1. Trang chủ
  2. » Cao đẳng - Đại học

De thi TSL10 Toan Ho Chi Minhchuyen PTNK20142015

4 9 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 4
Dung lượng 293,31 KB

Nội dung

minh tương tự BM  BC b Chứng minh 4 điểm M, N, J, I cùng nằm trên một đường tròn và các đường thẳng MJ, NI, CH đồng quy... Cách khác: Gọi K là giao điểm của AI và CN; E là giao điểm của[r]

(1)ĐẠI HỌC QUỐC GIA TP HCM ĐỀ THI TUYỂN SINH LỚP 10 NĂM HỌC 2014-2015 TRƯỜNG PHỔ THÔNG NĂNG KHIẾU MÔN THI: TOÁN (chuyên) (Thời gian 150 phút không kể thời gian phát đề) Câu I Cho phương trình  m  5 x  2mx  6m  1 với m là tham số a) Tìm m cho phương trình (1) có hai nghiệm phân biệt Chứng minh đó tổng hai nghiệm không thể là số nguyên b) Tìm m cho phương trình (1) có hai nghiệm x1, x2 thỏa mãn điều kiện x x  x1  x2   16 Câu II 2  x y 1) Giải hệ phương trình  2  y x       9y x  9x y 2) Cho tam giác ABC vuông A với các đường phân giác BM và CN Chứng minh bất đẳng thức  MC  MA  NB  NA MA.NA  3 2 Câu III Cho các số nguyên dương a, b, c cho 1   a b c a) Chứng minh a + b không thể là số nguyên tố b) Chứng minh c > thì a + c và b + c không thể đồng thời là số nguyên tố Câu IV Cho điểm C thay đổi trên nửa đường tròn đường kính AB = 2R (C ≠ A, C ≠ B) Gọi H là hình chiếu vuông góc C lên AB; I và J là tâm đường tròn nội tiếp các tam giác ACH và BCH Các đường thẳng CI,CJ cắt AB M,N a) Chứng minh AN = AC, BM = BC b) Chứng minh điểm M, N, J, I cùng nằm trên đường tròn và các đường thẳng MJ, NI, CH đồng quy c) Tìm giá trị lớn MN và giá trị lớn diện tích tam giác CMN theo R Câu V Cho số tự nhiên phân biệt cho tổng ba số chúng lớn tổng hai số còn lại a) Chứng minh tất số đã cho không nhỏ b) Tìm tất các gồm số thỏa mãn đề bài mà tổng chúng nhỏ 40 Nguyễn Dương Hải – GV THCS Phan Chu Trinh – BMT – Đăk Lăk (Sưu tầm - giới thiệu) trang (2) SƠ LƯỢC BÀI GIẢI Câu I a) Vì m   , với m Nên phương trình (1) có hai nghiệm phân biệt và   719  m  6m  m  5   6m  m       m  Khi đó theo Viét ta có 12  144   2m 2m Vì m  2m    m  12    2m  m    x1  x2    m   m 5 m 5 2 Nên tổng hai nghiệm không thể là số nguyên 2m ( t  vì m  ), ta có tm  2m  5t  m2  5 (*) có nghiệm   5t   t  0t  tZ 5 Cách khác: Đặt t  b) Phương trình (1) có hai nghiệm x1, x2  * và   719  m  6m  m     m  m       m  12  144   2m   x1  x2  m  Theo Viét ta có  Khi đó x1 x2  x1  x2  x x  6 m  m2   TH 1: x1 x2  x1  x2   6 m 2m  2 m 5 m2    x1 x2  x1  x2   16    x1 x2  x1  x2  2 2m 6 m   (vô nghiệm, vì m 5 m 5 m  0) 6 m 2m   2  m 5 m2  2m 6m  2 2 m 5 m 5  t  1  loai  2m 2 Đặt t   , ta có: t   3t  3t  t     t   nhan  m2   m  2 2m (TMĐK m  ) Vậy m  2, m  t    2m  m  10    m  m 5  TH 2: x1 x2  x1  x2  2  Câu II 1) ĐK: x  0, y  Đặt a  x y , b  y x  a  0, b   Hệ đã cho trở thành  1  a   9b 2  1  a   1  b    9  a  b    a  b  2a  2b  13    a  b     1  b   9a (Vì a  0, b   2a  2b  13  ) a  2 Với a  b , ta có 1  a   a  2a  5a     (TMĐK) a   x y  TH 1: Khi a  b  , ta có   x  y  (TMĐK)  y x  Nguyễn Dương Hải – GV THCS Phan Chu Trinh – BMT – Đăk Lăk (Sưu tầm - giới thiệu) trang (3)  x y   x  y  (TMĐK) TH 2: Khi a  b  , ta có  y x    1 Vậy hệ có hai nghiệm là  x; y   4; ,  ;   4   2) Vì BM, CN là phân giác các góc B, C tam giác ABC nên ta có MC BC NB BC  ,  (tính chất đường phân giác tam giác) MA AB NA AC Do đó  MC  