1. Trang chủ
  2. » Trung học cơ sở - phổ thông

Synthesis of carbohydrate

94 14 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 94
Dung lượng 1,79 MB

Nội dung

1.13 Synthesis of Monosaccharides and Analogs P Vogel, Ecole Polytechnique Fe´de´rale de Lausanne, Lausanne, Switzerland I Robina, Universidad de Sevilla, Seville, Spain ß 2007 Elsevier Ltd All rights reserved 1.13.1 Introduction 490 1.13.2 The Formose Reaction 490 1.13.3 Prebiotic Synthesis of Carbohydrates 491 1.13.4 Aldolase-Catalyzed Asymmetric Aldol Condensations 493 1.13.4.1 Resolution of Racemic Aldehydes 494 1.13.4.2 One-Pot Total Syntheses of Carbohydrates 496 1.13.4.3 Synthesis of 1,5-Dideoxy-1,5-Iminoalditols 497 1.13.4.4 Synthesis of 2,5-Dideoxy-2,5-Iminoalditols 498 1.13.4.5 Synthesis of Deoxythiohexoses 498 1.13.4.5.1 Use of aldolase antibodies 500 1.13.5 Asymmetric Synthesis of Carbohydrates Applying Organocatalysis 501 1.13.5.1 Synthesis of Ketoses 502 1.13.5.2 Synthesis of Aldoses 503 1.13.5.3 Synthesis of Amino Sugars by Aldol and Mannich Reactions 506 1.13.6 Chain Elongation of Aldehydes through Nucleophilic Additions 507 1.13.6.1 Total Synthesis of D- and L-Glyceraldehyde and Other C3 Aldose Derivatives 508 1.13.6.2 One-Carbon Homologation of Aldoses: The Thiazole-Based Method 512 1.13.6.3 Other Methods of One-Carbon Chain Elongation of Aldoses 513 1.13.6.4 Additions of Enantiomerically Pure One-Carbon Synthon 515 1.13.6.5 Two-Carbon Chain Elongation of Aldehydes 515 1.13.6.5.1 1.13.6.5.2 1.13.6.5.3 1.13.6.5.4 1.13.6.5.5 1.13.6.5.6 1.13.6.5.7 1.13.6.5.8 Asymmetric aldol reactions Nucleophilic additions to enantiomerically pure aldehydes Nitro-aldol condensations Nucleophilic additions of enantiomerically pure enolates Aldehyde olefination and asymmetric epoxidation Aldehyde olefination and dihydroxylation Aldehyde olefination and conjugate addition Allylation and subsequent ozonolysis 1.13.6.6 Three-Carbon Chain Elongation 1.13.6.6.1 1.13.6.6.2 1.13.6.6.3 1.13.6.6.4 529 Allylmetal additions Wittig–Horner–Emmons olefination Aldol reaction Other methods of three-carbon chain elongation of aldoses and derivatives 1.13.6.7 Four-Carbon Chain Elongation 1.13.6.7.1 1.13.6.7.2 1.13.6.7.3 515 516 519 519 522 523 527 527 529 531 531 531 532 (But-2-en-1-yl) metal addition Nucleophilic addition of a-furyl derivatives Hydroxyalkylation of pyrrole derivatives 1.13.6.8 Synthesis of Branched-Chain Monosaccharides from C3-Aldoses 532 533 534 534 1.13.7 Hetero-Diels–Alder Additions 536 1.13.7.1 Achiral Aldehydes as Dienophiles 536 1.13.7.2 Chiral Aldehydes as Dienophiles: Synthesis of Long-Chain Sugars 537 1.13.7.3 Hetero-Diels–Alder Addition of 1-Oxa-1,3-Dienes 540 489 490 Synthesis of Monosaccharides and Analogs 1.13.7.3.1 1.13.7.3.2 1.13.7.3.3 1.13.7.4 1.13.7.5 1.13.8 With chiral 1-oxa-1,3-dienes With chiral enol ethers as dienophiles Induced asymmetry by the Lewis acid catalyst 540 541 542 Nitroso Dienophiles: Synthesis of Azasugars 544 N-Methyltriazoline-3,5-Dione as Dienophile: Synthesis of 1-Azafagomine 545 Cycloadditions of Furans 546 1.13.8.1 Diels–Alder Additions 546 1.13.8.2 The ‘Naked Sugars of the First Generation’ 547 1.13.8.2.1 1.13.8.2.2 1.13.8.2.3 1.13.8.2.4 1.13.8.2.5 1.13.8.3 1.13.8.4 1.13.9 Total synthesis of pentoses and hexoses Total syntheses of deoxyhexoses Total synthesis of aminodeoxyhexoses and derivatives Long-chain carbohydrates and analogs ‘Naked sugars of the second generation’: Synthesis of doubly branched-chain sugars 547 548 551 553 555 Dipolar Cycloadditions of Furan 555 [4ỵ3]-Cycloadditions of Furan 556 Carbohydrates and Analogs from Achiral Polyenes 559 1.13.9.1 From Cyclopentadiene 559 1.13.9.2 From Benzene and Derivatives 561 1.13.9.3 From Cycloheptatriene 561 1.13.9.4 From Penta-1,4-Diene 563 1.13.9.5 From Furfural 563 1.13.10 Enantioselective Epoxidation of Allylic Alcohols 564 1.13.10.1 Desymmetrization of meso-Dienols 565 1.13.10.2 Kinetic Resolution of Racemic Allylic Alcohols 567 1.13.11 Enantioselective Sharpless Dihydroxylation and Aminohydroxylation 568 1.13.12 Conclusion 573 1.13.1 Introduction Total synthesis of carbohydrates and analogs has kept chemists busy since 1861 when Butlerow1a–1e discovered the ‘formose reaction’, which generates mixtures of racemic aldoses and ketoses by oligomerization of formaldehyde in the presence of Ca(OH)2 Nowadays, with the advent of highly stereoselective and enantioselective methods, almost any natural or non-natural carbohydrates can be obtained readily from inexpensive starting materials in enantiomerically pure form D-Glucose, D-mannose, D-glucosamine, D- and L-arabinose of natural source are certainly cheaper than from total synthesis But when it deals with unnatural enantiomers of common carbohydrates, or with unusual derivatives in which hydroxy groups are replaced by amino moieties, by alkoxy groups, thio, halogeno, carbon substituents, etc., total synthesis from non-carbohydrate precursors may be easy and advantageous By total synthesis, the carbohydrates are delivered in suitably protected forms In contrast, by starting from natural sugars, this sometimes requires several delicate chemical operations This chapter describes the most important synthetic approaches that have been developed during the last 25 years It will concentrate on techniques generating enantiomerically enriched, or pure carbohydrates and analogs For earlier work, the reader will have to consult available reviews.2a–3b Aldoses, alditols, and their derivatives will be considered, including aza and thiosugars (with nitrogen and sulfur in the pyranose or furanose rings) 1.13.2 The Formose Reaction The formose reaction has been developed by Loew4a,4b and Fischer,5a,5b who isolated rac-fructose osazone from the formose reaction mixture The reaction shows an induction period during which small amounts of glycolaldehyde, glyceraldehyde, and dihydroxyacetone are formed, which are believed to act as catalytic species by complexing with Synthesis of Monosaccharides and Analogs i, Et3N, DMF/H2O 6CH2O OAc ii, Ac2O, pyr HO O Thiamine⋅HCl N NH2 S OAc OAc OAc ⋅HCl N N 491 OH Cl 28% Thiamine⋅HCl Scheme Examples of selective formose reaction S H S Base N − +HCHO N + S +HCHO H N H + S N + − N + S OH − O N + H + S H O H − S H OH OH N + O H +HCHO OH O OH DHA Scheme Possible mechanism for the DHA synthesis calcium ions, in the subsequent steps The yield of formose sugars reaches a maximum at the so-called yellowing point.6 On further reaction, branched sugars are formed involving aldol condensations followed by cross-Cannizarro reactions.7 Depending on the nature of the base