1. Trang chủ
  2. » Luận Văn - Báo Cáo

Numerical modeling and buckling analysis of inflatable structures

226 7 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

´ Ecole Doctorale MEGA, INSA de Lyon University Claude Bernard Lyon Thesis reference number : 123 − 2012 Numerical modeling and buckling analysis of inflatable structures PhD THESIS Presented and defended publicly on August, 31th 2012 at 10:30 in the Lecture hall − Building A, IUT Lyon − Site Gratte-Ciel A Dissertation submitted in partial fulfilment of the requirements for the degree of Doctor of University Claude Bernard – Lyon (Department of Mechanical Engineering) by NGUYEN Thanh Truong Graduate Committee Chairman : Professor Huan PHAN DINH Ho Chi Minh City University of Technology, Vietnam Reviewers : Professor Anh LE VAN Professor Fr´ed´eric LEBON University of Nantes, France University of Marseille, France Advisors : Professor Michel MASSENZIO Professor Sylvie RONEL University Claude Bernard Lyon 1, France University Claude Bernard Lyon 1, France Examinateur : Professor Eric JACQUELIN University Claude Bernard Lyon 1, France Biomechanics and Impact Mechanics laboratory — UMR T 9406 Mis en page avec la classe thloria Acknowledgments During my time in Lyon, there are a number of people who have supported me both inside and outside the lab From my early days at IUT Lyon 1, I had many difficulties to adapt a new life in French, which is different deeply from Vietnam At that time, I received a tremendous amount of help and support from the personnels of IUT Lyon - Gratte Ciel, specially Professor Christian Jardin, Mrs Bettina Fenet and Mr Benoit Thomas I would like to thank them for all their kindness during my time here Although being a Ph.D student at UCBL has not always been easy and straightforward to me, there has been so much help and support around First, I would like to thank my supervisors, Sylvie Ronel and Michel Massenzio for providing me the opportunity to work with them It is a superb experience to have them as supervisors and learn how to face, think, approach and evaluate problems directly from them Sylvie Ronel with her keen insight into science of structures has always amazed me She has a wonderful ability to see and find beautiful things from what looks somewhat boring and unimportant I would like to thank her for her consistent support and encouragement in the middle of failures and sometimes slow progresses Also, Michel Massenzio, who just makes everything in our group much simpler, is also thanked for careful reading and helpful advices throughout this thesis In particular, I would like to thank Professor Eric Jacquelin for giving me lots of valuable suggestions in research He has always inspired me to see how to research in each paper with challenging questions that I had never thought of Those questions always have guided and helped me gain a solid understanding of my research projects with new insights Special thanks are due to Professor Le Van Anh and Professor Frédéric Lebon for their input, for reviewing this thesis, and for being members of the graduate committee I would also like to thank Professor Phan Dinh Huan for being an examiner of this thesis and a member of the graduate committee I owe him many thanks for teaching me i to be a scientist Professor Pham Huy Hoang and Mr Nguyen Tuan Kiet are gratefully acknowledged in the same way for their advices and encouragement Komla Lolonyo Apedo has been much more than a colleague and a friend to me over the first two years Komla and I were on the same research theme at LBMC and worked beside together in a same office My work is a development based on his work Komla’s infectious friendliness, his passion for science and his obsession with understanding have been instrumental in making my life at LBMC joyful and productive We spent many memorable time wrestling the formulations, explained me to understand how an inflatable beam is In addition, Komla’s deep understanding of inflatable structures provided a fantastic resource to bounce ideas back and forth several times a day I want to single out and thank the people I have worked most closely at Laboratory DDS of GMP, IUT Lyon 1, especially Abdelkrim Bennani and Lagarde Gérard for their availability I am also grateful for the financial support from the Vietnamese