1. Trang chủ
  2. » Công Nghệ Thông Tin

sol process systems analysis and control donald r coughanowr 2nd

136 10 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 136
Dung lượng 2,95 MB

Nội dung

SOLUTIONS MANUAL FOR SELECTED PROBLEMS IN PROCESS SYSTEMS ANALYSIS AND CONTROL DONALD R COUGHANOWR www.elsolucionario.org COMPILED BY M.N GOPINATH BTech.,(Chem) CATCH ME AT gopinathchemical@gmail.com Disclaimer: This work is just a compilation from various sources believed to be reliable and I am not responsible for any errors CONTENTS PART 1: SOLUTIONS FOR SELECTED PROBLEMS PART2: LIST OF USEFUL BOOKS PART3: USEFUL WEBSITES PART 1.1 Draw a block diagram for the control system generated when a human being steers an automobile www.elsolucionario.org 1.2 From the given figure specify the devices Solution: www.elsolucionario.org Inversion by partial fractions: 3.1(a) dx dx + + x = x ( 0) = x ' ( 0) = dt dt  dx  L   = s X ( s ) − sx(0) − x ' (0)  dt   dx  L   = s X ( s ) − x ( 0)  dt  L(x) = X(s) L{1} = 1/s s X ( s ) − sx(0) − x ' (0) + s X ( s ) − x (0) + X ( s ) = = ( s + s + 1) X ( s ) = X ( s) = s s s( s + s + 1) Now, applying partial fractions splitting, we get X ( s) = X ( s) = s +1 − s ( s + s + 1) s +1    − −    2 2 s        3 1  3  s +  +    s +  +  2        L−1 ( X ( s )) = − e X (t ) = − e b) − t − t Cos −2t t− e sin t 2    3  Cos t +   Sin    t     dx dx + + x = x ( 0) = x ' ( 0) = dt dt when the initial conditions are zero, the transformed equation is ( s + s + 1) X ( s ) = s X ( s) = s( s + s + 1) A Bs + C = + s ( s + s + 1) s s + s + = A(s2 + 2s +1) + Bs2 + Cs = A + B(by equating the co − effecient of s ) = A + C (by equating the co − effecients of s ) = A(by equating the co − effecients of const) A+ B = B = −1 C = −2 A A = 1, B = −1, C = −2 s+2 − s s + 2s +  (s + 1) +  L−1{ X ( s )} = L−1  − (s + 1)2  s X ( s) = www.elsolucionario.org  1  { X (t )} = − L−1  +   s + (s + 1)  { X (t )} = − e − t (1 + t ) dx dx 3.1 C + + x = x ( 0) = x ' ( 0) = dt dt by Applying laplace transforms, we get = ( s + 3s + 1) X ( s ) = X ( s) = s( s + 3s + 1) s X ( s) = A Bs + C + s s + 3s + 1 = A( s + 3s + 1) + Bs + Cs = A + B(by equating the co − effecient of s ) = A + C (by equating the co − effecients of s) = A(by equating the co − effecients of const) A+ B = B = −1 C = −3 A = −3 A = 1, B = −1, C = −3 s+3  1 L−1{ X ( s )} = L−1  −   s s + 3s +    −1 −1  L { X ( s )} = L  − s  s +      1 L−1{ X ( s )} = L−1  − s  s +    X (t ) = − e − 3t (Cos s+3 3   −       5     3    s+ 5  − 2 3  3      + − s    −       5t + t sinh 2 3.2(a) dx d x + = Cos t; x (0) = x ' (0) = x ''' (0) = dt dt x11 (0) =     5     Applying Laplace transforms, we get s X ( s ) − s x (0) − s x1 (0) − sx '' (0) − x ''' (0) + s X ( s ) − s x (0) − sx ' (0) − x '' (0) = X ( s ) ( s + s ) − ( s + 1) = s s +1 s s +1  s  + 1) + ( s + 1)  s + s X ( s ) =  (  s +1  s + s + s + s + s + s + 2s + = = s ( s + 1)( s + 1) s ( s + 1)( s + 1) s + s + 2s + A B C D Es + F = + + 3+ + s ( s + 1)( s + 1) s s s s +1 s +1 s + s + s + = As ( s + 1)( s + 1) + Bs( s + 1)( s + 1) + c( s + 1)( s + 1) + Ds ( s + 1) + ( Es + F ) s ( s + 1) www.elsolucionario.org A+B+E=0 equating the co-efficient of s5 A+B+E+F=0 equating the co-efficient of s4 A+B+C+D+F=0 equating the co-efficient of s3 A+B+C=0 equating the co-efficient of s2 B+C=2 equating the co-efficient of s A+B+E=0 equating the co-efficient of s2 C=1equating the co-efficient constant C=1 -B=-C+2=1 A=1-B-C=-1 D+F=0 E+F=0D+E=1 D-E=0 2D=1 A=-1; B=1; C=1 D=1/2; E=1/2; F =-1/2  − 1 1 / / 2( s − 1)  + L−1{( s)} = L−1  + + +  s s +1 s2 +  s s 1 / / 2( s − 1)  −1 L−1 {X ( s )} = L−1  + + + +  s s s +1 s2 +   s {X (t )} = −1 + t + t + e −t + Cos t − S int 2 2 d q dq + = t + 2t q(0) = 4; q1 (0) = −2 dt dt applying laplace transforms,we get s 2Q ( s ) − sq(0) − q ' (0) + sQ (( s ) − q(0) = Q ( s )( s + s ) − s + − = 1   + 1 s2  s  2( s + 1) + ( s + 2) s Q( s) = ( s + s) = s + + s + 2s s ( s + 1) 2*3   + Q ( s ) = 4 +  s +  s( s + 1) s ( s + 1) L−1 (Q ( s )) = q(t ) = 4e −t + 2(1 − e −t ) + t 3 therefore q(t ) = + t3 + e −t 2 + s s Kc =0 ( s + 1)( s + 2)( s + 3) or ( s + 1)(s + 2)(s + 3) + Kc = 1+ ( s + s + 11s + (6 + Kc) = s + s + 11s + (6 + Kc) = Routh array s3 s s 11 (6 + Kc) 6(1 + Kc) For Kc=9.5 = 10-(Kc)= 10-9.5=0.5>0 therefore stable For Kc=11 = 10-(Kc)= 10-11=-1 ⇒ a > Similarly aj a0 = (−1) j ( sum of aoll possible products of j roots) if j = even (−1) j is and the sum is > so a j / a > if j = odd (−1) j is (−1) and the sum is < so aj a0 is again > in both case a j / a > so a j > 0( for j = 1, .n) 14.5 Prove that the converse statement of the problem 14.4 that an unstable root implies that one or more co-efficient will be negative or zero is untrue for all co-efficient ,n>2 Let the converse be true, always Never if we give a counter example we can contradict Routh array s + s + 2s + s3 s2 s −1 s0 System is unstable even when all the coefficient are greater than 0; hence a contradiction, 14.6 Deduce an expression for Routh criterion that will detect the Presence of roots with real parts greater than σ for any rectified σ >0 Characteristic equation a x n + a1 x n −1 + + a n = Routh criteria determines if for any root, real part > Now if we replace x by X such that .x + σ =X Characteristic equation becomes a ( X − σ ) n + a1 ( X − σ ) n −1 + + a n = Hence if we apply Routh criteria, We will actually be looking for roots with real part > σ rather than >0 a x n + a1 x n −1 + a x n −2 + a n = Routh criterion detects if any root α j is greater than zero Is there any x = α , α , .,α j , α n > − − − − − (1) Now we want to detect any root α j > −σ α j> www.elsolucionario.org From(1) x = α , α , α j , α n , > implies is there any x = α1 > x = α2 > x =αj >0 x = αn > add σ on both sides is there any x + σ = α1 + σ > x +σ = α2 +σ > x + σ = α j + σ > x +σ = αn +σ > so, Let X = x + σ and apply Routh criteria to det ect any α j + σ > or α j > −σ 14.7 Show that any complex no S1 