MA  NB  NA   MC  1  NB  1   BC  1  BC  1  MA.NA   MA    NA     AB    AC   BC BC BC   1 AB AC AB AC BC BC BC BC  2;  2 2 AB AC AB AC AB AC  MC  MA NB  NA BC BC BC Nên       2 1   2 MA.NA AB AC AB AC Mà BC  AB  AC  AB AC  Dấu ‘=’ xảy AB = AC, tam giác ABC vuông cân A Câu III a) Ta có 1    c  a  b   ab  ab   a  b  a b c Giả sử a + b là số nguyên tố Vì a < a + b   a, a  b   mà ab  a  b   b  a  b  (vô lý vì  b  a  b ) Vậy a + b không thể là số nguyên tố b) Ta có c  a  b   ab  bc  ab  ac  ab  bc  2ab  ac  b  a  c   a  2b  c   b  a  c  a tương tự có a  b  c   b  2a  c   a  b  c b Giả sử a + c và b + c là số nguyên tố Vì a < a + c   a, a  c   tương tự  b, b  c   Mà b  a  c  a  b  a tương tự có a b  a  b  2c  a  c  b  c  3c không là số nguyên tố vì c > Vậy c > thì a + c và b + c không thể đồng thời là số nguyên tố Câu IV a) Chứng minh AN = AC, BM = BC   BCN  (góc ngoài BCN) Ta có  ANC  ABC    HCN  ACN  ACH  ), BCN   HCN  (CJ là Mà  ABC   ACH (cùng phụ BAC ) phân giác BCH  ANC   ACN  ACN cân A  AN  AC Chứng minh tương tự BM  BC b) Chứng minh điểm M, N, J, I cùng nằm trên đường tròn và các đường thẳng MJ, NI, CH đồng quy   MCH   NCH 1     90  450 , MHI 1 MCN ACH  BCH AHC   900  450 2 2     Nên MCN  MHI  tứ giác CIHN nội tiếp  CIN  CHN  90   Nguyễn Dương Hải – GV THCS Phan Chu Trinh – BMT – Đăk Lăk (Sưu tầm - giới thiệu) trang (4)   CHM   900 Chứng minh tương tự có tứ giác CJHM nội tiếp  CJM   MJN   90 ( CIN   CJM   900  cmt  ) Xét tứ giác MNJI, ta có MIN Vậy tứ giác MNJI nội tiếp, hay điểm M, N, J, I cùng thuộc đường tròn Cách khác: Gọi K là giao điểm AI và CN; E là giao điểm BJ và CM Ta có: ACN cân A (cmt), AI là phân giác góc CAN (theo gt) 2   Do đó EK là đường trung bình tam giác CMN  EK // MN  CEK  CMN  a  Nên AK  CN và KC  KN  CN Tương tự BE  CM và EC  EM  CM giác IEKJ, ta có:   IKJ   900 (AK  CN, BE  IEJ CM) Nên tứ giác IEKJ nội tiếp   CJI   b  Từ (a) và (b) có CEK Xét tứ   CJI  Vậy tứ giác MNJI là tứ CMN giác nội tiếp Xét tam giác CMN, ta có: CH  MN (gt), NI  CM, MJ  CN (theo cmt) Vậy MJ, NI, CH đồng quy c) Tìm giá trị lớn MN và giá trị lớn diện tích tam giác CMN theo R Đặt AC = AN = b, BC = BM = a  a  b2  AB  R Ta có AN + BM = AB + MN  MN  a  b  R 2 Lại có  a  b    2ab  a  b   a  b    a  b   8R  a  b  2R Do đó MN  a  b  R  2 R  R    1 R Dấu ‘=’ xảy a  b  R  BC  AC  C là điểm chính nửa đường tròn đường kính AB Khi đó CH đạt GTLN là R, nên diện tích tam giác CMN đạt GTLN là R.2    1 R   1 R2 Câu V a) Gọi số đó là a, b, c, d, e Vì các số phân biệt nên giả sử a < b < c < d < e Theo giả thiết có: a + b + c > d + e  a + b + c ≥ d + e +  a ≥ d + e + - b - c Lại có d > c > b  d ≥ c + 1, c ≥ b +  d ≥ b +  d - b ≥ e>d>ce≥c+2e-c≥2 Nên a ≥ (d - b) + (e - c) + ≥  b, c, d, e > Vậy tất các số không nhỏ b) Nếu a ≥  b ≥ 7, c ≥ 8, d ≥ 9, e ≥ 10  a + b + c + d + e ≥ 40 (vô lý)  a < theo câu a) ta có a = Ta có b + c + ≥ d + e +  b + c ≥ d + e - mà d - ≥ b, e - ≥ c  d + e - ≥ b + c Nên b = d - 2, c = e -  a + b + c + d + e = + 2b + 2c + < 40  b + c < 31 31  2b + < b≤7 2 Từ đó có b = b = Nếu b = 6, ta có d =  c = 7, e = Ta (5; 6; 7; 8; 9) Nếu b = 7, ta có d =  c = 8, e = 10 Ta (5; 7; 8; 9; 10) Nguyễn Dương Hải – GV THCS Phan Chu Trinh – BMT – Đăk Lăk (Sưu tầm - giới thiệu) trang (5)

Ngày đăng: 14/09/2021, 07:34

w