government for this thesis and from LBMC-IFSTTAR/UCBL for my first European Conference in Austria Losberger Company and specially Mr Robert Dartois are acknowledged for having provided the material samples and inflatable beams which were very useful for the experiments in this thesis Parents, to whom I have dedicated this work, have supported and encouraged me as I worked toward this degree Finally, I would like to thank my girlfriend for all her love and support over the years and for her encouragement and faith in my ability to finish the degree program Let anyone who has contributed directly or indirectly to the success of this project, finds here my acknowledgments ii Je dédie cette thèse mes parents iii iv Contents List of Figures ix List of Tables xv Notations and conventions xvii GENERAL INTRODUCTION 1 Textile fabric composites 2 Inflatable structures 3 Stability of inflatable structures Objectives Thesis Outline Chapter BACKGROUND 1.1 1.2 Textile structures and textile preforms 1.1.1 Context 1.1.2 Classification of textile preforms Microscopic observation 16 1.2.1 Unit cell and geometric parameter 16 1.2.2 Stress transfer and characteristics lengths 20 1.2.3 Damage due to tensile loading 21 1.3 Prediction of engineering properties using micro-mechanics 24 1.4 Prediction of engineering properties using numerical approach 26 1.5 Experimental measurement of engineering properties 29 1.6 The role of experiments in structural stability 39 v Contents Chapter EXPERIMENTAL STUDIES 41 2.1 Introduction 43 2.2 Mechanical behavior of the fabric 44 2.3 2.2.1 Engineering constants 44 2.2.2 Strain measurement 47 Fabric tensile testing at our laboratory: Biaxial beam inflation test on fabric beam 48 2.4 2.5 2.3.1 Analysis of elastic moduli 48 2.3.2 Determination of shear modulus of HOWF composite 51 Experimental buckling of an inflatable beam 53 2.4.1 Introduction 53 2.4.2 Experimental buckling test on a simply supported HOWF beam 54 2.4.2.1 Test set-up and instrumentation 54 2.4.2.2 Boundary conditions 56 2.4.2.3 Measurement of displacements 59 Conclusion 65 Chapter ANALYTICAL BUCKLING ANALYSIS OF AN HOWF INFLATABLE BEAM 67 3.1 Introduction 69 3.2 Theoretical background 71 3.3 3.2.1 Kinematics 73 3.2.2 Constitutive equations 75 3.2.3 Virtual work principle 77 3.2.4 Theoretical buckling loads 85 3.2.5 Previous works on the critical load 89 Examples: in-plane buckling for linearized problems 90 3.3.1 Simply supported inflatable beam under compressive concentrated load 92 3.3.2 Cantilever inflatable beam under compressive axial load at the free end 99 3.3.3 vi Clamped-clamped inflatable beam under compressive axial load 101 3.4 Influence of the slenderness ratio on the critical load of an inflatable beam 106 3.5 Wrinkling load for an inflatable beam under a compressive concentrated load109 3.6 Conclusion 111 Chapter FINITE ELEMENT BUCKLING ANALYSIS OF AN HOWF INFLATABLE BEAM 113 4.1 Literature review 115 4.2 Finite element formulations 118 4.2.1 Linear eigen buckling 118 4.2.2 Nonlinear buckling 121 4.2.3 Implementation of an iterative algorithm for solving the NLIBFE model 122 4.3 Applications and results 124 4.3.1 Linear eigen buckling 128 4.3.2 Nonlinear buckling of a simply supported NLIBFE model 132 4.3.2.1 Wrinkling loads and maximum deflections: Limit of validity for numerical solutions 135 4.4 4.3.2.2 Validation of the NLIBFE model: the reference model 137 4.3.2.3 Comparison with the experimental results 140 4.3.2.4 Parametric studies of NLIBFE model 142 Conclusion 145 GENERAL CONCLUSION AND FUTURE WORK 149 Appendices 155 Appendix A Reminders in mechanics and material science 155 A.1 Mechanical properties of composite materials 155 A.2 Hyperelasticity: theoretical basis 157 A.3 Hyperelasticity and orthotropic materials 160 A.3.1 Orthotropic materials 160 A.3.2 St Venant-Kirchhoff orthotropic material 162 A.4 Thin-walled structures : thin-shells and membranes 164 Appendix B Theoretical model 171 Appendix C Nonlinear finite element model 175 Bibliography 181 vii Contents viii Bibliography Hyer, M (1998) Stress analysis of fiber-reinforced composite materials New York: McGraw-Hill Itskov, M (2001) A generalized orthotropic hyperelastic material model with application to incompressible shells International Journal for Numerical Methods in Engineering, 50:1777–1799 