1. Trang chủ
  2. » Công Nghệ Thông Tin

Microelectronics circuit analysis and design donald a neamen 4th edition solutions

666 7 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 666
Dung lượng 5,9 MB

Nội dung

www.elsolucionario.org Microelectronics: Circuit Analysis and Design, 4th edition Chapter By D A Neamen Problem Solutions Chapter 1.1 ni = BT / e (a) Silicon − Eg / kT ⎡ ⎤ −1.1 ⎥ exp ⎢ ⎢⎣ ( 86 × 10−6 ) ( 250 ) ⎥⎦ = 2.067 × 1019 exp [ −25.58] ni = 1.61× 108 cm −3 (i) ni = ( 5.23 × 1015 ) ( 250 ) (ii) ni = ( 5.23 × 1015 ) ( 350 ) (b) GaAs (i) ni = ( 2.10 × 1014 ) ( 250 ) 3/ ⎡ ⎤ −1.1 ⎥ exp ⎢ ⎢⎣ ( 86 × 10−6 ) ( 350 ) ⎥⎦ = 3.425 × 1019 exp [ −18.27 ] ni = 3.97 ×1011 cm −3 3/ 3/ ⎡ ⎤ −1.4 ⎥ exp ⎢ −6 ⎢⎣ ( 86 × 10 ) ( 250 ) ⎥⎦ = ( 8.301× 1017 ) exp [ −32.56] ni = 6.02 × 103 cm −3 (ii) ni = ( 2.10 × 1014 ) ( 350 ) 3/ ⎡ ⎤ −1.4 ⎥ exp ⎢ ⎢⎣ ( 86 × 10−6 ) ( 350 ) ⎥⎦ = (1.375 × 1018 ) exp [ −23.26] ni = 1.09 × 108 cm −3 1.2 a ⎛ − Eg ⎞ ni = BT / exp ⎜ ⎟ ⎝ 2kT ⎠ ⎛ ⎞ −1.1 1012 = 5.23 × 1015 T / exp ⎜ ⎟ −6 ⎝ 2(86 × 10 )(T ) ⎠ ⎛ 6.40 × 103 ⎞ 1.91× 10−4 = T / exp ⎜ − ⎟ T ⎝ ⎠ By trial and error, T ≈ 368 K b ni = 109 cm −3 ⎛ ⎞ −1.1 ⎟ 109 = 5.23 × 1015 T / exp ⎜ ⎜ ( 86 × 10−6 ) (T ) ⎟ ⎝ ⎠ ⎛ 6.40 × 103 ⎞ 1.91× 10−7 = T / exp ⎜ − ⎟ T ⎝ ⎠ By trial and error, T ≈ 268° K Microelectronics: Circuit Analysis and Design, 4th edition Chapter By D A Neamen Problem Solutions 1.3 Silicon (a) ni = ( 5.23 × 1015 ) (100 ) 3/ ⎡ ⎤ −1.1 ⎥ exp ⎢ ⎢⎣ ( 86 × 10−6 ) (100 ) ⎥⎦ = ( 5.23 × 1018 ) exp [ −63.95] ni = 8.79 ×10−10 cm −3 (b) ni = ( 5.23 × 1015 ) ( 300 ) 3/ ⎡ ⎤ −1.1 ⎥ exp ⎢ −6 ⎢⎣ ( 86 × 10 ) ( 300 ) ⎥⎦ = ( 2.718 × 1019 ) exp [ −21.32] ni = 1.5 × 1010 cm −3 (c) ni = ( 5.23 × 1015 ) ( 500 ) 3/ ⎡ ⎤ −1.1 ⎥ exp ⎢ ⎢⎣ ( 86 × 10−6 ) ( 500 ) ⎥⎦ = ( 5.847 × 1019 ) exp [ −12.79] ni = 1.63 × 1014 cm −3 Germanium (a) ni = (1.66 × 1015 ) (100 ) 3/ ⎡ ⎤ −0.66 ⎥ = (1.66 × 1018 ) exp [ −38.37 ] exp ⎢ −6 ⎢⎣ ( 86 × 10 ) (100 ) ⎥⎦ ni = 35.9 cm −3 (b) ni = (1.66 × 1015 ) ( 300 ) 3/ ⎡ ⎤ −0.66 ⎥ = ( 8.626 × 1018 ) exp [ −12.79] exp ⎢ −6 ⎢⎣ ( 86 × 10 ) ( 300 ) ⎥⎦ ni = 2.40 × 1013 cm −3 (c) ni = (1.66 × 1015 ) ( 500 ) 3/ ⎡ ⎤ −0.66 ⎥ = (1.856 × 1019 ) exp [ −7.674] exp ⎢ −6 ⎢⎣ ( 86 × 10 ) ( 500 ) ⎥⎦ ni = 8.62 ×1015 cm −3 1.4 (a) n-type; no = 10 15 ( ) ( ) n2 2.4 × 1013 cm ; po = i = no 1015 −3 2 = 5.76 × 1011 cm −3 ni2 1.5 × 1010 = = 2.25 × 10 cm −3 no 1015 (b) n-type; no = 1015 cm −3 ; po = www.elsolucionario.org Microelectronics: Circuit Analysis and Design, 4th edition Chapter By D A Neamen Problem Solutions 1.5 (a) p-type; p o = 1016 cm −3 ; no = ( ni2 1.8 × 10 = po 1016 ) ( = 3.24 × 10 − cm −3 ) ni2 2.4 × 1013 = = 5.76 × 1010 cm −3 po 1016 (b) p-type; p o = 1016 cm −3 ; no = 1.6 (a) (b) n-type no = N d = × 1016 cm −3 10 ni2 (1.5 × 10 ) po = = = 4.5 × 103 cm −3 no × 1016 (c) no = N d = × 1016 cm −3 From Problem 1.1(a)(ii) ni = 