and additives used to induce the formaldehyde oligomerization, various proportions of trioses, tetroses, pentoses, hexoses, and long-chain aldoses and ketoses are obtained.8a–8c The addition of glycoaldehyde or a higher aldose to the reaction mixture reduces considerably the induction period for the oligomerization Umpolung catalysts of the thiamin type also reduce the induction period.9a–9c When carried out in dimethylformamide (DMF¼N, N-dimethylformamide), considerable control in the product distribution of the formose reaction is possible by adjustment of the water content (Scheme 1) When, for instance, formaldehyde is heated to 75  C for 1h with Et3N and thiamin hydrochloride in 8:1 DMF/H2O, DL-2-C-hydroxymethyl-3-pentulose, characterized as its tetraacetate 1, is produced in 28% yield.10 The formose reaction has been investigated using immobilized thiazolium catalyst.11 Under these conditions, the main products are dihydroxyacetone (DHA), erythrulose, and 4-hydroxymethyl-2-pentulose The relative importance of these products depends on the amount of thiazolium salts and concentration in 1,4-dioxane.12–14 A possible mechanism for the formation of dihydroxyacetone is shown in Scheme (Stetter reaction15a–15d analogous to the benzoin condensation catalyzed by cyanide anion) Eschenmoser and co-workers16a,16b studied the aldomerization of glycolaldehyde phosphate which led to mixtures containing mostly racemates of the two diastereomeric tetrose 2,4-diphosphates and eight hexose 2,4,6-triphosphates (Scheme 3, route A) At 20  C in the absence of air, a 0.08 molar solution of glycolaldehyde phosphate in M NaOH gave 80% yield of a 1:10 mixture of tetrose and hexose derivatives with DL-allose 2,4,6-triphosphate comprising up to 50% of the mixture of sugar phosphate In the presence of formaldehyde (0.5mol equiv.), sugar phosphates were formed in up to 45% yield, with pentose 2,4-diphosphates dominating over hexose triphosphates by a ratio of 3:1 (Scheme 3, route B) The major component was found to be DL-ribose 2,4-diphosphate, the ratios of ribose, arabinose, lyxose, and xylose 2,4-diphosphate being 52:14:23:11 The aldomerization of in the presence of H2CO is a variant of the formose reaction It avoids the formation of complex product mixtures as a consequence of the fact that aldoses which are phosphorylated at the C(2) position cannot undergo aldose–ketose tautomerization The preference for ribose 2,4-diphosphate and allose 2,4,6-triphosphate formation might have significance to the discussion about the origin of ribonucleic acids 492 Synthesis of Monosaccharides and Analogs OPO3Na2 O OH CHO CHO OPO3Na2 NaOH H2O OPO3Na2 OH OPO3Na2 H2O (a) CHO NaOH OPO3Na2 + CH2O NaOH H2O Na2O3PO HO OPO3Na2 CHO OH OPO3Na2 + Hexose 2,4,6-triphosphates OH OPO3Na2 major (b) Scheme a, Selective condensation of glycolaldehyde phosphate alone; b, in the presence of formaldehyde CH2O + CO + H2 Cat 2CH2O + CO + H2 Cat 2CH2O + 2CO + H2 Cat C4H8O4 3CH2O + 2CO + 2H2 Cat C5H10O5 3CH2O + 3CO + 3H2 Cat HOCH2CHO C3H6O3 Cat.: Rh(CO)(Ph3P)2Cl and tertiary amines C6H12O6 Scheme Rh(I)-catalyzed condensations of formaldehyde with syn-gas giving linear carbohydrates The ‘classical’ formose reaction gives a very large number of carbohydrates including branched-chain isomers.8a–8c Straight-chain carbohydrates such as trioses, tetroses, pentoses, and hexoses are readily obtained in good yield by a reaction of formaldehyde with syngas in the presence of RhCl(CO)(PPh3)2 and tertiary amines (Scheme 4).17 1.13.3 Prebiotic Synthesis of Carbohydrates The formation of Earth from a diffuse cloud of cosmic gas and dust occurred some 4.6Â109 years ago It is proposed that c 4.0Â109 years ago bodies of water were formed and organic chemistry became established The oldest known fossils date back to c 3.6Â109 years and show resemblance to modern blue green algae Biogenesis from organic chemistry to a primitive cell must therefore have occurred in the time in-between of c 0.4Â109 years It is accepted that there was no free oxygen until the advent of photosynthetic bacteria c 2.7Â109 years ago Under these (reductive) conditions, energy required for chemical synthesis would be available from the sun in the form of ultraviolet radiation, blocked today by the ozone layer Water, ammonia, HCN, acetonitrile, acrylonitrile, cyanogen, cyanoacetylene, and formaldehyde are believed to be the building blocks for nature Laboratory experiments have shown that HCN is formed in good yield from gaseous mixtures of N2, H2, and NH3 in spark discharge experiments of by the action of ultraviolet radiation on mixtures of CH4 and NH3, gases abundant in outer space A spark discharge passed through CH4 and N2, or through HCN, produced cyanoacetylene and cyanogen, respectively Similar experiments have demonstrated the formation of formaldehyde.18 Shevlin and co-workers19 have reported that co-condensation of carbon with H2O and NH3 at 77K generates amino acids They also showed that atomic carbon generated by vaporizing in an arc under high pressure reacts with water at 77K to form low yields of straight-chain aldoses with up to five carbon centers A mechanism (Scheme 5) involving hydroxymethylene species has been supported by deuterium labeling studies.20 Under UV irradiation, neutral aqueous solutions of formaldehyde form CO, CO2, CH4, CH3CH3, and ethylene gas At the same time, formaldehyde condenses into glycoaldehyde and glyceraldehyde, two active precurors in the formose reaction This might correspond to reactions that occurred on prebiotic Earth and that have led to the first carbohydrates via the formose reaction.21 There is a debate whether the ‘classical’ formose reaction 3a–5b might have played a role in the prebiotic synthesis of carbohydrates When slurry of carbonate-apatite is boiled with 0.5M formaldehyde at pH 8.5, a yield lower then Synthesis of Monosaccharides and Analogs O :C H HCOH H2C O H (D)H O H C OH 77 K C + H2O (D)HO H2C 77 K O HCOH H(D) H(D) HCOH Tetroses 493 HO OH O H2C C C H H Pentoses Scheme Reaction of carbon atoms with water: formation of aldoses O OH OH [Fe(OH)O] 15 ЊC, pH 5–6 O OH HO + OH OH (±)-Sorbose 15.2% Glyceraldehyde OH O OH Dihydroxyacetone HO HO OH + OH OH (±)-Fructose 12.9% O OH OH HO OH OH (±)-Psicose 6.1% OH O OH O OH HO + + HO HO OH HO COOH OH Me Lactic acid O HO (±)-Tagatose 5.6% CH2OH OH (±)-Dendroketose 2.5% Scheme [Fe(OH)O]-catalyzed reactions of D,L-glyceraldehyde O :S OH O−M+ O + RCHO S O− M + H O O H R Scheme Sulfite anion and aldehyde adduct formation: a possible concentration process in double-layer hydroxide minerals