Ivanov, I and Tabiei, A (2001) Three-dimensional computational micromechanical model for woven fabric composites Composite Structures, 54:489–496 Jensen, D and Hipp, P (1991) Compressive testing of filament-wound cylinders In Proceedings of the 8th International Conference on Composite Materials (ICCM/8), pages 35–F–1–35–F–9, Honolulu, Hawaii Proceedings of the 8th International Conference on Composite Materials (ICCM/8) Johnson, A (1995) Rheological model for the forming of fabricreinforced thermoplastic sheets Composites Manufacturing, (3-4):153–160 Johnson, A and Costalas, E (1995) Forming models for fabric reinforced thermoplastics In In: ICAC 95, Nottingham, UK, pages 341–352 Jones, E (1975) Mechanics of Composite Materials Mc Graw-Hill Book Company, New York King, M., Jearanaisilawong, P., and Socrate, S (2005) A continuum constitutive model for the mechanical behavior of woven fabrics International Journal of Solids and Structures, 42:3867–3896 Ko, F (1989) Preform fiber architecture for composites Ceramic Bull., 68(2) Kuo, W.-S and Pon, B.-J (1997) Elastic moduli and damage evolution of three-axis woven fabric composites Journal of materials science, 32:5445–5455 Le van, A and Wielgosz, C (2005) Bending and buckling of inflatable beams: Some new theoretical results Thin-Walled Structures, 43(8):1166–1187 Le van, A and Wielgosz, C (2007) Finite element formulation for inflatable beams Thin-Walled Structures, 45(2):221–236 Lebrun, G., Bureau, M N., and Denault, J (2003) Evaluation of bias-extension and picture-frame test methods for the measurement of intraply shear properties of pp/glass commingled fabrics Composite Structures, 61(4):341–352 Selected Papers from the Symposium on Design and Manufacturing of Composites Lebrun, G and Denault, J (2000) Influence of the temperature and loading rate on the intraply shear properties of a polypropylene fabric In In: 15th ASC Technical Conference, pages 659–667 College Station, TX, USA 186 Lee, S.-K., Byun, J.-H., and Hong, S H (2003) Effect of fiber geometry on the elastic constants of the plain woven fabric reinforced aluminum matrix composites Materials Science and Engineering, A347:346–358 Levy, R and Spillers, W (1995) Analysis of Geometrically Nonlinear Structures Chapman & Hall, London Libai, A and Givoli, D (1995) Incremental stresses in loaded orthotropic circular membrane tubes-i theory International Journal of Solids and Structures, 32:13:1907–1925 Liu, I (1982) On representations of anisotropic invariants International Journal of Engineering Science, 20:1099–1109 Liu, L., Chen, J., Li, X., and Sherwood, J (2005) Two-dimensional macromechanics shear models of woven fabrics Composites: Part A, 36:105–114 Liu, P S (2004) Different theories application to foamed metals under biaxial equal-stress tension Materials Science and Engineering A, 364(1-2):370–373 Lloyd, D and Hearle, J (1977) An examination of a ’wide-jaw’ test for the determination of fabric poisson ratios Journal of the Textile Institute, 68(9):299–302 Lomov, S., Barburski, M., Stoilova, T., Verpoest, I., Akkerman, R., Loendersloot, R., and Thije, R (2005) Carbon composites based on multiaxial multiply stitched preforms part 3: Biaxial tension, picture frame and compression tests of the preforms Composites Part A: Applied Science and Manufacturing, 36(9):1188– 1206 Lomov, S V., Ivanov, D S., Verpoest, I., Zako, M., Kurashiki, T., Nakai, H., and Hirosawa, S (2007) Meso-fe modelling of textile composites: Road map, data flow and algorithms Composites Science and Technology, 67:1870–1891 Long, A (2005) Design and manufacture of textile composites CRC Press LLC Love, M (1859) Sur la résistance des conduits intérieurs fumée dans les chaudiéres vapeur Memmoires et compte rendu des travaux, Société des Ingenieurs Civils de France, 12:471–500 Lu, K., Accorsi, M., and Leonard, J (2001) Finite element analysis of membrane wrinkling International Journal for Numerical Methods in Engineering, 50:1017– 1038 Luijk, C V (1981) Structural Analysis of Wool Yarns PhD thesis, University of Canterbury,New Zealand Lussier, D and Chen, J (2000) Shear frame standardization for stamping of thermoplastic woven fabric composites In In: 32nd International SAMPE Technical Conference, pages 150–160 187 Bibliography Main, J., Peterson, S., and Strauss, A (1994) Load-deflection behavior of spacebased inflatable fabric beams Journal of Aerospace Engineering, 7(2):225–238 Main, J., Peterson, S., and Strauss, A (1995) Beam-type bending of space-based membrane structures Journal of Aerospace Engineering, 8(2):120–125 Masters, J., Foye, R., Pastore, C., and Gowayed, Y (1993) Mechanical properties of triaxial braided composites: experimental and analytical results Journal of Composites Technology Research, 15(2):112–122 McGuinness, G and Brádaigh, C O (1997) Development of rheological models for forming flows and picture-frame shear testing of fabric reinforced thermoplastic sheets Journal of Non-Newtonian Fluid Mechanics, 73(1-2):1–28 McGuinness, G and Brádaigh, C O (1998) Characterisation of thermoplastic composite melts in rhombus-shear: the picture-frame experiment Composites Part A, 29(1-2):115–132 McGuinness, G., Canavan, R., Nestor, T., and O’Bradaigh, C (1995) A pictureframe intraply shearing test for sheet-forming of composite materials In In: Proceedings of ASME Materials Division, volume 69(2), pages 1107–1118 IMECE ming Huang, Z (2000) The mechanical properties of composites reinforced with woven and braided fabics Composites Science and Technology, 60:479–498 Mohammed, U., C, C L., Dong, L., and Bader, M (2000) Shear deformation and micromechanics of woven fabrics Composites Part A, 31(4):299–308 Mohareb, M and Dabbas, A (2003) Lateral stability of partially restrained cantilever supports In Annual stability conference, Baltimore Molloy, S (1998) Finite element analysis of a pair of leaning pressurized archshells under snow and wind loads PhD thesis, M.S Thesis, Virginia Polytechnic Institute and State University, Blacksburg, V,A NASA (1965) Buckling of thin-walled circular cylinders Technical report, Technical report, NASA Space vehicle design criteria NASA SP-8007 Nguyen, T.-T., Ronel, S., Massenzio, M., Apedo, K., and Jacquelin, E (2012a) Analytical buckling analysis of an inflatable beam made of orthotropic technical textiles Thin-Walled Structures, 51(0):186 – 200 Nguyen, T.-T., Ronel, S., Massenzio, M., Phan, D.-H., Apedo, K., and Jacquelin, E (2012b) An analytical approach for buckling analysis of an inflatable beam made of orthotropic technical textiles In 8th European Solid Mechanics Conference, Graz, Autria Nystrom, J (1876) A new treatise on steam engineering Putnam’s Sons, New Yorks 188 O’Bradaigh, C., McGuinness, G., Canavan, R., and Simon, E (1996) Picture-frame rheological shear testing for composites sheetforming processes In In: Proceedings of the 28th International SAMPE Technical Conference,, pages 266–280 Ogden, R (1972) Large deformation elasticity - on the correlation of theory and experiment for incompressible ruberlike solids Proc R Soc London A, 326:565– 584 Onate, E (2008) Structural Analysis by the Finite Element Method Vol.2: Beams, Plates and Shells CIMNE-Springer Ovesy, H and Fazilati, J (2009) Stability analysis of composite laminated plate and cylindrical shell structures using semi-analytical finite strip method Composite Structures, 89(3):467 – 474 Pan, N (1996) Analysis of woven fabric strengths: Prediction of fabric strength under uniaxial and biaxial extensions Composites Science and Technology, 56:311– 327 Panc, V (1975) Theories of elastic plates Noordhoff International Publishing, Netherlands Parnas, R (2000) Liquid composite molding Hanser Publishers, Munich Paschero, M and Hyer, M W (2009) Axial buckling of an orthotropic circular cylinder: Application to orthogrid concept International Journal of Solids and Structures, 46(10):2151–2171 Special Issue in Honor of Professor Liviu Librescu Peng, X and Cao, J (2002) A dual homogenization and finite element approach for material characterization of textile composites Composites Part B: Engineering, 33(1):45–56 Peng, X and Cao, J (2005) A continuum mechanics-based non-orthogonal constitutive model for woven composite fabrics Composites: Part A, 36:859–874 Plaut, R., Goh, J., Kigudde, M., and Hammerand, D (2000) Shell analysis of an inflatable arch subjected to snow and wind loading International Journal of Solids and Structures, 37:4275–4288 Posada, L M (2007) Stability analysis of two-dimensional truss structures Master’s thesis, University of Stuttgart Potluri, P and Thammandra, V (2007) Influence of uniaxial and