3.97 × 1011 cm −3 ( 3.97 × 10 ) = 11 = 3.15 × 106 cm −3 × 1016 po 1.7 (a) p-type; p o = × 1016 cm −3 ; no = ( ) ( ) ni2 1.5 × 1010 = po × 1016 = 4.5 × 10 cm −3 ni2 1.8 × 10 = = 6.48 × 10 −5 cm −3 po × 1016 (b) p-type; p o = × 1016 cm −3 ; no = 1.8 (a) Add boron atoms (b) N a = po = × 1017 cm −3 ( ) ni2 1.5 × 1010 = = 1.125 × 10 cm −3 po × 1017 (c) no = 1.9 (a) no = × 1015 cm −3 10 n (1.5 × 10 ) po = i = ⇒ po = 4.5 × 104 cm −3 no × 1015 (b) n o > p o ⇒ n-type (c) no ≅ N d = × 1015 cm −3 Microelectronics: Circuit Analysis and Design, 4th edition Chapter By D A Neamen Problem Solutions 1.10 a b Add Donors N d = × 1015 cm −3 Want po = 106 cm −3 = ni2 / N d So ni2 = (106 )( × 1015 ) = × 10 21 ⎛ − Eg ⎞ = B 2T exp ⎜ ⎟ ⎝ kT ⎠ ⎛ ⎞ −1.1 ⎟ × 1021 = ( 5.23 × 1015 ) T exp ⎜ − ⎜ ( 86 × 10 ) (T ) ⎟ ⎝ ⎠ By trial and error, T ≈ 324° K 1.11 (a) I = Aσ Ε = 10 −5 (1.5)(10) ⇒ I = 0.15 mA ( ) ( ) Iρ 1.2 × 10 −3 (0.4) = 2.4 V/cm = A ρ × 10 − (b) I = AΕ ⇒Ε= ( ) 1.12 J 120 −1 = = 6.67 (Ω − cm) Ε 18 σ (6.67) σ ≅ eμ n N d ⇒ N d = = = 3.33 × 1016 cm −3 eμ n 1.6 × 10 −19 (1250) J =σΕ ⇒σ = ( ) 1.13 1 ⇒ Nd = = = 7.69 × 1015 cm −3 eμ n N d eμ n ρ 1.6 × 10 −19 (1250)(0.65) Ε (b) J = ⇒ Ε = ρ J = (0.65)(160 ) = 104 V/cm ρ (a) ρ ≅ ( ) 1.14 σ 1.5 = = 9.375 × 1015 cm −3 eμ n 1.6 × 10 −19 (1000) σ 0.8 = = 1.25 × 1016 cm −3 (b) N a = −19 eμ p 1.6 × 10 (400) (a) σ ≅ eμ n N d ⇒ N d = ( ( ) ) 1.15 (a) For n-type, σ ≅ eμ n N d = (1.6 × 10 −19 ) ( 8500 ) N d For 1015 ≤ N d ≤ 1019 cm −3 ⇒ 1.36 ≤ σ ≤ 1.36 × 104 ( Ω − cm ) −1 (b) J = σ E = σ ( 0.1) ⇒ 0.136 ≤ J ≤ 1.36 ×103 A / cm2 Microelectronics: Circuit Analysis and Design, 4th edition Chapter By D A Neamen Problem Solutions 1.16 Dn = (0.026)(1250) = 32.5 cm /s; D p = (0.026 )(450 ) = 11.7 cm /s J n = eDn ⎛ 1016 − 1012 dn = 1.6 × 10 −19 (32.5)⎜⎜ dx ⎝ − 0.001 ( J p = −eD p ) ⎞ ⎟⎟ = −52 A/cm ⎠ ⎛ 1012 − 1016 dp = − 1.6 × 10 −19 (11.7 )⎜⎜ dx ⎝ − 0.001 ( ) ⎞ ⎟⎟ = −18.72 A/cm ⎠ Total diffusion current density J = −52 − 18.72 = −70.7 A/cm 1.17 J p = −eD p dp dx ⎛ −1 ⎞ ⎛ −x ⎞ = −eD p (10 15 ) ⎜ ⎟ exp ⎜ ⎟ ⎜ Lp ⎟ ⎜ Lp ⎟ ⎝ ⎠ ⎝ ⎠ (1.6 ×10 ) (15) (10 ) exp ⎛ − x ⎞ −19 Jp = 15 ⎜⎜ ⎟⎟ ⎝ Lp ⎠ 10 × 10 −4 J p = 2.4 e − x / Lp J p = 2.4 A/cm2 (a) x=0 (b) x = 10 μ m J p = 2.4 e−1 = 0.883 A/cm x = 30 μ m J p = 2.4 e−3 = 0.119 A/cm (c) 1.18 a N a = 1017 cm −3 ⇒ po = 1017 cm −3 n (1.8 × 10 no = i = 1017 po b ) ⇒ no = 3.24 × 10−5 cm −3 n = no + δ n = 3.24 × 10−5 + 1015 ⇒ n = 1015 cm −3 p = po + δ p = 1017 + 1015 ⇒ p = 1.01× 1017 cm −3 ⎛N N 1.19 Vbi = VT ln⎜⎜ a d ⎝ ni (a) (i) ⎞ ⎟ ⎟ ⎠ ( )( ⎡ × 1015 × 1015 Vbi = (0.026 ) ln ⎢ ⎢⎣ 1.5 × 1010 ( ( ) )⎤⎥ = 0.661 V ⎥⎦ )( ) ( ) ⎡ (10 )(10 ) ⎤ = (0.026 ) ln ⎢ ⎥ = 0.937 V ⎣⎢ (1.5 × 10 ) ⎦⎥ (ii) ⎡ × 1017 1015 ⎤ Vbi = (0.026 ) ln ⎢ ⎥ = 0.739 V 10 ⎥⎦ ⎣⎢ 1.5 × 10 (iii) Vbi 18 18 10 www.elsolucionario.org Microelectronics: Circuit Analysis and Design, 4th edition