate the other two integrals, note that R R R√ a2 − x2 dx = a2 cos2 θ dθ [x = a sin θ, dx = a cos θ dθ] = 12 a2 (1 + cos 2θ) dθ ¡ ¢ = 12 a2 θ + 12 sin 2θ + C = 12 a2 (θ + sin θ cos θ) + C ³ x ´ a2 ³ x ´ √a2 − x2 ³x´ xp a2 a2 arcsin + +C = arcsin + a2 − x2 + C = a a a a so the desired area is h ir h ir p p p A = 2r R2 − r + r arcsin(x/r) + x r2 − x2 − R2 arcsin(x/R) + x R2 − x2 = 2r p R2 − r + r 2¡ π ¢ h − R2 arcsin(r/R) + r p i R2 − r = r 41 We use cylindrical shells and assume that R > r x2 = r − (y − R)2 p g(y) = r − (y − R)2 and V = R R+r R−r 2πy · Rr p r2 − (y − R)2 dy = Rr −r p R2 − r + ⇒ x=± π 2r p − R2 arcsin(r/R) r2 − (y − R)2 , so √ 4π(u + R) r2 − u2 du [where u = y − R] √ Rr √ = 4π −r u r2 − u2 du + 4πR −r r − u2 du " where u = r sin θ, du = r cos θ dθ in the second integral # h ¡ ¢3/2 ir R R π/2 π/2 = 4π − 13 r − u2 + 4πR −π/2 r2 cos2 θ dθ = − 4π cos2 θ dθ (0 − 0) + 4πRr −π/2 = 2πRr R π/2 −π/2 −r £ (1 + cos 2θ) dθ = 2πRr θ + sin 2θ Another method: Use washers instead of shells, so V = 8πR the integral using y = r sin Ô/2 /2 Rrp = 22 Rr2 r − y2 dy as in Exercise 6.2.39(a), but evaluate