biaxial tension on meso-scale geometry and strain fields in a woven composite Composite Structures, 77(3):405–418 Potter, K (2002) Bias extension measurements on cross-plied unidirectional prepreg Composites Part A: Applied Science and Manufacturing, 33(1):63–73 189 Bibliography Quaglini, V., Corazza, C., and Poggi, C (2008) Experimental characterization of orthotropic technical textiles under uniaxial and biaxial loading Composites: Part A, 39:1331–1342 Rossi, R (2005) Light-weight structures: Numerical analysis and coupling issues PhD thesis, University of Bologna, Italy Saadé, K., Espion, B., and Warzée, G (2002) Flexural torsional buckling of three dimensional thin walled elastic beams In 15th ASCE Engineering Mechanics Conference Columbia University, New York, NY Said, M (2001) Biaxial test method for characterization of fabric-film laminates used in scientific balloons Journal of Industrial Textiles, 30(4):280 – 288 Scardino, F (1989) Textile structural composites Elsevier, Covina, CA Scida, D., Aboura, Z., Benzeggagh, M., and Bocherens, E (1997) Prediction of the elastic behaviour of hybrid and non-hybrid woven composites Composites Science and Technology, 57:1727–1740 Selvadurai, A (2006) Deflections of a rubber membrane Journal of the Mechanics and Physics of Solids, 54(6):1093–1119 Simo, J and Fox, D (1989) On a stress resultant geometrically exact shell model part i: formulation and optimal parametrization Comput Methods in Applied Mechanics and Engineering, 72:267–304 Simo, J., Fox, D., and Rifai, M (1990) On a stress resultant geometrically exact shell model part iii: Computational aspects of the nonlinear theory Computer Methodes in Applied Mechanics and Engineering, 79:21–70 Singer, J (1982) The status of experimental buckling investigation of shells, in: Buckling of shells In Ramm, E., editor, Proceedings of the State-of-the-Art Colloquium, Stuttgart, Springer-Verlag, Berlin, Heidelberg, New York, pages 501–533 Singer, J., Arbocz, J., and Weller, T (1998) Buckling Experiments, Experimental Methods in Buckling of Thin-Walled Structures, Volume 1, Basic Concepts, Columns, Beams and Plates John Wiley & Sons Smith, G (1971) On isotropic functions of symmetric tensors, skew-symmetric tensors and vectors International Journal of Engineering Science, 9:899–916 Suhey, J., Kim, N., and Niezrecki, C (2005) Numerical modeling and design of inflatable structures-application to open-ocean-aquaculture cages Aquacultural Engineering, 33:285–303 Taylor, R (2001) Finite element analysis of membrane structures In Internal CIMNE report, Barcelona 190 Tennyson, R (1963) A note on the classical buckling load of circular cylindrical shells under axial compression AIAA Journal, 1(2):475–476 Tennyson, R (1964) Buckling of circular cylindrical shells in compression AIAA Journal, 2(7):1351–1353 Tennyson, R (1969) Buckling modes of circular cylindrical shells under axial compression AIAA Journal, 7(8):1481–1487 Tennyson, R (1980) Interaction of cylindrical shell buckling experiments with theory, in: Theory of Shells North-Holland Publishing Co Thomas, J and Wielgosz, C (2004) Deflections of highly inflated fabric tubes Thin-Walled Structures, 42:1049–1066 Tsai, J., Feldman, A., and Stang, D (July 1965) The buckling strength of filament wound cylinders under axial compression Technical report, NASA CR-266 T.W Chou, F K (1989) Composite Materials Series - Textile Structural Composites Elsevier Science, Amsterdam Unwin, W (1878) On the resistance f flues to collapse Proceedings of the Institution of Civil Engineers, 46:225–241 Valdés, J (2002) Analysis of membrane structures Technical report, IT 386, CIMNE, Barcelona Valdés, J., J.Miquel, and Onate, E (2009) Nonlinear finite element analysis of orthotropic and prestressed membrane structures Finite Elements in Analysis and Design, 45:395–405 Vandeurzen, P., Ivens, J., and Verpoest, I (1996a) A three-dimensional micromechanical analysis of woven-fabric composites: I geometric analysis Composites Science and Technology, 56:1303–1315 Vandeurzen, P., Ivens, J., and Verpoest, I (1996b) A three-dimensional micromechanical analysis of woven-fabric composites: Ii elastic analysis Composites Science and Technology, 56:1317–1327 Vandeurzen, P., Ivens, J., and Verpoest, I (1999) 3-D textile reinforcements in composite materials