such as Mg2Al(OH)6ỵ[SO3H(H2O)2] 40% in sugars is reached after a few hours Prolonged heating decomposes the carbohydrates Sugars have been detected from 0.01M formaldehyde but not from 0.001 M solution Thus it appears than the ‘classical’ formose model for prebiotic accumulation of sugars is not plausible because it requires concentrated solutions of formaldehyde and the sugars formed are rapidly decomposed.22 Iron(III)hydroxide oxide [Fe(OH)O] has been shown to catalyze the condensation of 25mM DL-glyceraldehyde to ketohexoses at 15  C (pH 5–6) After 16 days, 15.2% of sorbose, 12.9% of fructose, 6.1% of psicose, 5.6% of tagatose, and 2.5% of dendroketose are obtained After 96 days at 15  C, this mixture was not decomposed [Fe(OH)O] also catalyzes the isomerization of glyceraldehyde into dihydroxyacetone and of dihydroxyacetone into lactic acid (Scheme 6).23 The ‘classical formose’ conditions are not capable to produce large amounts of ribose (for RNA synthesis), nor of any other individual sugar In contrast, the reduced sugar pentaerythritol is formed with great selectivity by the ultraviolet irradiation of 0.1M formaldehyde This compound may have played an important role in prebiotic chemistry.24 The seminal work of Eschenmoser and co-workers16a,16b (Scheme 3) suggests that the ‘initial RNA world’ might have involved glycoaldehyde phosphate.25 In order to explain the concentration process required, one can envisage that double-layer hydroxide minerals might have played a decisive role, in particular those incorporating sodium sulfite, which can absorb formaldehyde, glycoaldehyde, and glyceraldehyde by adduct formation with the immobilized sulfite anions This translates into observable uptake at concentration !50mM (Scheme 7).26 Sugars have been proposed to be the optimal biosynthetic carbon substrate of aqueous life throughout the universe.27 494 Synthesis of Monosaccharides and Analogs Benner and co-workers28 have followed the formation of pentoses under alkaline conditions from simple precursors such as formaldehyde and glycolaldehyde in the presence of borate minerals The latter stabilize the pentose selectively by forming complexes 1.13.4 Aldolase-Catalyzed Asymmetric Aldol Condensations The enzymatic aldol addition represents a useful method for the synthesis of various sugars and sugar-like structures.29a–29e More than 20 different aldolases have been isolated (see Table for examples) and several of these have been cloned and overexpressed.30 They catalyze the stereospecific aldol condensation of an aldehyde with a ketone donor Two types of aldolases are known Type I aldolases found primarily in animals and higher plants not require any cofactor The X-ray structure of the aldolase from rabbit muscle (RAMA¼rabbit muscle aldolase) indicate that Lys-229 is responsible for Schiff-base formation with dihydroxyacetone phosphate (DHAP) (Scheme 8a) Type II aldolases found primarily in microorganism use Znỵỵ as cofactor which acts as a Lewis acid enhancing the electrophilicity of the ketone (Scheme 8b) In both cases, the aldolases accept a variety of natural (Table 1) and of Table Examples of enzymes catalyzing the equilibria of natural products with various aldol donors and various aldehydes (the wavy line indicating the C–C bond involved in the reversible aldol reaction)29a–29e Aldol donor (nucleophiles) DHAP O OP − OH O OP − PO OH OOC OH OH O OOC OH OH FDP aldolase OH OH − OOC OP OH DAHP synthetase 3-Deoxy-2-oxo-6-Pgluconate aldolase O OH O − PO O OH O OOC OP OH Fuculose-1-P-aldolase OH OH O OH OH OH OH OH OH O OH AcNH Sialic acid synthetase O − OH OH OH AcNH OH Sialic acid aldolase O OH OP OH 3-Deoxy-2-oxo-6-PTagatose-1,6-P2 aldolase OH OH OH − OOC OH OH OOC OP PO OH Kdo aldolase − OOC OH OH OOC OH Kdo synthetase OH PO − OH galactonate aldolase 495 Synthesis of Monosaccharides and Analogs Table (continued) Aldol donor O − O OOC H O − OOC OH O OH O − OOC − COO OH OP H − OOC O HO Me O − COO NH3 OH 3-Deoxy-2-oxo-Larabinoate aldolase 2-Deoxyribose5-P-aldolase − OOC OH Me OH D-Thr OH − OOC NH3 − OOC OH 4-Hydroxy-2-oxoglutarate aldolase − OOC Me aldolase NH3 Me OH 4-Hydroxy-4-methyl-2oxoglutarate aldolase O OH − OOC 3-Deoxy-2-oxo-Dpentanoate aldolase L-Thr O − COO − OOC aldolase NH3 − OOC OH OH OH 3-Deoxy-2-oxo-Dglucarate aldolase O Hydroxybutyrate aldolase Ser-hydroxymethyl transferase HO HO HO OH OH − COO O − OOC OH OH OH N-Acetylneuraminic acid aldolase from E coli O OH (Kdo) OH OH − OOC OH OH OH − OOC OH OH OH − OOC O OH HO HO OH AcNH OH OH OH OH OH enantiomer of Kdo N-Acetylneuraminic acid aldolase mutant O HO − OOC O OH OH NHAc OH enantiomer of Neu5Ac N-Acetylneuraminic acid aldolase mutant33 FDP, fructose-1,6-diphosphate; DHAP, dihydroxyacetone phosphate; Kdo, 3-deoxy-D-manno-oct-2-ulosonate; P¼ 2–O3P non-natural acceptor substrates (Scheme 9) N-acetylneuraminic acid aldolase (Neu5Ac aldolase) from Escherichia coli catalyzes the reversible aldol reaction of N-acetyl-D-mannosamine and pyruvate to give N-acetylneuraminic acid (sialic acid) This enzyme is quite specific for pyruvate as the donor, but flexible to a variety of D- and, to some extent, 31a,31b L-hexoses and L-pentoses as acceptor substrates Using error-prone PCR (polymerase chain reaction) for in vitrodirected evolution, the Neu5Ac aldolase has been altered to improve its catalytic activity toward enantiomeric substrates such as N-acetyl-L-mannosamine and L-arabinose to produce the enantiomer of sialic acid (a potent 496 Synthesis of Monosaccharides and Analogs −− Lys-Enz HN O3PO −− OH H (a) H N OH OH O3PO R H (b) O O Zn Enz N ++ R Scheme a, Type I aldolases form enamine nucleophiles (donor); b, type II aldolases use Zn2ỵ as cofactor activating the aldehyde (acceptor) O R H OH O RAMA + DHAP R = H, Me, ClCH2, CHO, COOH, N3CH2CHO, THPOCH2, PhCOOCH2 O Y OH O −− OPO3 Y X X = H, Me, OH, OMe, OAc, NHAc Y = H, OH, OPO3 OH O3POCH2, RAMA + DHAP H −− OPO3 R X OH , F, N3 Scheme Examples of RAMA-catalyzed aldol condensations −− O O3PO O OH + DHAP −− H FDP aldolase OPO3 OH G3P −− O3PO O OH −− OPO3 OH OH FDP Scheme 10 Stereospecific FDPaldolase-catalyzed aldol reaction of DHAPỵG3P FDP neuraminidase inhibitor for the treatment of flu is derived from sialic acid),32 and 3-deoxy-L-manno-oct-2-ulosonic acid (the enantiomer of Kdo)30,33 (Table 1) 1.13.4.1 Resolution of Racemic Aldehydes Fructose-1,6-diphosphate (FDP) aldolase catalyzes the reversible aldol addition of DHAP and D-glyceraldehyde3-phosphate (G3P) to form D-fructose-1,6-diphosphate (FDP), for which Keq %104 M–1 in favor of FDP formation (Scheme 10) RAMA accepts a wide range of