satisfying S < 1, yields a value of Z= 1+ s that satisfies Re(Z)>0, 1− s Let S=x+iy, x2 + y2 < Z= 1+ s 1− s www.elsolucionario.org (1 + x ) + iy (1 − x) + iy (1 − x) − iy (1 − x) + iy (1 − x + (1 = x + − x)iy − y ) + x − 2x + y = − ( x + y ) + 2iy − 2x + (x + y ) Re(Z ) = − (x2 + y ) − 2x + (x + y ) if Re( z ) > then − ( x + y ) > and − 2x + (x + y ) > we have x + y is true therefore x + y < Now + (x + y ) − 2x if x = −1& y = then it is if x = & y = then it is 0 < (1 + ( x + y ) − x) < Re( z ) > example: if s = (0.5 + i0.5) the system is unstable due to the real part   L−1    s − (0.5 + i 0.5)    L−1  = e 0.5t (Cos 0.5t + Sin 0.5t )   s − (0.5 + i0.5)  14.8 For the output C to be stable, we analyze the characteristic equation of the system 1+ 1 × (τ s + 1) = τ I s (τ s + 1)(τ s + 1) τ I s(τ s 2τ + τ s + τ s + 1) + τ s + = τ I τ 1τ s + τ I (τ + τ ) s + (τ I + τ ) s + = Routh Array s3 τ I + τ3 τ I (τ + τ ) α www.elsolucionario.org s2 s τ I τ 1τ s0 α = 1 τ I (τ + τ )(τ I + τ ) − τ I τ 1τ τ I (τ + τ ) Now (1) τ I τ 2τ > Since τ & τ τ > 0;τ > are process time constant they are definitely +ve (2) τ I (τ + τ ) > (3) α > ⇒ τ I (τ + τ )(τ I + τ ) > τ I τ 1τ τ 1τ I + τ 1τ + τ 2τ I + τ 2τ − τ 1τ > τ I (τ + τ ) > τ 1τ − τ (τ + τ ) τI > τ 1τ −τ τ1 +τ also τ I > 14.9 In the control system shown in fig find the value of Kc for which the system is on the verge of the instability The controller is replaced by a PD controller, for which the transfer function is Kc(1+s) if Kc = 10, determine the range for which the system is stable Characteristics equation 1+ Kc =0 ( s + 1)( s + 2)( s + 3) or ( s + 1)(s + 2)(s + 3) + Kc = ( s + 3s + 2)(s + 3) + Kc = s + s + 11s + (6 + Kc) = Routh array s3 s2 + Kc s  + Kc  3− )   For verge of instability  + Kc  ) 3=   Kc = Characteristics equation + 10(1 + kcs) =0 ( s + 1)3 s + 3s + s (3 + 10 Kcs) + 11 = Routh Array s3 + 10τ D s2 11 s 3(3 + 10τ s ) > 11 for vege 30τ S > www.elsolucionario.org τ D > / 30 14.10 (a) Write the characteristics equation for the central system shown (b) Use the routh criteria to determine if the system is stable for Kc=4 © Determine the ultimate value of Kc for which the system is unstable (a) characteristics equation  s +   1 + kc =0     2s =  ( s + 1) ( s + s )(2 s + 1) + kc( s + 2) = 2s + 3s + (1 + kc) s + 2kc = s + 3s + 3s + (1 + kc) = Kc=4Routh array s3 s s − 1/ not stable 3(1 + kc) − 4kc =0 3 − Kc = 0; Kc = For verge of instability 14.11 for the control shown, the characteristics equation is s + s + s + s + (1 + k ) = (a) determine value of k above which the system is unstable (b) Determine the value of k for which the two of the roots are on the imaginary axis, and determine the values of these imaginary roots and remaining roots are real s + s + s + 4s + (1 + k ) = s4 6(1 + k ) s3 4 s s 1+ k 4 − (1 + k ) 1+ k For the system to be unstable  1 + k  41 −    <    1< 1+ k k>4 1+ k < k < −1 k > −1 www.elsolucionario.org The system is stable at -1

Ngày đăng: 07/10/2021, 12:21

w