Chapter By D A Neamen Problem Solutions ( )( ⎡ × 1015 × 1015 Vbi = (0.026 ) ln ⎢ ⎢⎣ 1.8 × 10 (b) (i) ( ( ) )⎤⎥ = 1.13 V ⎥⎦ )( )⎤⎥ = 1.21 V ( ) ⎥⎦ ⎡ (10 )(10 ) ⎤ = (0.026 ) ln ⎢ ⎥ = 1.41 V ⎢⎣ (1.8 × 10 ) ⎥⎦ (ii) ⎡ × 1017 1015 Vbi = (0.026 ) ln ⎢ ⎢⎣ 1.8 × 10 (iii) Vbi 18 18 1.20 ⎛N N Vbi = VT ln⎜⎜ a d ⎝ ni or ⎞ ⎟ ⎟ ⎠ (n ) exp⎛⎜ V (1.5 × 10) exp⎛ 0.712 ⎞ = 1.76 × 1016 cm −3 bi ⎞ ⎜ ⎟ ⎜ V ⎟⎟ = 1016 Nd ⎝ 0.026 ⎠ ⎝ T ⎠ Na = 1.21 i ⎡ N a (1016 ) ⎤ ⎛N N ⎞ ⎥ Vbi = VT ln ⎜ a d ⎟ = ( 0.026 ) ln ⎢ 10 ⎢⎣ (1.5 × 10 ) ⎥⎦ ⎝ ni ⎠ For N a = 1015 cm −3 , Vbi = 0.637 V For N a = 1018 cm −3 , Vbi = 0.817 V 1.22 ⎛ T ⎞ kT = (0.026) ⎜ ⎟ ⎝ 300 ⎠ 200 250 300 350 400 450 500 kT 0.01733 0.02167 0.026 0.03033 0.03467 0.0390 0.04333 (T)3/2 2828.4 3952.8 5196.2 6547.9 8000.0 9545.9 11,180.3 Microelectronics: Circuit Analysis and Design, 4th edition Chapter By D A Neamen Problem Solutions ⎛ ⎞ −1.4 ⎟ ni = ( 2.1× 1014 )(T / ) exp ⎜ ⎜ ( 86 × 10−6 ) (T ) ⎟ ⎝ ⎠ ⎛N N ⎞ Vbi = VT ln ⎜ a d ⎟ ⎝ ni ⎠ T ni 200 1.256 250 6.02 × 103 300 1.80 × 106 350 1.09 × 108 400 2.44 × 109 450 2.80 × 1010 500 2.00 × 1011 Vbi 1.405 1.389 1.370 1.349 1.327 1.302 1.277 1.23 ⎛ V ⎞ C j = C jo ⎜1 + R ⎟ ⎝ Vbi ⎠ −1/ ⎡ (1.5 × 10 16 )( × 10 15 ) ⎤ ⎥ = 0.684 V Vbi = ( 0.026 ) ln ⎢ ⎢⎣ (1.5 ×10 10 ) ⎥⎦ ⎞ ⎛ C j = ( 0.4 ) ⎜ + ⎟ 0.684 ⎝ ⎠ −1/ (a) ⎞ ⎛ C j = ( 0.4 ) ⎜ + ⎟ ⎝ 0.684 ⎠ −1/ (b) = 0.255 pF = 0.172 pF −1/ ⎞ ⎛ = 0.139 pF C j = ( 0.4 ) ⎜ + ⎟ ⎝ 0.684 ⎠ (c) 1.24 (a) ⎛ V ⎞ C j = C jo ⎜1 + R ⎟ ⎝ Vbi ⎠ −1 / ⎞ ⎛ For VR = V, C j = (0.02) ⎜ + ⎟ ⎝ ⎠ −1 / ⎛ ⎞ For VR = 1.5 V, C j = (0.02) ⎜1 + ⎟ ⎝ ⎠ = 0.00743 pF −1 / = 0.0118 pF Microelectronics: Circuit Analysis and Design, 4th edition Chapter By D A Neamen Problem Solutions 0.00743 + 0.0118 = 0.00962 pF vC ( t ) = vC ( final ) + ( vC ( initial ) − vC ( final ) ) e − t / τ C j (avg ) = where τ = RC = RC j (avg ) = (47 × 103 )(0.00962 × 10−12 ) or τ = 4.52 ×10−10 s Then vC ( t ) = 1.5 = + ( − ) e−ti / τ + r /τ ⎛ ⎞ = e ⇒ t1 = τ ln ⎜ ⎟ 1.5 ⎝ 1.5 ⎠ −10 t1 = 5.44 × 10 s (b) For VR = V, Cj = Cjo = 0.02 pF −1/ ⎛ 3.5 ⎞ For VR = 3.5 V, C j = ( 0.02 ) ⎜ + = 0.00863 pF ⎟ ⎝ 0.8 ⎠ 0.02 + 0.00863 C j (avg ) = = 0.0143 pF τ = RC j ( avg ) = 6.72 ×10−10 s vC ( t ) = vC ( final ) + ( vC ( initial ) − vC ( final ) ) e − t / τ ( 3.5 = + (0 − 5)e − t2 /τ = − e − t2 /τ so that t2 = 8.09 × 10 −10 ) s 1.25 ⎛ V C j = C jo ⎜⎜1 + R ⎝ Vbi ⎞ ⎟⎟ ⎠ −1 / ( )( ) ) ⎡ × 1015 1017 ⎤ ; Vbi = (0.026 ) ln ⎢ ⎥ = 0.739 V 10 ⎥⎦ ⎣⎢ 1.5 × 10 ( For V R = V, Cj = 0.60 1+ 0.739 = 0.391 pF For VR = V, Cj = 0.60 1+ 0.739 = 0.267 pF For V R = V, 0.60 Cj = (a) fo = (b) f o = 2π LC ( 1+ 0.739 = ( = 0.215 pF 2π 1.5 × 10 2π 1.5 × 10 −3 )(0.391× 10 ) −12 −3 )(0.267 × 10 ) −12 ⇒ f o = 6.57 MHz ⇒ f o = 7.95 MHz Microelectronics: Circuit Analysis and Design, 4th edition Chapter 17 By D A Neamen Problem Solutions 17.17 a b logic = V logic = −0.4 V v01 = A OR B v02 = C