aldehyde acceptor substrates with DHAP as the donor to generate 3S,4S vicinal diols, stereospecifically (Scheme 9) The diastereoselectivity exhibited by FDP aldolase depends on reaction conditions Racemic mixture of non-natural aldehyde acceptors can be partially resolved only under conditions of kinetic control When six-membered hemiacetals can be formed, racemic mixtures of aldehydes can be resolved under conditions of thermodynamic control (Scheme 11) DL-Glyceraldehyde and 1,3-dihydroxyacetone are obtained from glycerol mild oxidation, for instance with hydrogen peroxide in the presence of ferrous salts as catalysts.34 Selective formation of trioses has been observed in the formose reaction when a-ketols bearing electron-withdrawing substituents were added to the reaction mixture.35 In the presence of thiazolium salts, selective conversion of formaldehyde into 1,3-dihydroxyacetone has been reported.36a,36b Hydration of halopropargyl alcohol followed by hydrolysis gives 1,3-dihydroxyacetone.37a,37b DHAP can be generated by three different procedures: (1) in situ from fructose 1,6-diphosphate with the enzyme triosephosphate isomerase; (2) from the dimer of dihydroxyacetone by chemical phosphorylation with POCl3 (Scheme 12); or (3) from dihydroxyacetone by enzymatic phosphorylation using ATP and glycerol kinase, with in situ generation of the ATP using phosphoenol pyruvate (PEP) or acetyl phosphate as the phosphate donor (Scheme 13).34 Synthesis of Monosaccharides and Analogs O DHAP + OH H O DHAP + Me 497 −− P = P(O)O2 H OH OH O Me Me OP O + OH HO OH OH OP O OH HO >97% OH OP OH O + HO 97% 90% ee) OH i, NH3, MeOH, 100 8C ii, BzCl, K2CO3 OH OH OH i, TsO− ii, OMe OMe TsOH iii, NaN3 iv, LiAlH4, Et2O v, TsOH, H2O HO 3-epi-Daunosamine (L-xylo) Scheme 139 Total syntheses of 3-amino-2,3,6-trideoxyhexoses OH HO NH2 L-Daunosamine NH2 OH OH Synthesis of Monosaccharides and Analogs OH OTBS OTBS HO i, AD-mix-b ii, TBSCl, py i, SOCl2 ii, RuCl3 OH OBn 569 O O Bu4NF S O O OBn OBn TBS = SiMe2(t-Bu) SPh O PhSNa HO OSO3− OH OBn O i, mCPBA ii, AcONa, Ac2O OBn HO H OH OBn OH AD-mix-b, 25 ЊC, 2d t-BuOH/H2O (1:1) 96%, 82% ee OH OH O O Pd(OH)2, H2 (50 psi) MeOH, pH 1.0, 65 ЊC H OH 4-Deoxy-D-threose O O O AD-mix-a, 25 ЊC, d t-BuOH/H2O (1:1) 100%, 79% ee OH OH OH O O Pd(OH)2, H2 (50 psi) MeOH, pH 1.0, 65 ЊC H OH 4-Deoxy-L-threose O Scheme 140 Total asymmetric synthesis of tetritol and tetrose derivatives O AD-mix-a MeSO2NH2 aq t-BuOH ЊC OH O HO OH O OH mCPBA CH2Cl2 TsOH PhH, 80 ЊC O (+)-555 H2O2 NaOH O O O O (+)-Isolevo glucosenone O O O O H2NNH2⋅H2O AcOH (cat) MeOH, ЊC O OH MnO2 CH2Cl2 20 ЊC O O O (−)-Levoglucosenone O AD-mix-b MeSO2NH2 aq t-BuOH ЊC OH HO O O O O O O (−)-Isolevoglucosenone O (+)-Levoglucosenone Scheme 141 Total synthesis of (ỵ)- and ()-isolevoglucosenone and of (ỵ)- and ()-levoglucosenone Applying the same route, D- and L-mannose have been obtained in five-step synthesis (39% overall yield) from furfural Similarly, the same methodology has been extended to the preparation of D- and L-gulose and D- and L-talose (19% yield),300a,300b and to the synthesis of 2-deoxy- and 2,3-dideoxyhexoses.301 A route to difluorosugar 561 has been developed It includes a Stille coupling302a–302c of 556 and 557 that generates diene 558 Sharpless asymmetric dihydroxylation of 558 was chemoselective and provided diol 559 in 54% yield The corresponding acetonide 560 was then debenzylated with H2O2/LiOH After treatment with 12 M HCl in THF, the semiprotected 1-deoxy-1,1-difluoro-D-xylulose 562 was obtained (Scheme 142).303 570 Synthesis of Monosaccharides and Analogs Pd(OAc)2, CuI Ph3P, DMF OPMBz 30−40 ЊC 41% 557 MEM = MeOCH2CH2OCH2 PMBz = 4-MeOC6H4CO OMEM F + SnBu3 I F 556 (AD-mix-a) K2OsO4⋅2H2O (DHQD)2PHAL K3Fe(CN)6, K2CO3 t-BuOH/H2O 54% MEMO F F OMEM F F 558 MEMO F OH Acetone, CuSO4 TsOH, 20 ЊC 68% OPMBz OH OPMBz F OPMBz OH 560: R = PMBz 561: R = H 559 H2O2, LiOH CF2H O O i, HCl, THF ii, Acetone, TsOH, CuSO4 OH O HO 562 Scheme 142 Synthesis of 1-deoxy-1,1-difluoro-D-xylose O O R EtO i, NMO, OsO4 t-BuOH/acetone ii, Ac2O/py OH AD-mix-a R EtO OH 565 (80%, 80% ee) 566 (89%, 89% ee) 563: R = H 564: R = OBn O O OAc OH R EtO 566 OAc OH 567 55%, d.r 6:1 568 89%, d.r 5:1) O O HO OBn 569 d.r 5:1 O EtOOCCH2P(OCH2CF3)2 t-BuOK 18-crown-6 THF OBn O i, AD-mix-a 70% ii, t-BuMe2SiCl imidazole 80% HO HO + H i, NMO, OsO4 t-BuOH/acetone ii, TsOH/py 53% O OBn TBSO 571 NMO OsO4 MeOH 70% OBn O OEt 570 O HO O Bu4NF THF 80% O HO TBSO 572 d.r 10:1 HO O HO OBn HO OBn 573 91%, ee Scheme 143 O’Doherty’s iterative dihydroxylation of dienoates Ethyl D-galactonates 567 and 568 have been prepared by two successive dihydroxylations of dienoates 563 and 564, respectively (Scheme 143) Intermediate diol 566 has been converted into L-galacto-g-lactone 569 (Scheme 143).304 When using the (2Z,4E)-dienoate 570, the same sequence of dihydroxylations provided L-talo-glactone derivative 573.305 Both cis-((Ỉ)-576) and trans-2-substituted-1,2,3,6-tetrahydropyridin-3-ol (Ỉ)-577 have been prepared via an aldol condensation of tosylamide 574 with acrolein and subsequent ring-closing metathesis catalyzed by Grubbs’ I catalyst (Scheme 144).306 Asymmetric dihydroxylation of trans-acetonide (Ỉ)-577 with the Hsung–Vedejs AD-mix-b307 gave Synthesis of Monosaccharides and Analogs Ts N Ts H N COOEt i, (i-Pr)2NLi THF ii, Acrolein THF, 87% COOEt i, LiAlH4 THF, 87% ii, Me2C(OMe)2 p - TsOH, PhH 55% OH 574 Ts N Ts N Grubbs' cat I CH2Cl2 87−90% O O Ts N Hsung−Vedejs AD-mix-a 28 h O O O (±)-576 575 (±)-577 Ts N + O O (±)-577 Ts N HO OH (+)-578 42% O OH (−)-579 35% i, Red-Al, THF toluene 110 ЊC, h ii, MeOH/HCl 40% H N HO O + O HO 571 46% H N OH HO OH OH (+)-580 OH OH OH (+)-581 Hsung−Vedejs AD-mix-a : 1:3:3:2:0.1:0.05 alkene/K3Fe(CN)6/K2CO3/MeSO2NH2/(DHQ)2PHAL/OsO4 Grubbs’ cat I: (Cy3P)2Ru(Cl)2CHPh Scheme 144 Ring-closing metathesis and asymmetric dihydroxylation: synthesis of iminoalditols OEt O (HJQ)2PHAL(1.2 mol%) t-BuOH 582 OH 583 O CbzN H OH (EtO)3CH TsOH EtO + O i, NaIO4 ii, NaBH4 iii, TBSCl COOEt OH 584 583 7:1 O OTBS O CbzN H 585 O OH O COOEt CbzN H Bn OC NCl ONa OsO4 (1 mol%) O (i-Bu)2AlH 91% OH − mCPBA CH2Cl2 ЊC HO N Cbz OTBS 586 OH i, NaBH4,CeCl3 ii, OsO4/NMO N Cbz OTBS HO EtO OH OH N Cbz OTBS H2/Pd−C TsOH, MeOH HO OH H TSO N H OH − Scheme 145 Application of the Sharpless asymmetric aminohydroxylation and of the aza-Achmatowicz reaction to the synthesis of D-1-deoxymannonojirimycin 572 Synthesis of Monosaccharides and Analogs COOEt AD-mix-a CH3SO2NH2 t-BuOH/H2O ЊC 86% OH COOEt OH TBSCl/Et3N DMAP CH2Cl2 20 ЊC 64% 587 i, 4-NO2C6H4COCl py, DMAP, ЊC ii, NaN3/DMF 20 ЊC 