Woodhead Publishing Ltd and CRC Press LLC Veldman, S (2006) Wrinkling prediction of cylindrical and conical inflated cantilever beams under torsion and bending Thin-Walled Structures, 44(2):211–215 Veldman, S., Bergsma, O., and Beukers, A (2005a) Bending of anisotropic inflated cylindrical beams Thin-Walled Structures, 43:461–475 Veldman, S., Bergsma, O., Beukers, A., and Drechslerb, K (2005b) Bending and optimisation of an inflated braided beam Thin-Walled Structures, 43:1338–1354 191 Bibliography Vysochina, K (2005) Comportement des textiles techniques souples dans le domaine des grandes déformations; Indentification de la rigidité en cisaillement plan PhD thesis, Université Claude Bernard Lyon Wang, J., Page, J R., and Paton, R (1998) Experimental investigation of the draping properties of reinforcement fabrics Composites Science and Technology, 58(2):229–237 Australasian Special Issue on Manufacturing Processes and Mechanical Properties Characterisation of Advanced Composites Whitcomb., J (1991) Three-dimensional stress-analysis of plain weave composites Composite materials fatigue and fracture, 3:417–438 Whitcomb, J and Woo, K (1993a) Application of iterative global/local fnite element analysis, part i: linear analysis Commun Numer Meth Eng, 9:745–756 Whitcomb, J and Woo, K (1993b) Application of iterative global/local fniteelement analysis, part ii: geometrically nonlinear analysis Commun Numer Meth Eng, 9:757–766 Wielgosz, C and Thomas, J (2002) Deflection of inflatable fabric panels at high pressure Thin-Walled Structures, 40:523–536 Wielgosz, C and Thomas, J (2003) An inflatable fabric beam finite element Communications in Numerical Methods in Engineering, 19:307–312 Woo, K and Whitcomb, J (1994) Global/local fnite element analysis for textile composites J Comp Mater, 28:1305–1321 Wu, X.-D., Wan, M., and Zhou, X.-B (2005) Biaxial tensile testing of cruciform specimen under complex loading Journal of Materials Processing Technology, 168(1):181–183 Wüchner, R and Bletzinger, K (2005) Stress-adapted numerical form finding of prestressed surfaces by the updated reference strategy International Journal for Numerical Methods in Engineering, 64:143–166 Xue, P., Peng, X., and Cao, J (2003) A non-orthogonal constitutive model for characterizing woven composites Composites Part A, 34:183–193 Yeoh, O (1993) Some forms of the strain energy function for rubber Rubber Chemistry and Technology, 66(5):754–771 Yu, W., Pourboghrat, F., Chung, K., Zampaloni, M., and Kang, T (2002) Nonorthogonal constitutive equation for woven fabric reinforced thermoplastic composites Composites Part A, 33(8):1095–1105 Zandonini, R (1983) Recent developments in the field of stability of stell compression members In Stability of metal structures, Proceedings, 3rd SSRC International Colloquium, George Winter Memorial Session, Toronto, Canada, Structural Stability Research Council, pages 1–19 192 Zhang, J and Rychlewski, J (1990) Structural tensors for anisotropic solids Archives of Mechanics, 42:267–277 Zienkiewiezcz, O and Taylor, R (2000) The Finite Element Method ButterworthHeinemann, Oxford, Fifth edition Zouani, A., Bui-Quoc, T., and Bernard, M (1996) A proposed device for biaxial tensile fatigue testing Fatigue Fract, 1:331–339 Zouani, A., Bui-Quoc, T., and Bernard, M (1999) Cyclic stress-strain data analysis under biaxial tensile stress state Exp Mech, 39:92–102 193 Bibliography 194 Résumé Titre de la thèse : “Modélisation numérique et analyse du flambement des structures gonflables en textiles techniques orthotropes ” L’objectif principal de cette thèse est de modéliser en flambement des poutres pressurisées en tissu souple homogène orthotrope (THO) composite Cette thèse comporte parties La première détaille les études expérimentales qui ont été menées sur des poutres gonflables plusieurs niveaux de pression afin de caractériser les propriétés mécaniques du matériau et le comportement en flambement de la structure Deux études expérimentales ont été effectuées: un essai de gonflement pour déterminer les propriétés mécaniques orthotropes en sollicitations bi-axiales Les caractéristiques du matériau obtenues ont été utilisées pour les modèles éléments finis de la poutre gonflable en THO Les seconds essais soumettent en compression une structure cylindrique pressurisées jusqu’au