OR D v03 = v01 OR v02 or v03 = ( A OR B ) AND (C OR D) 17.18 a For CLOCK = high, I DC flows through the left side of the circuit If D is high, I DC flows through the left R resistor pulling Q low If D is low I DC flows through the right R resistor pulling Q low For CLOCK = low, I DC flows through the right side of the circuit maintaining Q and Q in their previous state b P = ( I DC + 0.5I DC + 0.1I DC + 0.1 I DC )( 3) P = 1.7 I DC ( 3) = (1.7 )( 50 )( 3) ⇒ P = 255 μ W 17.19 (a) (i) For υ I = 0.1 V υ1 = 0.8 V 2.5 − 0.8 = 0.1417 mA 12 i = i = , υ O = V i1 = (ii) For υ I = 2.5 V υ1 = 0.7 + 0.8 = 1.5 V 2.5 − 1.5 = 0.0833 mA 12 υ O = 0.1 V i1 = i = 2.5 − 0.1 = 0.20 mA 12 (b) (i) υ1 = 0.7 + 0.7 = 1.4 V i3 = υ I = υ1 − 0.7 = 0.7 V (ii) υ1 = 0.7 + 0.8 = 1.5 V υ I = υ1 − 0.7 = 0.8 V www.elsolucionario.org Microelectronics: Circuit Analysis and Design, 4th edition Chapter 17 By D A Neamen Problem Solutions 17.20 (a) vI = ⇒ V1 = 0.7 V 3.3 − 0.7 = 0.433 mA iB = iC = vo = 3.3 V i1 = (b) vI = 3.3 V v1 = 0.7 + 0.8 = 1.5 V 3.3 − 1.5 = 0.3 mA i1 = 0.8 = 0.04 mA iR = 20 iB = 0.3 − 0.04 = 0.26 mA 3.3 − 0.1 iC = = 0.8 mA vo = 0.1 V 17.21 i For i1 = ii vX = vY = 0.1 V ⇒ v′ = 0.8 V − 0.8 ⇒ i1 = 0.525 mA i3 = i4 = For v X = vY = V, v ′ = 0.8 + 0.7 + 0.7 ⇒⇒ v′ = 2.2 V − 2.2 ⇒ i1 = 0.35 mA 0.8 i4 = i1 − ⇒ i4 = 0.297 mA 15 − 0.1 i3 = ⇒ i3 = 2.04 mA 2.4 i1 = 17.22 (i) υ X = υ Y = 0.1 V υ ′ = V 3.3 − 0.8 i1 = = 0.3125 mA i3 = i = (ii) υ X = υ Y = 3.3 V υ ′ = + + = V 3 − 2 i1 = = 0.1375 mA 8 i = 0.1375 − = 0.08417 mA 15 3.3 − 0.1 i3 = = 1.333 mA Microelectronics: Circuit Analysis and Design, 4th edition Chapter 17 By D A Neamen Problem Solutions 17.23 a For v X = vY = V , both Q1 and Q2 driven into saturation v1 = 0.8 + 0.7 + 0.8 ⇒ v1 = 2.3 V − 2.3 ⇒ i1 = iB1 = 0.675 mA − (0.8 + 0.7 + 0.1) i2 = ⇒ i2 = 1.7 mA i4 = iB1 + i2 ⇒ i4 = 2.375 mA i1 = 0.8 ⇒ i5 = 0.08 mA 10 = i4 − i5 ⇒ iB = 2.295 mA i5 = iB i3 = − 0.1 ⇒ i3 = 1.225 mA v0 = 0.1V − (0.1 + 0.7) = 1.05 mA iC (max) = β iB = NiL′ + i3 iL′ = b (20)(2.295) = N (1.05) + 1.225 So N = 42 17.24 (a) υ1 = 0.8 + 0.7 + 0.8 = 2.3 V i1 = υ C1 3.3 − 2.3 = 0.25 mA = i B1 = 0.8 + 0.7 + 0.1 = 1.6 V 3.3 − 1.6 = 0.85 mA i = i B1 + i = 0.25 + 0.85 = 1.10 mA i2 = = 0.08 mA 10 = i − i = 1.10 − 0.08 = 1.02 mA i5 = iB2 3.3 − 0.1 = 0.80 mA (b) iCo (max ) = β i B = i + N i L′ i3 = 3.3 − (0.1 + 0.7 ) = 0.625 mA (20)(1.02) = 0.8 + N (0.625) ⇒ N = 31.36 ⇒ N = 31 i L′ = Microelectronics: Circuit Analysis and Design, 4th edition Chapter 17 By D A Neamen Problem Solutions 17.25 DX and DY off, Q1 forward active mode v1 = 0.8 + 0.7 + 0.7 = 2.2 V = i1 R1 + i2 R2 + v1 and i1 = (1 + β )i2 2[ So β = 25 Assume − 2.2 = i (1 + β ) R1 + R2 ] − 2.2 ⇒ i2 = 0.0589 mA (26)(1.75) + i1 = (1 + β )i2 = (26)(0.05895) ⇒ i1 = 1.53 mA i2 = i3 = β i2 ⇒ i3 = 1.47 mA 0.8 = 0.0589 + 1.47 − 0.16 ⇒ iBo = 1.37 mA Qo