80% COOEt N3 589 i, CF3COOH, THF/H2O, 20 ЊC ii, (i - Bu)2AlH, THF/acetone, −78 ЊC iii, TsOH/py (MeO)3CH/MeOH Me O TsHN (−)-591 OMe COOEt OH 588 93% ee OTBS i, H2/Pd−C EtOAc, 20 ЊC ii, TsCl, Na2CO3 Toluene/H2O 20 ЊC 80% OTBS OTBS COOEt NHTs 590 TBS = SiMe2 (t-Bu) T = 4-MeC6H4SO2 DMAP = 4-Me2NC5H4N COOEt 587 TsN=C=O Pd(Ph3P)4 THF, 86 % NTs O O O i, H2/Pd−C, EtOAc, 20 ЊC ii, NaOH/MeOH iii, CF3COOH/THF, 72% 592 ii, TsOH/py, (MeO)3CH, MeOH, 94% NHTs 593 TsHN i, (i-Bu)2AlH, THF/toluene, −78ЊC O Me O 594 OMe Scheme 146 New route to deoxyamino sugars (ỵ)-578 and ()-579 in 42% and 35% yield, respectively The tosyl groups and acetonides were then removed by RedAl and HCl/MeOH to give 1,5-dideoxy-1,5-imino-D-allitol (ỵ)-580 and 1,5-dideoxy-1,5-imino-L-mannitol (ỵ)-581 Similarly, reaction of trans-acetonide 577 with HsungVedejs AD-mix-a afforded acetonides ()-578 and (ỵ)-579 in 50 and 40% yield, respectively The latter were converted, as before, into 1,5-dideoxy-1,5-imino-L-allitol (À)-580 and 1,5-dideoxy-1,4-imino-D-mannitol (À)-581.307 The Sharpless asymmetric aminohydroxylation308 of the electron-deficient 2-vinylfuran 582 gives a 7:1 mixture of semiprotected amino alcohols 583 and 584 (41%) The major product 583 (>86% ee) was reduced by diisobutylaluminum hydride giving diol 585,300a,300b which can be converted into the b-hydroxyfurylamine derivative 586, an important synthetic building block for various biologically important compounds, including 1,5-dideoxy-1,5-iminoalditols (Scheme 145) A less regioselective, but shorter, way to intermediate 586 is the direct asymmetric aminohydroxylation of vinylfuran.310a–312b Sharpless asymmetric dihydroxylation of ethyl sorbate gives diol 587 regioselectively Selective silylation of 587 provided alcohol 588 (93% ee), which was esterified as a paranitrobenzoate and displaced with NaN3 to give the allylic azide 589 Hydrogenolysis of 589 and subsequent formation of a tosylamide furnished 590, which was then converted into methyl N-tosyl-a-D-tolyposaminide (À)-591 Alternatively, diol 587 was reacted with TsN¼C¼O to give 592 (Ts ¼ para-toluenesulfonyl) Hydrogenation of the alkene moiety and subsequent methanolysis and acidic treatment provided lactone 593 Reduction of lactone 593 with (i-Bu)2NH and glycosidation with methanol furnished methyl 4-epi-N-tosyl-a-D-tolyposaminide (ỵ)-594 (Scheme 146).313 Lindstroăm and co-workers313 have presented an efficient asymmetric synthesis of the iminoalditol 599 (Scheme 147) The method requires only four steps in water, without the use of protecting groups (E,E)-1,6-Dibromohexa-2,4-diene 595 undergoes Sharpless asymmetric dihydroxylation with formation of diol 596 (70% yield, 97% ee) Upon heating in water at 50  C, the allyl bromide is hydrolyzed chemoselectively giving triol 597 Epoxidation of 597 with H2O2 in the presence of dinuclear peroxotungstate catalyst K2[W2O3(O2)4(H2O)2]314 gave 598 in 99% yield and 92% de Ammonolysis of bromide 598 in aqueous ammonia was spontaneously followed by an intramolecular ring opening of the epoxide (60% overall yield based on 595) Synthesis of Monosaccharides and Analogs AD-mix-a, NaHCO3 Br Br 595 H2O2 (1.2 equiv.) H2O, 20 ЊC K2[W2O3(O2)4(H2O)2] (0.02 equiv.) 99%, d.r 96:4 Br MeSO2NH2 H2O/t-BuOH1:1 ЊC,16 h 70%, 97% ee Br OH OH Br Br H2O 50 ЊC, h 98% OH OH OH OH 596 597 HO OH O OH 10% NH3/H2O 4h 88% 598 573 OH OH N H H 599 OH Scheme 147 Efficient asymmetric synthesis of an azasugar in water 1.13.12 Conclusion For many years, carbohydrates were very difficult synthetic targets because of their complexity arising from their stereochemistry and their multifunctionality In parallel with the recent revolution in organic synthesis, a large number of complicated and rare monosaccharides have been prepared by total, asymmetric synthesis Methods are available that allow one to reach both enantiomers of any natural or non-natural monosaccharides, including deoxyaminosugars, thiosugars, and azasugars, and this, quite offen, in a few synthetic steps Depending on the target, pure chemical procedures relying on asymmetric catalysis using either metallic or pure organic catalysts can be applied successfully, alone or in combination with chemoenzymatic methods References Butlerow, M A C R Hebd Se´ances Acad Sci 1861, 53, 145–147 Butlerow, M A Ann Chem 1861, 120, 295–298 Jones, J K N.; Szarek, W A In Total Synthesis of Natural Products; ApSimon, J., Ed.; Wiley-Interscience: New York, 1973; Vol 1, pp 1–80 Zamojski, A.; Grynkiewicz, G In Total Synthesis of Natural Products; ApSimon, J., Ed.; Wiley-Interscience: New York, 1984; Vol 6, pp 141–235 McGarvey, G J.; Kimura, M.; Oh, T.; Williams, J M J Carbohydr Chem 1984, 3, 125–188 Schmidt, R R Pure Appl Chem 1987, 59, 415–424 Zamojski, A In Preparative Carbohydrate Chemistry; Hanessian, S., Ed.; Dekker: New York, 1997; pp 615–636 Kirschning, A.; Jesberger, M.; Schoning, K.-U Synthesis 2001, 507–540 Vogel, P In Encyclopedia of Glycosciences; Fraser-Reid, B., Tatsuta, K., Thiem, J., Eds.; Springer: Berlin, Germany, 2001; Vol 2, Chapter 4.4, pp 1023–1174 3b Vogel, P In The Organic Chemistry of Sugars; Levy, D E., Fuăgedi, P., Eds.; CRC Taylor & Francis Group: Boca Raton, FL, 2006; Chapter 13, pp 629–725 4a Loew, O Ber Dtsch Chem Ges 1889, 22, 470–478 4b Loew, O Ber Dtsch Chem Ges 1889, 22, 478–483 5a Fischer, E.; Passmore, F Ber Dtsch Chem Ges 1889, 22, 359–361 5b Fischer, E Ber Dtsch Chem Ges 1890, 23, 370–394 Mizuno, T.; Mori, T.; Shiomi, N.; Nakatsuji, N Nippon Nogei Kaishi (J Agr Chem Soc Jpn.) 1970, 44, 324–331 Shigemasa, Y.; Nagae, O.; Sakazawa, C.; Nakashima, R.; Matsuura, T A J Am Chem Soc 1978, 100, 1309–1310 8a Weiss, A H.; Socha, R F.; Likholobov, V A.; Sakharov, M M CHEMTECH 1980, 10, 643–647 8b Socha, R F.; Weiss, A H.; Sakharov, M M J Catal 1981, 67, 207–217 8c Decker, P Umschau 1973, 73, 733–734 9a Castells, J.; Geijo, F.; Lo´pez-Calahorra, F Tetrahedron Lett 1980, 21, 4517–4520 9b Castells, J.; Lo´pez-Calahorra, F.; Geijo, F Carbohydr Res 1983, 116, 197–207 9c Matsumoto, T.; Inoue, S J Chem Soc., Chem Commun 1983, 171–172 9d Matsumoto, T J Am Chem Soc 1984, 106, 4829–4832 9e Shigemasa, Y.; Sasaki, Y.; Ueda, N.; Nakashima, R Bull Chem Soc Jpn 1984, 57, 2761–2767 10 Shigemasa, Y.; Ueda, T.; Saimoto, H J Carbohydr Chem 1989, 8, 669–673 11 Tajima, H.; Niitsu, T.; Inoue, H J Chem Eng Jpn 1999, 32, 776–782 12 Tajima, H.; Niitsu, T.; Inoue, H J Chem Eng Jpn 2000, 33, 793–796 13 Tajima, H.; Tabata, K.; Niitsu, T.; Inoue, H J Chem Eng Jpn 2002, 35, 564–568 14 Tajima, H.; Inoue, H.; Ito, M J Comput Chem Jpn 2003, 2, 127–134 15a Stetter, H.; Kuhlmann, H