VAR and SVAR WITH STATA

69 6 0
VAR and SVAR WITH STATA

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

Thông tin tài liệu

Introduction to VARs and Structural VARs: Estimation & Tests Using Stata Bar-Ilan University 26/5/2009 Avichai Snir Background: VAR • Background: • Structural simultaneous equations – Lack of Fit with the data – Lucas Critique (1976) • VAR: Vector Auto Regressions – Simple – Non Structural – All Variables are treated identically – Better Fit with the Data Simple VAR: Sims (1980) • Symmetric – Lags of the dependent variables – Same Number of Lags y1,t = α0 + α1y1,t −1 + α2 y2,t + α3 y3,t −1 + α4 y1,t −2 + α2 y2,t + α3 y3,t −2 + + ε1,t −1 −2 y2,t = β0 + β1y1,t −1 + β2 y2,t + β3 y3,t −1 + β4 y1,t −2 + β2 y2,t + β3 y3,t −2 + + ε 2,t −1 −2 y31,t = γ + γ1y1,t −1 + γ y2,t + γ y3,t −1 + γ y1,t −2 + γ y2,t + γ y3,t −2 + + ε3,t −1 σ i, j E (ε i ,t , ε j ,τ ) =  0 i, j ∈ (1,2,3) −2 if t = τ if t ≠ τ Simple VAR: Matrix Form • In Matrix Form: y t = α + Γt −1y t −1 + Γt − y t − + + ε t or Simply : [I − Γ(L )]y t = Α + ε t • y t is a vector of the Dependent Variables • Γt − i is a Matrix of Coefficients • Γ(L ) is a Matrix in Lagged Variables • ε t is a Vector of White Noise Errors • Α is a Matrix of exogenous variables (constant,…) ε  ε ,1   ε 1,2  ε  1,3 :   ε  ,1  ε ,2 ε ' × =  t t  ε ,1  :   ε ,1  ε 3,2   ε ,1  : σ ,1 σ ,1      :  σ ,1      :   σ ,1   :            × ε ,1 ε , ε ,          σ 1,2 Covariance Matrix ( σ ,1 ε , ε , ε , σ 0 1,2 0 0 ,3 : σ 0 ,1 ,1 : 0 ,1 σ σ σ ε , ε , ε , 1,3 σ 1,3 : σ ,2 σ σ ,2 0 : 3,2 3,2 σ σ σ σ ,3 ,3 σ ,3      :       :        )= Contemporary Variance Matrix  σ 1,1 σ 1,2 σ 1,3    Ω =  σ 2,1 σ 2,2 σ 2,3  σ  σ σ , , 3,3   Issues Before Estimation • Stationarity: – Constant expected value – Constant Variance – Constant Covariances • Granger Exogeneity: – Order of variables • Lag Length – Optimal lag length Testing Stationarity • We have data on Canada 1966Q1-2002Q1 – GDP – Consumer Price Index (CPI) – Household Consumption (consumption) Consumption CPI GDP Descriptor 36.91 18.04 62.53 37.47 18.24 64.58 38.46 18.41 65.47 1966Q1 1966Q2 1966Q3 Declare: Time Series • Define and format: time variable – date(var_name,”dmy”) or – Quarterly(var_name, “yq”) – format: format var_name %d • Declare database as time series – Menu: statistics time series setup & utilities declare dataset to be time series data Declaring Time series We can write it: yt = α + α1 yt −1 + α 2π t −1 + ε t π t − β1 yt = β + β yt + β 3π t −1 + υt In Matrix Form:  yt   α 0t   yt −1   ε t   +       =  +      β − π π υ   t   β   t −1   t  OR: −1 −1 −1   α 0t     yt −1   0 εt   yt    +    =   +           π t   − β1   β   − β1   π t −1   − β1  υt  Inverting the Matrix gives 0    β −   −1  0  =  β 1   So we can substitute this in the equations: We find: yt = α + α1 yt −1 + α 2π t −1 + ε t π t = (β1α + β ) + (β1α1 + β ) yt −1 + (β1α + β3 )π t −1 + (β1ε t + υt ) So we can write in VAR form: yt = α + α1 yt −1 + α 2π t −1 + ε t π t = θ + θ1 yt −1 + θ 2π t −1 + ηt Almost there • After estimating the VAR we can find: (β1α + β ) = θ (β1α1 + β ) = θ1 (β1α + β3 ) = θ So we have three equations and four unknowns… Hakuna Matata • We also have the covariance matrix:  σ ε ,ε   σ ε ,η  σ ε ,η   σ ε ,ε = ση ,η   β1σ ε ,ε β1σ ε ,ε   2 β1σ ε ,ε + υt  ( • So we have a fourth equation: β1σ ε ,ε = σ ε ,η ) Run the VAR • Note that because we assume that the “real” covariance matrix has the triangular form:  σ ε ,ε   β1σ ε ,ε    σ ε ,ε  • We can use the OIRF that Stata gives us (Cholesky factorization) to watch the Structural impulse functions Run the VAR (1 lag) Study the Impulse Responses v arbas ic , inf lat ion, inf lat ion v arbas ic , inf lat ion, y v arbas ic , y , inf lat ion v arbas ic , y , y 01 00 01 00 0 s tep 95% CI orthogonali zed irf Graphs by irf name, impuls e v ariable, and res pons e v ariable Get the coefficients α1 α2 α0 θ1 θ2 θ0 Get the Errors matrix σ ε ,ε β1σ ε ,ε We find: β1 = cov(ε ,η) σε ,ε 0.000007018 = = 0.086 0.00008145 β0 = θ0 − β1α0 = 0.0005972− 0.086× 0.0574 = −0.0043 β2 = θ1 − β1α1 = 0.195− 0.086× 0.622 = 0.142 β3 = θ2 − β1α2 = 0.625− 0.086ì 0.142 = 0.614 Conclusion ã Enough restrictions ã Exact Identification • Possible to deduce the Structural Parameters To test a restricted Model • Run a non restricted model • Test the null by using the LR test on the difference between the restricted and unrestricted model λ = T (ln Wres − ln Wunres ) → χ (M ) Wres − restricted cov ariance matrix Wunres − unrestricted cov ariance matrix M − Number of restrictions Caveat • With the data we used, it is likely that the variables are cointegrated (consumption and GDP) • One should (theoretically) check for that option ... multivariate time series Basic Vector Autoregression Model • Choose – Variables – Lag Length Granger Test: Running VAR Testing in Stata • Statistics multivariate time series var diagnostics and. .. AIC We go with the LR and AIC and say (why not?) BIC Run Simple VAR • We run a simple VAR (not structural, no assumptions on order of variables) between Household Consumption, Inflation and GDP... − for AIC, T for BIC, Tests in Stata • Menu: Statistics multivariate time series var diagnostics and tests Lag-Order Selection statistics Running test • Choose Variables • Choose maximum lags

Ngày đăng: 02/09/2021, 21:09

Tài liệu cùng người dùng

Tài liệu liên quan