in saturation iBo = i2 + i3 − iCo = − 0.1 ⇒ iCo = 0.817 mA 17.26 (a) vI = V, Q1 forward active − 0.7 iB = = 0.717 mA iC = (25)(0.71667) = 17.9 mA iE = (26)(0.71667) = 18.6 mA (b) VI = 0.8 V iB = − (0.8 + 0.7) = 0.583 mA Because of the relative doping levels of the Emitter and collector, and because of the difference in B-C and B-E areas, we have −iC ≈ iB = 0.583 mA and iE = small value (c) vI = 3.6 Q1 inverse active − (0.8 + 0.7) iB = = 0.583 mA iE = − β R iE = −(0.5)(0.583) = −0.292 mA iC = −iB − iE = −0.583 − 0.292 ⇒ iC = −0.875 mA www.elsolucionario.org Microelectronics: Circuit Analysis and Design, 4th edition Chapter 17 By D A Neamen Problem Solutions 17.27 (a) (i) For υ I = 0.1 V, υ1 = 0.1 + 0.8 = 0.9 V, and υ O = 2.5 V 2.5 − 0.9 = 0.1333 mA 12 i = i3 = i1 = (ii) For υ I = 2.5 V, υ1 = 0.8 + 0.7 = 1.5 V, and υ O = 0.1 V 2.5 − 1.5 = 0.0833 mA 12 i = i1 (1 + 0.1) = (0.0833)(1.1) = 0.09167 mA i1 = 2.5 − 0.1 = 0.20 mA 12 (b) (i) υ1 = 0.7 + 0.7 = 1.4 V i3 = υ I = 1.4 − 0.8 = 0.6 V (ii) υ1 = 0.8 + 0.7 = 1.5 V υ I = 1.5 − 0.8 = 0.7 V 17.28 a ii v X = vY = 0.1 V, so Q1 in saturation − (0.1 + 0.8) i1 = ⇒ i1 = 0.683 mA ⇒ iB = i2 = i4 = iB = i3 = i v X = vY = V, so Q1 in inverse active mode Assume Q2 and Q3 in saturation − (0.8 + 0.8 + 0.7) ⇒ i1 = iB = 0.45 mA − (0.8 + 0.1) i2 = ⇒ i2 = 2.05 mA 0.8 i4 = ⇒ i4 = 0.533 mA 1.5 i1 = iB = ( iB + i2 ) − i4 = 0.45 + 2.05 − 0.533 or iB = 1.97 mA − 0.1 ⇒ i3 = 2.23 mA 2.2 For Q3 : i3 = b i3 2.23 = = 1.13 < β iB 1.97 For Q2 : i2 2.05 = = 4.56 < β iB 0.45 I /I < β , then each transistor is in saturation Since ( C B ) Microelectronics: Circuit Analysis and Design, 4th edition Chapter 17 By D A Neamen Problem Solutions 17.29 (a) (i) υ X = 0.1 V, υ Y = 3.3 V υ ′ = + = V 3.3 − 0.8 ii = = 0.156 mA 16 i3 = i = (ii) υ X = υ Y = 3.3 V υ ′ = + + = V 3 − 2 i1 = = 0.06875 mA 16 i = 0.06875 − = 0.02875 mA 20 3.3 − 0.1 i3 = = 0.5333 mA (b) i C1 (max ) = β i = i + N i L′ 3.3 − (0.1 + 0.7 ) = 0.15625 mA 16 (50)(0.02875) = 0.5333 + N (0.15625) ⇒ N = 5.8 ⇒ N = i L′ = (c) iC1 (max ) = β i = (50)(0.02875) = 1.44 mA < mA, ⇒ N = 17.30 For v X = vY = V, Q, in inverse active mode a − ( 0.8 + 0.8 + 0.7 ) iB1 = iB = 0.45 mA = iB1 + β R iB1 = 0.45(1 + [ 0.1]) = 0.54 mA iC = − ( 0.8 + 0.1) iB = ( iB + iC ) − = 2.05 mA 0.8 = 0.54 + 2.05 − 0.533 1.5 or iB3 = 2.06 mA Now iL′ = − (0.1 + 0.8) = 0.683 mA Then iC (max) = β F iB = NiL′ or (20)(2.06) = N (0.683) ⇒ N = 60 ′ b From above, for v0 high, I L = (0.1)(0.45) = 0.045 mA Now ⎛ − 4.9 ⎞ (21)(0.1) I L′ (max) = (1 + β F ) ⎜ ⎟ = ⎝ R2 ⎠ = 1.05 mA So I L (max) = NI L′ or 1.05 = N (0.045) ⇒ N = 23 Microelectronics: Circuit Analysis and Design, 4th edition Chapter 17 By D A Neamen Problem Solutions 17.31 (a) (i) Vin = 0.1 V − (0.1 + 0.8) = 1.025 mA = i Bo = , Vout = V i RB = i RCP (ii) Vin = V − (0.7 + 0.8 + 0.7 ) = 0.70 mA = 0.7 + 0.1 = 