Chem Ber 1976, 109, 2890–2896 15b Stetter, H.; Kuhlmann, H Angew Chem., Int Ed 2000, 39, 2281–2285 15c See also: Enders, D.; Balensiefer, T Acc Chem Res 2004, 37, 534–541 15d Enders, D.; Kallfass, U Angew Chem., Int Ed 2002, 41, 17431745 16a Muăller, D.; Pitsch, S.; Kittaka, A.; Wagner, E.; Wintner, C E.; Eschenmoser, A Helv Chim Acta 1990, 73, 1410–1468 1a 1b 1c 1d 1e 2a 2b 2c 3a 574 Synthesis of Monosaccharides and Analogs 16b See also: Krishnamurthy, R.; Guntha, S.; Eschenmoser, A Angew Chem., Int Ed 2000, 39, 2281–2285 17 Okano, T.; Ito, H.; Konishi, H.; Kiji, J Chem Lett 1986, 1731–1734 18 Sutherland, J D.; Whitfield, J N Tetrahedron 1997, 53, 11493–11527 19 Shevlin, P B.; McPherson, D W.; Melius, P J Am Chem Soc 1983, 105, 488–491 20 Flanagan, G.; Ahmed, S N.; Shevlin, P B J Am Chem Soc 1992, 114, 3892–3896 21 Pestunova, O.; Simonov, A.; Snytnikov, V.; Stoyanovsky, V.; Parmon, V Adv Space Res 2005, 36, 214–219 22 Reid, C.; Orgel, L E Nature (London) 1967, 216, 455 23 Weber, A L J Mol Evol 1992, 35, 1–6 24 Schwartz, A W.; De Graaf, R M J Mol Evol 1993, 36, 101–106 25 Pitsch, S.; Pombo-Villar, E.; Eschenmoser, A Helv Chim Acta 1994, 77, 2251–2285 26 Pitsch, S.; Krishnamurthy, R.; Arrhenius, G Helv Chim Acta 2000, 83, 2398–2411 27 Weber, A L Origins Life Evol Biosphere 2000, 30, 33–43 28 Ricardo, A.; Carrigan, M A.; Olcott, A N.; Benner, S A Science 2004, 303, 196 29a Wong, C H.; Halcomb, R L.; Ichikawa, Y.; Kajimoto, T Angew Chem., Int Ed Engl 1995, 34, 412–432 29b Gijsen, H J M.; Qiao, L.; Fitz, W.; Wong, C.-H Chem Rev 1996, 96, 443–473 29c Takayama, S.; McGarvey, G J.; Wong, C.-H.; Lerner, R A Chem Soc Rev 1997, 26, 407–415 29d Machajewski, T D.; Wong, C.-H.; Lerner, R A Angew Chem., Int Ed 2000, 39, 1352–1374 29e Silvestri, M G.; Desantis, G.; Mitchell, M.; Wong, C.-H Top Stereochem 2003, 23, 267–342 30 See, for example: Hsu, C.-C.; Hong, Z.; Wada, M.; Franke, D.; Wong, C.-H PNAS 2005, 102, 9122–9126 31a Lin, C H.; Sugai, T.; Halcomb, R L.; Ichikawa, Y.; Wong, C.-H J Am Chem Soc 1992, 114, 10138–10145 31b Navor Le Gautheron, C.; Ichikawa, Y.; Wong, C.-H J Am Chem Soc 1991, 113, 7816–7818 32 Von Itzstein, M.; Wu, W Y.; Kok, G B.; Pegg, M S.; Dyason, J C.; Jin, B.; Van Phan, T.; Smythe, M L.; White, H F.; Oliver, S W Nature 1993, 363, 418–423 33 Wada, M.; Hsu, C.-C.; Franke, D.; Mitchell, M.; Heine, A.; Wilson, I.; Wong, C.-H Bioorg Med Chem 2003, 11, 2091–2098 34 Witzemann, E J J Am Chem Soc 1914, 36, 2223–2233 35 Morozov, A A React Kinet Catal Lett 1992, 46, 71–77(Chem Abstr 1992, 116, 174545) 36a Saimoto, H.; Kotani, K.; Shigemasa, Y.; Suzuki, M.; Harada, K.-I Tetrahedron Lett 1989, 30, 2553–2554 36b Yamashita, K.; Wakao, N.; Nango, M.; Tsuda, K J Polym Sci Part A: Polym Chem 1992, 30, 2247–2250(Chem Abstr 1992, 117, 151580z) 37a Ando, T.; Shioi, S.; Nakagawa, M Bull Chem Soc Jpn 1972, 45, 2611–2615 37b Sonogashira, K.; Nakagawa, M Bull Chem Soc Jpn 1972, 45, 2616–2620 38 Eyrisch, O.; Sinerius, G.; Fessner, W.-D Carbohydr Res 1993, 238, 287–306 39 Franke, D.; Machajewski, T.; Hsu, C.-C.; Wong, C.-H J Org Chem 2003, 68, 6828–6831 40 Henderson, I.; Sharpless, K B.; Wong, C.-H J Am Chem Soc 1994, 116, 558–561 41 Alajarı´n, R.; Garcı´a-Junceda, E.; Wong, C.-H J Org Chem 1995, 60, 4294–4295 42a Ziegler, T.; Straub, A.; Effenberger, F Angew Chem., Int Ed Engl 1988, 27, 716–717 42b Straub, A.; Effenberger, F.; Fisher, P J Org Chem 1990, 55, 3926–3932 42c Effenberger, F.; Null, V Liebigs Ann Chem 1992, 1211–1212 42d Zhou, P.; Salleh, H M.; Chan, P C M.; Lajoie, G.; Honek, J F.; Nambiar, P T.; Ward, O P Carbohydr Res 1993, 239, 155–166 42e Lemaire, M.; Valentin, M L.; Hecquet, L.; Demuynck, C.; Bolte, J Tetrahedron: Asymmetry 1995, 6, 67–70 43 Von der Osten, C H.; Sinskey, A J.; Barbas, C F., III; Pederson, R L.; Wang, Y.-F.; Wong, C.-H J Am Chem Soc 1989, 111, 3924–3927 44 Kajimoto, T.; Liu, K K C.; Pederson, R L.; Zhong, Z.; Ichikawa, Y.; Porco, J A., Jr.; Wong, C.-H J Am Chem Soc 1991, 113, 6187–6196 45a Hung, R R.; Straub, J A.; Whitesides, G M J Org Chem 1991, 56, 3849–3855 45b Liu, K K.-C.; Kajimoto, T.; Chen, L.; Zhong, Z.; Ichikawa, Y.; Wong, C H J Org Chem 1991, 56, 6280–6289 45c Kajimoto, T.; Chen, L.; Liu, K K C.; Wong, C.-H J Am Chem Soc 1991, 113, 6678–6680 46 Takaoka, Y.; Kajimoto, T.; Wong, C.-H J Org Chem 1993, 58, 4809–4812 47 Miura, T.; Kajimoto, T Chirality 2001, 13, 577–580 48 Chou, W.-C.; Chen, L.; Fang, J.-M.; Wong, C.-H J Am Chem Soc 1994, 116, 6191–6194 49 Wong, C.-H.; Garcı´a-Junceda, E.; Chen, L.; Blanco, O.; Gijsen, H J M.; Steensma, D H J Am Chem Soc 1995, 117, 3333–3339 50 Wagner, J.; Lerner, R A.; Barbas, C F., III Science 1995, 270, 1797–1800 51 Zhong, G.; Shabat, D.; List, B.; Anderson, J.; Sinha, S C.; Lerner, R A.; Barbas, C F., III Angew Chem., Int Ed 1998, 37, 2481–2484 52 Hoffmann, T.; Zhong, G.; List, B.; Shabat, D.; Anderson, J.; Gramatikova, S.; Lerner, R A.; Barbas, C F., III J Am Chem Soc 1998, 120, 2768–2779 53 Shabat, D.; List, B.; Lerner, R A.; Barbas, C F., III Tetrahedron Lett 1999, 40, 1437–1440 54 David, S.; Estramareix, B.; Fischer, J.-C.; Therisod, M J Chem Soc., Perkin Trans 1982, 1, 2131–2137 55 Hill, R E.; Sayer, B G.; Spenser, I D J Am Chem Soc 1989, 111, 1916–1917 56a Sagner, S.; Eisenreich, W.; Fellermeier, M.; Latzel, C.; Bacher, A.; Zenk, M H Tetrahedron Lett 1998, 39, 2091–2094 56b Piel, J.; Donath, J.; Bandemer, D K.; Boland, W Angew Chem., Int Ed 1998, 37, 2478–2481 57a Eder, U.; Sauer, G.; Wiechert, R Angew Chem., Int Ed Engl 1971, 10, 496–497 57b Hajos, Z H.; Parrish, D R J Org Chem 1974, 39, 1612–1615 58a For reviews, see, for example: Cohen, N Acc Chem Res 1976, 9, 412–417 58b List, B Tetrahedron 2002, 58, 5573–5590 59a Yamada, Y M A.; Yoshikawa, N.; Sasai, H.; Shibasaki, M Angew Chem., Int Ed Engl 1997, 36, 1871–1873 59b Nagakawa, M.; Nakao, H.; Watanabe, K.-I Chem Lett 1985, 391–394 59c Trost, B M.; Ito, H J Am Chem Soc 2000, 122, 12003–12004 60a List, B.; Lerner, R A.; Barbas, C F., III J Am Chem Soc 2000, 122, 2395–2396 60b List, B Synlett 2001, 1675–1686 61 List, B.; Pojarliev, P.; Castello, C Org Lett 2001, 3, 573–575 62 Hoang, L.; Bahmanyar, S.; Houk, K N.; List, B J Am Chem Soc 2003, 125, 16–17 63 Allemann, C.; Gordillo, R.; Clemente, F R.; Cheong, P H- Y.; Houk, K N Acc Chem Res 2004, 37, 558–569 64a Bassan, A.; Zou, W.; Reyes, E.; Himo, F.; Co´rdova, A Angew Chem., Int Ed 2005, 44, 7028–7032 Synthesis of Monosaccharides and Analogs 575 64b Co´rdova, A.; Zou, W.; Ibrahem, I.; Reyes, E.; Engqvist, M.; Liao, W Chem Commun 2005, 3586–3588 65 Kano, T.; Takai, J.; Tokuda, O.; Maruoka, K Angew Chem., Int Ed 2005, 44, 3055–3057 66a Jarvo, E R.; Miller, S J Tetrahedron 2002, 58, 2481–2495 66b Dziedzic, P.; Zou, W.; Hafren, J.; Co´rdova, A Org Biomol Chem 2006, 4, 38–40 66c Kofoed, J.; Nielsen, J.; Reymond, J.