flambement, en accordant une attention particulière la détection des plis Dans une deuxième partie, une approche analytique a été envisagée afin d’étudier le flambement ainsi que le comportement d’une poutre gonflable orthotrope soumise des charges de compression uniformes dans des conditions aux limites différentes Afin d’apprécier la stabilité de telles structures, il est nécessaire d’évaluer la charge critique associée différentes configurations de pression Dans un premier temps, un modèle 3D gonflables poutre orthotrope basé sur la cinématique de Timoshenko a été présenté brièvement: les non-linéarités (rotation finie, les forces suiveuses) ont été incluses dans ce modèle Les équations d’équilibre non-linéaires ont été obtenues partir de la forme Lagrangienne Totale du principe des travaux virtuels: les équations linéarisées ont ensuite été obtenues La résolution de ces équations linéarisées a conduit l’expression analytique de la charge critique de flambement Cette charge critique a été étudiée pour différents cas de charge avec différentes conditions aux limites Nous avons pu évaluer l’écart entre notre modèle orthotrope et les modèles isotropes issus de la littérature, ainsi que l’influence de la pression de gonflage et des propriétés mécaniques de tissu sur la valeur de la charge critique Les modes de flambement ont également été déterminés Pour vérifier la limite de validité des résultats, la charge d’apparition des plis a également fait l’objet d’une étude pour chacun des cas La dernière partie est consacrée une étude linéaire des valeurs propres et une analyse non-linéaire du flambement de la poutre gonflable en textiles orthotropes techniques La méthode d’analyse est basée sur un modèle 3D poutre de Timoshenko en THO Le modèle éléments finis établi ici implique un élément poutre de Timoshenko trois-noeuds avec une continuité de type C pour le déplacement transversal et des fonctions de forme quadratiques pour la rotation de flexion et le déplacement axial Dans l’analyse linéaire du flambement, un test de convergence du maillage sur la force critique de la poutre a été réalisé par la résolution du problème aux valeurs propres La matrice de raideur dans ce cas est généralement admise ne pas être fonction des déplacements, tandis que dans le problème non-linéaire de flambement, la matrice de raideur tangente tient compte des non linéarités géométriques et des forces suiveuses dues la pression Le modèle éléments finis non-linéaire a été développé en utilisant la procédure itérative de Newton−Raphson avec incréments de chargement adaptatif permettant le tracé pas pas de la réponse charge-déflexion de la poutre Afin d’évaluer l’incidence des non-linéarités géométriques et de la pression de gonflage sur la stabilité du comportement de structures pressurisées, une poutre appuyée simple a été étudiée L’influence des ratios géométriques de la poutre sur le coefficient de charge de flambement a également été soulignée Pour vérifier la validité et la solidité des résultats, la poutre a également été modélisée sur le code ABAQUS en 3D avec des éléments coque mine Pour une validation supplémentaire, les résultats obtenus ont également été comparés ceux obtenus lors d’expérimentation des pressions de gonflage faibles Mots-clés: Poutre gonflable, tissu orthotrope, essais en gonflement, essais en flambement, cinématique de Timoshenko, charge critique, charge des plis, force suiveuse, pression de gonflage, modèle éléments finis, Newton−Raphson, réponse charge-déflexion, modèle de coque mince 3D Abstract The main goals of this thesis are to modeling and to perform the buckling study of inflatable beams made from homogeneous orthotropic woven fabric (HOWF) composite Three main scenarios were investigated in this thesis The first is the experimental studies which were performed on HOWF inflatable beam in various inflation pressures for characterizing the orthotropic mechanical properties and buckling behaviors Two types of experimental studies were reported in this scenario: the biaxial testing with beam inflation test for determining the orthotropic mechanical properties which were used as material inputs for finite element models of HOWF inflatable beam; and the buckling tests was involved to obtain the buckling behavior and monitor the initiation of the first