0.8 V i RB = V out − 0.8 = 4.2 mA = (1.1)(0.7 ) = 0.77 mA i RCP = i BS i Co = β i Bo , iCS = 4.2 − β i Bo , i ES = 0.77 + (4.2 − β i Bo ) 0.7 = 0.77 + 4.2 − β i Bo − 0.7 i Bo = i ES − i Bo (1 + β )i Bo = 4.27 ⇒ i Bo = 4.27 = 0.0837 mA 51 (b) (i) Vin = 0.1 V, V out = High, i L′ = 5β R i RB = 5(0.1)(0.7 ) = 0.35 mA V out = − (0.35)(1) = 4.65 V P = (5 − 0.1)(1.025) + (0.35)(5 − 4.65) = 5.145 mW (ii) i L = 5(1.025) = 5.125 mA P = (0.77 + 4.2 )(5) + (5.125)(0.1) = 25.4 mW 17.32 v X = vY = vZ = 0.1 V a iB1 = − (0.1 + 0.8) ⇒ iB1 = 1.05 mA 3.9 Then iC1 = iB = iC = iB = iC = v X = vY = vZ = V b iB1 = − (0.8 + 0.8 + 0.7) ⇒ iB1 = 0.692 mA 3.9 Then iC1 = iB = iB1 (1 + 3β R ) = (0.692)(1 + 3[0.5]) ⇒ iC1 = iB = 1.73 mA − (0.1 + 0.8) ⇒ iC = 2.05 mA 0.8 = iB + iC − = 1.73 + 2.05 − 1.0 0.8 ⇒ iB = 2.78 mA iC = iB www.elsolucionario.org Microelectronics: Circuit Analysis and Design, 4th edition Chapter 17 By D A Neamen Problem Solutions − 0.1 = 2.04 mA 2.4 − (0.1 + 0.8) iL′ = = 1.05 mA 3.9 iC = iR + 5iL′ = 2.04 + (5)(1.05) ⇒ iC = 7.29 mA iR = 17.33 = 0.098 μ A 51 = − (0.000098)(2) ≅ V (a) (i) I L′ = μ A, i B = V B5 υ O = V = 0.098 mA 51 = − (0.098)(2) = 4.804 V (ii) I L′ = mA, i B = V B5 υ O = 4.804 − 1.4 = 3.404 V (iii) Q in saturation − V B − (V E + 0.8) = 2 − VC − (V E + 0.1) IC = = 0.13 0.13 − (V E + 0.7 ) − (V E + 0.1) I B + I C = I E = I L = 25 = + 0.13 25 = 2.10 − V E (0.5) + 37.69 − V E (7.692) ⇒ V E = 1.81 V IB = υ O = 1.81 − 0.7 = 1.11 V (b) V B = 0.7 + 0.8 = 1.5 V I B4 = − 1.5 = 1.75 mA VC = 0.7 + 0.1 = 0.8 V, I C = − 0.8 = 32.31 mA 0.13 I L = 1.75 + 32.31 = 34.06 mA Microelectronics: Circuit Analysis and Design, 4th edition Chapter 17 By D A Neamen Problem Solutions 17.34 a v X = vY = vZ = 2.8 V, Q1 biased in the inverse active mode 2.8 − (0.8 + 0.8 + 0.7) ⇒ iB1 = 0.25 mA iB1 = iB = iB1 (1 + 3β R ) = 0.25(1 + [0.3]) ⇒ iB = 0.475 mA vC = 0.8 + 0.1 = 0.9 V 0.9 − (0.7 + 0.1) 0.1 = (1 + β F )(0.5) (101)(0.5) iB = iR = 0.00198 mA (Negligible) − 0.9 = = 4.56 mA 0.9 ⇒ iC = 4.56 mA 0.8 = 0.475 + 4.56 − 0.8 = 4.235 mA iB = iB + iC − ⇒ iB v X = vY = vZ = 0.1 V b iB1 = − (0.1 + 0.8) ⇒ iB1 = 2.05 mA From part (a), iL′ = β R ⋅ iB1 = (0.3)(0.25) = 0.075 mA Then iB = 5iL′ 5(0.075) = ⇒ iB = 0.00371 mA 1+ βF 101 17.35 v X = vY = vZ = 0.1 V a iB1 = − (0.1 + 0.8) + iB RB1 where iB = (2 − 0.7) − (0.9) 0.4 = RB ⇒ iB = 0.4 mA Then iB1 = 1.1 + 0.4 ⇒ iB1 = 1.5 mA iB = = iC Q3 in saturation iC = 5iL′ For v0 high, vB′ = 0.8 + 0.7 = 1.5 V ⇒ Q3′ off − 1.5 = 0.5 mA iL′ = β R iB′ = (0.2)(0.5) = 0.1 mA iB′ = Then iC = 0.5 mA Microelectronics: Circuit Analysis and Design, 4th edition Chapter 17 By D A Neamen Problem Solutions v X = vY = vZ = V b From part (a), ⇒ iB1 = 0.5 mA iB = = iC iB = iB1 (1 + 3β R ) = (0.5)(1 + [0.2]) iB = 0.8 mA iC = 5iL′ , ′ and from part (a), iL = 1.5 mA So iC = 7.5 mA 17.36 IB + ID = (a) IC − I D = 5.8 − 0.7 = 0.51 mA 10 − (0.7 − 0.3) = 4.6 mA Now I D = 0.51 − I B = 0.51 − IC β = 0.51 − IC 50 Then So I ⎞ ⎞ ⎛ ⎛ I C − I D = I C − ⎜ 0.51 − C ⎟ = I C ⎜1 + ⎟ − 0.51 = 4.6 50 50 ⎝ ⎠ ⎝ ⎠ I C = 5.01 mA IC 5.01 ⇒ I B = 0.1002 mA 50 I D = 0.51 − 0.1002 ⇒ I D = 0.4098 mA IB = β = VCE = 0.4 V (b) I D = 0,VCE = VCE ( sat ) = 0.1 V 5.8 − 0.8 ⇒ I B = 0.5 mA 10 − 0.1 IC = ⇒ I C = 4.9 mA IB = 17.37 (a) (i) υ I = , υ1 = 0.3 V − = 1.2 mA i B = i C = , υ O = 1.5 V i1 = (ii) υ I = 1.5 V, υ1 = 0.7 + 0.3 = 1.0 V 1.5 − 1.0 = 0.5 mA i B = 0.5 − = 0.465 mA 20 i1 = www.elsolucionario.org Microelectronics: Circuit Analysis and Design, 4th edition Chapter 17 By D A Neamen Problem Solutions 1.5 − 0.4 = 0.9167 mA, υ O = 0.4 V 1.2 (b) (i) υ1 = 0.7 + 0.3 = 1.0 V, υ I = 0.7 V iC = i B = iC = (ii) υ1 = 1.0 V, υ I = 0.7 V 1.5 − 0.4 = 0.9167 mA 1.2 i 0.9167 iB = C = = 0.03667 mA 25 β (c) iCo (max ) = β i B = iC + N i L′ iC = 1.5 − (0.4 + 0.3) 0.4 − = 0.78 mA 20 (25)(0.465) = (0.9167) + N (0.78) ⇒ N = 13.7 ⇒ N = 13 i L′ = 17.38 a v X = vY = 0.4 V vB1 = 0.4 + 0.7 ⇒ vB1 = 1.1 V − 1.1 ⇒ iB1 = 1.39 mA 2.8 = 0.4 + 0.4 ⇒ vB = 0.8 V iB1 = vB iB = iC = iB = iC = iB = iC = iB = iC = ( No load ) = iB R2 + VBE + (1 + β )iB R4 − 0.7 iB = ⇒ iB = 0.0394 mA 0.76 + (31)(3.5) iC = β F iB ⇒ iC = 1.18 mA vB = − (0.0394)(0.76) ⇒ vB = 4.97 V b v X = vY = 3.6 V vB1 = 0.7 + 0.7 + 0.3 ⇒ vB1 = 1.7 V vB = 1.4 V vB = 0.7 V vC = 1.1 V − 1.7 ⇒ iB1 = 1.1786 mA 2.8 = iB1 (1 + β R ) = 1.18(1 + [0.1]) iB = 1.41 mA iB1 = iB 1.1 − 0.7 ⇒ iB = 0.00369 mA (31)(3.5) − 1.1 = = 5.13 mA ⇒ iC ≈ 5.13 mA 0.76 ≈ iB + iC iB = 6.54 mA iB = iR iB Microelectronics: Circuit Analysis and Design, 4th edition Chapter 17 By D A Neamen Problem Solutions 17.39 (a) For the load, i RB1 = 2.5 − (0.4 + 0.3) = (0.2 ) ⇒ R B1 = 18 k Ω R B1 For υ X = υ Y = υ Z = logic 2.5 − (0.7 + 0.8) = 0.05556 mA 18 2.5 − (0.7 + 0.1) = R C1 i RB1 = i RC1 i B = 0.1 = 0.05556 + 1.7 0.7 − ⇒ RC1 = 1.63 k Ω RC1 0.7 (b) υ X = 0.4 V, υ B1 = 0.7 V, υ B = υ O ≅ 2.5 − 0.7 = 1.8 V All i B = , All iC = (c) υ B1 = 1.5 V, υ B = 0.7 V 2.5 − 1.5 = 0.0556 mA 18 2.5 − (0.7 + 0.1) = = 1.043 mA 1.63 = 0.10 mA i B1 = i C1 iB2 4[2.5 − (0.4 + 0.3)] = 0.40 mA 18 υ O = V (d) iC (max ) = β i B = N i L′ i L′ = 0.1 mA iC = (20)(0.1) = N (0.1) ⇒ N = 20 17.40 a For v X = vY = 3.6 V − 2.1 = 0.29 mA 10 − 1.8 = 0.32 mA vC1 = 0.7 + 0.7 + 0.4 = 1.8 V ⇒ iC1 = 10 1.4 iB = iB1 + iC1 − = 0.29 + 0.32 − 0.0933 15 vB1 = 3(0.7) = 2.1 ⇒ iB1 = So iB = 0.517 mA vC = 0.7 + 0.4 = 1.1 V iC = − 1.1 = 0.951 mA 4.1 iB = iB + iC − or iB = 1.293 mA 0.7 = 0.517 + 0.951 − 0.175 ′ For v0 = 0.4 V, vB1 = 0.4 + 0.7 = 1.1 V Microelectronics: Circuit Analysis and Design, 4th edition Chapter 17 By D A Neamen Problem Solutions Then 1.1 − 0.7 = 0.00086 mA (31)(15) − 1.1 − 0.00086 or iL′ ≈ 0.39 mA iL′ = 10 iC (max) = β iΒ = NiL′ iB′ = So (30)(1.293) = N (0.39) ⇒ N = 99 b P = (0.29 + 0.32 + 0.951)(5) + (99)(0.39)(0.4) P = 7.805 + 15.444 or P = 23.2 mW (Assumming 99 load circuits which is unreasonably large.) 