-L Bioorg Med Chem Lett 2003, 13, 2445–2447 67 Andreae, M R M.; Davis, A P Tetrahedron: Asymmetry 2005, 16, 2487–2492 68a For tetrazole and acylsulfonamide derived from proline: Cobb, A J A.; Shaw, D M.; Longbottom, D A.; Gold, J B.; Ley, S V Org Biomol Chem 2005, 3, 84–96 68b For tetrazole derived from proline: Hartikka, A.; Arvidsson, P I Tetrahedron: Asymmetry 2004, 15, 1831–1834 68c For 4-substituted prolines: Bellis, E.; Kokotos, G Tetrahedon 2005, 61, 8669–8676 68d For protonic acid – cyclic and acyclic 2-aminomethyl pirrolidines: Nakada, M.; Saito, S.; Yamamoto, H Tetrahedron 2002, 58, 8167–8177 68e For benzoimidazole pyrrolidine: Lacoste, E.; Landais, Y.; Schenk, K.; Verlhac, J.-B.; Vincent, J M Tetrahedron Lett 2004, 45, 8035–8038 69 Sakthivel, K.; Notz, W.; Bui, T.; Barbas, C F., III J Am Chem Soc 2001, 123, 5260–5267 70 Mangion, I K.; Northrup, A B.; MacMillan, D W C Angew Chem., Int Ed 2004, 43, 6722–6724 71 Davies, S G.; Sheppard, R L.; Smith, A D.; Thomson, J E Chem Commun 2005, 3802–3804 72 Kazmaer, U Angew Chem., Int Ed 2005, 44, 2186–2188 73 Notz, W.; List, B J Am Chem Soc 2000, 122, 7386–7387 74 Kolb, H C.; van Nieuwenhze, M S.; Sharpless, K B Chem Rev 1994, 94, 2483–2547 75 Co´rdova, A.; Notz, W.; Barbas, C F., III Chem Commun 2002, 3024–3025 76 Suri, J T.; Dhevalapally, B R.; Barbas, C F., III Org Lett 2005, 7, 1383–1385 77a Enders, D.; Grondal, C Angew Chem., Int Ed 2005, 44, 1210–1212 77b Grondal, C.; Enders, D Tetrahedron 2005, 62, 329–337 77c Enders, D.; Grondal, C Lett Org Chem 2005, 2, 577–578 78 Ibrahem, I.; Co´rdova, A Tetrahedron Lett 2005, 46, 3363–3367 79 Zou, W.; Ibrahem, I L.; Dziedzic, P.; Sunden, H.; Co´rdova, A Chem Commun 2005, 4946–4948 80 Northrup, A B.; MacMillan, D W C J Am Chem Soc 2002, 124, 6798–6799 81 Northrup, A B.; Mangion, I K.; Hettche, F.; MacMillan, D W.C Angew Chem., Int Ed 2004, 43, 2152–2154 82 Northrup, A B.; MacMillan, D W C Science 2004, 305, 1752–1755 83 Storer, R I.; MacMillan, D W C Tetrahedron 2004, 60, 7705–7714 84 Co´rdova, A.; Ibrahem, I.; Casas, J.; Sunden, H.; Engqvist, M.; Reyes, E Chem Eur J 2005, 11, 4772–4784 85 Casas, J.; Engqvist, M.; Ibrahem, I.; Kaynak, B.; Co´rdova, A Angew Chem., Int Ed 2005, 44, 1343–1345 86a Kofoed, J.; Reymond, J.-L.; Darbre, T Org Biomol Chem 2005, 3, 1850–1858 86b Kofoed, J.; Machuqueiro, M.; Reymond, J.-L.; Darbre, T Chem Commun 2004, 1540–1541 87 Thayumanavan, R.; Tanaka, F.; Barbas, C F., III Org Lett 2004, 6, 3541–3544 88a Co´rdova, A.; Notz, W.; Zhong, G.; Betancort, J M.; Barbas, C F., III J Am Chem Soc 2002, 124, 1842–1843 88b Co´rdova, A.; Watanabe, S.; Tanaka, F.; Notz, W.; Barbas, C F., III J Am Chem Soc 2002, 124, 1866–1867 88c Notz, W.; Sakthivel, K.; Bui, T.; Zhong, G.; Barbas, C F., III Tetrahedron Lett 2001, 42, 199–201 89a List, B J Am Chem Soc 2000, 122, 9336–9337 89b List, B.; Pojarliev, P.; Biller, W T.; Martin, H J J Am Chem Soc 2002, 124, 827–833 90 Enders, D.; Grondal, C.; Vrettou, M.; Raabe, G Angew Chem., Int Ed 2005, 44, 4079–4083 91 Ibrahem, I.; Zou, W.; Casas, Jesus, S.; Henrik; Co´rdova, A Tetrahedron 2006, 62, 357–364 92 Ibrahem, I.; Zou, W.; Engqvist, M.; Xu, Y.; Co´rdova, A Chem Eur J 2005, 11, 7024–7029 93 Hayashi, Y.; Tsuboi, W.; Ashimine, I.; Urushima, T.; Shoji, M.; Sakai, K Angew Chem., Int Ed 2003, 42, 3677–3680 94 For a review, see: Marques, M M B Angew Chem., Int Ed 2006, 45, 348–352 95a Mukaiyama, T.; Shiina, I.; Kobayashi, S Chem Lett 1990, 2201–2204 95b Kobayashi, S.; Kawasuji, T Synlett 1993, 911–913 96a Kiliani, H Ber Deutsch Chem 1885, 18, 3066–3072 96b Fischer, E Ber Dtsch Chem 1889, 22, 2204–2205 96c Lichtenthaler, F W Angew Chem., Int Ed Engl 1992, 31, 1541–1556 97 Stanek, J.; Cerny, M.; Kocourek, J.; Paca´k, J The Monosaccharides; Academic Press: New York, 1965; 144 97a Soengas, R.; Izumori, K.; Simone, M I.; Watkin, D J.; Skytte, U P.; Soetart, W.; Fleet, G W J Tetrahedron Lett 2005, 46, 5755–5759 and refs cited therein 97b Hotchkiss, D.; Soengas, R.; Simone, M I.; van Amekijde, J.; Hunter, S.; Cowley, A R.; Fleet, G W J Tetrahedron Lett 2004, 45, 9461–9464 98a Roush, W R.; Hoong, L K.; Palmer, M A J.; Straub, J A.; Palkowitz, A D J Org Chem 1990, 55, 4117–4126 98b Roush, W R.; Ando, K.; Powers, D B.; Palkowitz, A D.; Halterman, R L J Am Chem Soc 1990, 112, 6339–6348 98c Roush, W R.; Straub, J A.; VanNieuwenhze, M S J Org Chem 1991, 56, 1636–1648 98d Roush, W R.; Lin, X.; Straub, J A J Org Chem 1991, 56, 1649–1655 99a Maruyama, K.; Ishihara, Y.; Yamamoto, Y Tetrahedron Lett 1981, 22, 4235–4238 99b Marshall, J A.; Luke, G P J Org Chem 1991, 56, 483–485 99c Marshall, J A Chem Rev 1996, 96, 31–47 100 Jurczak, J.; Pikul, S.; Bauer, T Tetrahedron 1986, 42, 447–488 101 Perlin, A S In Methods in Carbohydrate Chemistry; Academic Press: New York, 1962; Vol 1, pp 61–63 102 Hubschwerlen, C Synthesis 1986, 962964 103 Jaăger, V.; Wehner, V Angew Chem., Int Ed Engl 1989, 28, 469–470 104 Bewsey, J A Chem Ind 1977, 119–120 105 Seebach, D.; Hungerbuăhler, E In Modern Synthetic Methods; Scheffold, R., Ed.; Otto Salle Verlag, Verlag Sauerlaănder: Frankfurt, Germany, 1980; Vol 2, pp 91–171 106 Matteson, D S.; Peterson, M L J Org Chem 1987, 52, 5116–5121 107 Bischofberger, N.; Waldmann, H.; Saito, T.; Simon, E S.; Lees, W.; Bednarksi, M D.; Whitesides, G M J Org Chem 1988, 53, 3457–3465 108 Ballou, C R.; Fischer, H O L J Am Chem Soc 1955, 77, 3329–3331 576 Synthesis of Monosaccharides and Analogs 109 Kerscher, V.; Kreiser, W Tetrahedron Lett 1987, 28, 531–534 110 Lewis, C A.; Sculimbrene, B R.; Xu, Y.; Miller, S J Org Lett 2005, 7, 3021–3023 111 De Witt, P.; Misiti, D.; Zappia, G Tetrahedron Lett 1989, 30, 5505–5506 112a Oi, R.; Sharpless, K B Tetrahedron Lett 1992, 33, 2095–2098 112b Kolb, H C.; VanNieuwenhze, M S.; Sharpless, K B Chem Rev 1994, 94, 2483–2547 113 Wuts, P G M.; Bigelow, S S J Org Chem 1983, 48, 3489–3493 114 Lubell, W D.; Rapoport, H J Am Chem Soc 1987, 109, 236–239 115 Fehrentz, J A.; Castro, B Synthesis 1983, 676–678 116 Nicolaou, K C.; Gronenberg, R D.; Stylianides, N A.; Miyazaki, T Chem Commun 1990, 1275–1277 117 Sibi, M P.; Renhowe, P A Tetrahedron Lett 1990, 31, 7407–7410 118a Dondoni, A.; Marra, A In Preparative Carbohydrate Chemistry; Hanessian, S., Ed.; Marcel Dekker: New York, 1997; pp 173–205 118b Dondoni, A Synthesis 1998, 1681–1706 118c Dondoni, A.; Marra, A Chem Commun 1999, 2133–2145 118d Dondoni, A.; Perrone, D Tetrahedron Lett 1999, 40, 