wrinkles of the beam In the second scenario, an analytical approach was considered to study the buckling and the behavior of an inflatable orthotropic beam subjected to uniform compression loads under different boundary conditions In order to assess the stability of inflatable structures, it is necessary to evaluate the critical load of the inflatable components in their pressurized configurations A 3D inflatable orthotropic beam model based on the Timoshenko’s kinematics was briefly introduced: the nonlinearities (finite rotation, follower forces) were included in this model The nonlinear equilibrium equations were derived from the total Lagrangian form of the virtual work principle: the linearized equations were then obtained By solving these linearized equations, an analytical expression of the critical buckling load was obtained This critical buckling load was investigated through several load cases with several boundary conditions The discrepancy due to the orthotropic character between the present model and the isotropic models found in the literature was evaluated, as well as the influence of the inflation pressure and the fabric mechanical properties on the value of critical load The buckling mode shapes were also determined To check the limit of validity of the results, the wrinkling load was also presented in every case The last scenario is devoted to the linear eigen and non-linear buckling analysis of inflatable beam made of orthotropic technical textiles The method of analysis was based on a 3D Timoshenko beam model with a homogeneous orthotropic woven fabric The finite element model established here involves a three-noded Timoshenko beam element with C −type continuity for the transverse displacement and quadratic shape functions for the bending rotation and the axial displacement In the linear buckling analysis, a mesh convergence test on the beam critical force was carried out by solving the linearized eigenvalue problem The stiffness matrix in this case is generally assumed not to be a function of displacements, whilst in the non-linear buckling problem, the tangent stiffness matrix includes the effect of changing geometry as well as the effect of stress stiffening The nonlinear finite element solutions were investigated by using the straightforward Newton iteration with adaptive load stepping for tracing load−deflection response of the beam To assess the effect of geometric nonlinearities and the inflation pressure on the stability behavior of inflatable beam, a simply supported beam was studied The influence of the beam aspect ratios on the buckling load coefficient was also pointed out To check the validity and soundness of the results, a 3D thin-shell finite element model was utilized for comparison For further validation, the obtained results were also compared with those from experiments at low inflation pressures Keywords: Inflatable beam, orthotropic fabric, inflation test, buckling test, Timoshenko’s kinematics, critical load, wrinkling load, follower force, inflation pressure, finite element model, Newton−Raphson, load-deflection response, 3D thin shell model ... Natural length of the inflatable beam lo Reference length of the inflatable beam xix Notations and conventions Ro Reference radius of the inflatable beam to Reference thickness of the inflatable. .. force along y and z axes My , Mz Moments around y and z axes Beam geometry lφ Natural length of the inflatable beam Rφ Natural radius of the inflatable beam tφ Natural thickness of the inflatable. .. and are more durable during handling Inflatable structures Of the large family of textile structures, coated woven fabrics have attracted the most serious interest in the aerospace industry and

Ngày đăng: 03/09/2021, 14:03

Xem thêm:

Mục lục

    Stability of inflatable structures

    Textile structures and textile preforms

    Classification of textile preforms

    Unit cell and geometric parameter

    Stress transfer and characteristics lengths

    Damage due to tensile loading

    Prediction of engineering properties using micro-mechanics

    Prediction of engineering properties using numerical approach

    Experimental measurement of engineering properties

    The role of experiments in structural stability

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w