17.41 a Assume no load For v X = logic = 0.4 V iE1 = − (0.4 + 0.7) = 0.0975 mA 40 Essentially all of this current goes to ground from VCC P = iE1 ⋅ VCC = (0.0975)(5) ⇒ P = 0.4875 mW b iR1 = − (3)(0.7) = 0.0725 mA 40 − (0.7 + 0.7 + 0.4) = 0.064 mA 50 − (0.7 + 0.4) iR = = 0.26 mA 15 P = (0.0725 + 0.064 + 0.26)(5) iR = P = 1.98 mW c For v0 = 0, vC = 0.7 + 0.4 = 1.1 V iR = − 1.1 ⇒ iR = 78 mA ≈ iSC 0.050 17.42 − (0.7 + 0.3) = 1.0 mA 2.4 − 0.7 (b) i E = = 0.85 mA − RC = = 0.706 k Ω 0.85 (c) (i) P = (1.0 )(3) = 3.0 mW (a) i E = (ii) P = (0.85)(3) = 2.55 mW www.elsolucionario.org Microelectronics: Circuit Analysis and Design, 4th edition Chapter 17 By D A Neamen Problem Solutions 17.43 (a) v I = v O = 2.5 V; A transient situation vDS ( M N ) = 2.5 − 0.7 = 1.8 V vGS ( M N ) = 2.5 − 0.7 = 1.8 V ⇒ M N in saturation vSD ( M P ) = − (2.5 + 0.7) = 1.8 V vSG ( M P )5 − 2.5 = 2.5 V ⇒ M P in saturation iDN = K n (vGSN − VTN )2 = (0.1)(1.8 − 0.8) ⇒ iDN = 0.1 mA iDP = K P (vSGP + VTP )2 = (0.1)(2.5 − 0.8) ⇒ iDP = 0.289 mA iC1 = β iDP = (50)(0.289) ⇒ iC1 = 14.45 mA iC = β iDN = (50)(0.1) ⇒ iC = mA Difference between iE1 and iDN + iC is a load current (b) Assume iC1 = 14.45 mA is a constant VC = i ⋅t (V )(C ) iC1dt = C1 ⇒ t = C ∫ C C iC1 (5)(15 × 10−12 ) ⇒ t = 5.19 ns 14.45 × 10−3 (5)(15 × 10−12 ) t= ⇒ t = 260 ns 0.289 × 10−3 t= (c) 17.44 Microelectronics: Circuit Analysis and Design, 4th edition Chapter 17 By D A Neamen Problem Solutions (a) Assume R1 = R2 = 10 kΩ; β = 50 Then iR1 = iR = 0.7 = 0.07 mA 10 NMOS in saturation region; vGSN = 2.5 − 0.7 = 1.8 V iDN = K n ( vGSN − VTN ) = ( 0.1)(1.8 − 0.8 ) 2 iDN = 0.10 mA Then iB = 0.03 ⇒ iC = (50)(0.03) = 1.5 mA iE1 = 1.53 mA ⇒ iB1 = 0.03 mA ⇒ iC1 = 1.5 mA i So DP = 0.10 mA Now, M P biased in non-saturation region vSGP = 2.5 V ⎤⎦ iDP = 0.10 = 0.10 ⎡⎣ 2(2.5 − 0.8)vSD − vSD 0.10 vSD − 0.34 vSD + 0.10 = vSD = 0.34 ± (0.34) − 4(0.10)(0.10) 2(0.10) Or vSD = 0.325 V Then vo = − 0.325 − 0.7 vo = 3.975 V v= (b) i ⋅t idt = C∫ C Cv (15 × 10−12 )(5) = i 1.53 × 10−3 t = 49 ns t= (c) Cv (15 × 10−12 )(5) = i 0.1× 10−3 t = 0.75 μ s t= ... ( max ) − VZ ( nom ) Ri = 12 − = 1.333 A For I L = 0.2 A ⇒ I Z = 1.133 A For I L = A ⇒ I Z = 0.333 A Microelectronics: Circuit Analysis and Design, 4th edition Chapter By D A Neamen Problem Solutions. .. ) 25 + 2Vr + 3Vr = 11VA (a) Vr = 0.6 V 11VA = 25 + ( 0.6 ) = 28 ⇒ VA = 2.545 V Microelectronics: Circuit Analysis and Design, 4th edition Chapter By D A Neamen Problem Solutions ... www.elsolucionario.org Microelectronics: Circuit Analysis and Design, 4th edition Chapter By D A Neamen Problem Solutions 2.53 a R1 = kΩ, R2 = 10 kΩ ⇒ V0 = D1 and

Ngày đăng: 07/10/2021, 12:24

w