9375–9378 118e Dondoni, A.; Marra, A Chem Rev 2000, 100, 4395–4421 118f Dondoni, A Pure Appl Chem 2000, 72, 1577–1588 118g Dondoni, A.; Formaglio, P.; Marra, A.; Massi, A Tetrahedron 2001, 57, 7719–7727 118h Dondoni, A.; Giovannini, P P.; Perrone, D J Org Chem 2002, 67, 7203–7214 118i Dondoni, A.; Giovannini, P P Synthesis 2002, 1701–1706 118j Dondoni, A.; Marra, A Chem Rev 2004, 104, 2557–2599 119 Dondoni, A.; Merino, P Org Synth 1995, 72, 21–31 120 Dondoni, A.; Marra, A.; Perrone, D J Org Chem 1993, 58, 275–277 121a Dondoni, A.; Fantin, G.; Fogagnolo, M.; Pedrini, P J Org Chem 1990, 55, 1439–1446 121b Dondoni, A.; Perrone, D.; Merino, P J Org Chem 1995, 60, 8074–8080 122a Dondoni, A.; Franco, S.; Junquera, F.; Mercha´n, F L.; Merino, P.; Tejero, T.; Bertolasi, V Chem Eur J 1995, 1, 505–520 122b Dondoni, A.; Franco, S.; Mercha´n, F L.; Merino, P.; Tejero, T Tetrahedron Lett 1993, 34, 5479–5482 122c Merino, P.; Franco, S.; Mercha´n, P.; Revuelta, J.; Tejero, T Tetrahedron Lett 2002, 43, 459–462 122d Dondoni, A.; Giovannini, P P.; Perrone, D J Org Chem 2002, 67, 7203–7214 123 Kusakabe, M.; Sato, F Chem Lett 1986, 1473–1476 124a Benzing-Nguyen, L.; Perry, M B J Org Chem 1978, 43, 551–554 124b Liu, F.-W.; Yan, L.; Zhang, J.-Y.; Liu, H.-M Carbohydr Res 2006, 341, 332–338 125 Chikashita, H.; Nikaya, T.; Itoh, K Nat Prod Lett 1993, 2, 183–190 126a Seebach, D Synthesis 1969, 5, 17–36 126b Bulman Page, P C.; van Niel, M B.; Prodger, J C Tetrahedron 1989, 45, 7643–7677 127 Takahashi, S.; Kuzuhara, H J Chem Soc., Perkin Trans 1997, 607–612 128a Bessie`res, B.; Morin, C J Org Chem 2003, 68, 4100–4103 128b Marco-Contelles, J.; de Opazo, E.; Arroyo, N Tetrahedron 2001, 57, 4729–4739 129 Mlynarski, J.; Banaszek, A Trends Org Chem 2003, 10, 51–60 130a Sisu, E.; Sollogoub, M.; Mallet, J.-M.; Sinayă, P Tetrahedron 2002, 58, 1018910196 130b Yun, M.; Moon, H R.; Kim, H O.; Choi, W J.; Kim, Y.-C.; Park, C.-S.; Jeong, L S Tetrahedron Lett 2005, 46, 5903–5905 131 Solladie´, G.; Demailly, G.; Greck, C J Org Chem 1985, 50, 1552–1554 132 Solladie´, G.; Frechou, C.; Hutt, J.; Demailly, G Bull Soc Chim Fr 1987, 827836 133a Noe, C R.; Knollmuăller, M.; Ettmayer, P Liebigs Ann Chem 1989, 637–643 133b Wulff, G.; Hansen, A Angew Chem., Int Ed Engl 1986, 25, 560–562 134 Mukaiyama, T In Trends in Synthetic Carbohydrate Chemistry, ACS Symposium Series 386; Horton, D., Hawkins, L D., McGarvey, G D., Eds.; American Chemical Society: Washington, DC, 1989; Chapter 15, pp 278–289 135 Mukaiyama, T.; Miwa, T.; Nakatsuka, T Chem Lett 1982, 145–148 136 Yamamoto, Y.; Kirihata, M.; Ichimoto, I.; Ueda, H Agric Biol Chem 1985, 49, 1435–1439 137 Wulff, G.; Hansen, A Carbohydr Res 1987, 164, 123–140 138 Banfi, L.; Cardani, S.; Potenza, D.; Scolastico, C Tetrahedron 1987, 43, 2317–2322 139 For other nucleophilic additions to sugar-derived aldehydes, see: Ulgheri, F.; Bacsa, J.; Nassimbeni, L.; Spanu, P Tetrahedron Lett 2003, 44, 671675 140 Wehner, V.; Jaăger, V Angew Chem., Int Ed Engl 1990, 29, 1169–1171; see also Ref.: 124b 141 Devant, R.; Mahler, U.; Braun, H Chem Ber 1988, 121, 397–406 142 Graăf, S.; Braun, M Liebigs Ann Chem 1993, 10911098 143 Braun, M.; Mortiz, J A Synlett 1991, 750–752 144 Schoăllkopf, U.; Tiller, T.; Bardenhagen, J Tetrahedron 1988, 44, 52935305 145 Rudge, A J.; Collins, I.; Holmes, A B.; Baker, R Angew Chem., Int Ed Engl 1994, 33, 2320–2322 146 Evans, D A.; Gage, J R.; Leighton, J L J Am Chem Soc 1992, 114, 9434–9453 147 Franck-Neumannn, M.; Bissinger, P.; Geoffroy, P Tetrahedron Lett 1997, 38, 4477–4478 148a Enders, D.; Jegelka, U Tetrahedron Lett 1993, 34, 2453–2456 148b See also: Job, A.; Janeck, C F.; Beftray, W.; Peters, R.; Enders, D Tetrahedron 2002, 58, 2253–2329 149a Katsuki, T.; Sharpless, K B J Am Chem Soc 1980, 102, 5974–5976 149b Pfenninger, A Synthesis 1986, 89–116 149c Jrgensen, K A Chem Rev 1989, 89, 431–458 149d Sharpless, K B Chem Br 1986, 38–44 150a Katsuki, T.; Lee, A W M.; Ma, P.; Martin, V S.; Masamune, S.; Sharpless, K B.; Tuddenham, D.; Walker, F J J Org Chem 1982, 47, 1373-1378 150b Ma, P.; Martin, V S.; Masamune, S.; Sharpless, K R.; Viti, S M J Org Chem 1982, 47, 1378–1380 150c Ko, S Y.; Lee, A W M.; Masamune, S.; Reed, L A., III; Sharpless, K B.; Walker, F J Tetrahedron 1990, 46, 245–264 Synthesis of Monosaccharides and Analogs 577 150d Aoyagi, S.; Fujimaki, S.; Yamazaki, N.; Kibayashi, C J Org Chem 1991, 56, 815–819 150e Iida, H.; Yamazaki, N.; Kibayashi, C J Org Chem 1987, 52, 3337–3342 151a Sharpless, K B.; Amberg, W.; Bennani, Y L.; Crispino, G A.; Hartung, J.; Jeong, K.-S.; Kwong, H.-L.; Morikawa, K.; Wang, Z.-M.; Xu, D.; Zang; X.-L J Org Chem 1992, 57, 2768–2771 151b Becker, H.; Sharpless, K B Angew Chem., Int Ed Engl 1996, 35, 448–451 151c See also: Li, G.; Chang, H.-T.; Sharpless, K B Angew Chem., Int Ed Engl 1996, 35, 451–454 151d See also: Jrgensen, M.; Iversen, E H.; Madsen, R J Org Chem 2001, 66, 4625–4629 152a Koskinen, A M P.; Otsomaa, L A Tetrahedron 1997, 53, 6473–6484 152b Gardiner, J M.; Panchal, N R.; Stimpson, W T.; Herbert, J M.; Ellames, G J Synlett 2005, 2685–2687 153a Ikemoto, N.; Schreiber, S L J Am Chem Soc 1992, 114, 25242536 153b For an alternative approach, see: Fuărstner, A.; Wuchrer, M Chem Eur J 2006, 12, 76–89 154 Poss, C S.; Schreiber, S L Acc Chem Res 1994, 27, 9–17 155 Cha, J K.; Christ, W J.; Kishi, Y Tetrahedron 1984, 40, 2247–2255 156 Kahne, D.; Walker, S.; Cheng, Y.; Van Enger, D J Am Chem Soc 1989, 111, 6881–6882 157a Fronza, G.; Fuganti, C.; Grasselli, P Chem Commun 1980, 442–444 157b see also: Fuganti, C.; Grasselli, P.; Pedrocchi-Fantoni, G Tetrahedron Lett 1981, 22, 4017–4020 158a Fuganti, C.; Grasselli, P Chem Commun 1978, 299–300 158b Fronza, G.; Fuganti, C.; Grasselli, P.; Marinoni, G Tetrahedron Lett 1979, 20, 3883–3886 159 Dondoni, A.; Fantin, G.; Fogagnolo, M.; Merino, P Tetrahedron 1990, 46, 6167–6184 160a Roush, W R.; Walts, A E.; Hoong, L K J Am Chem Soc 1985, 107, 8186–8190 160b See also: Roush, W R.; Halterman, R L J Am Chem Soc 1986, 108, 294–296 161 Roush, W R.; Straub, J A Tetrahedron Lett 1986, 27, 3349–3352 162 Roush, W R.; Hunt, J A J Org Chem 1995, 60, 798–806 163a Fronza, G.; Fuganti, C.; Grasselli, P.; Pedrocchi-Fantoni, G.; Zirotti, C Tetrahedron Lett 1982, 23, 4143–4146 163b Fronza, G.; Fuganti, C.; Grasselli, P.; Pedrocchi-Fantoni, G.; Zirotti, C Chem Lett 1984, 335–338 164a Williams, D R.; Klingler, F D Tetrahedron Lett 1987, 28, 869–872 164b Giovanni, F.; Fuganti, C.; Graselli, P.; Pedrochi-Fantoni, G.; Zirotti, C Tetrahedron Letters 1982, 23, 4143–4146 165 Roush, W R.; Michaelides, M R Tetrahedron Lett 1986, 27, 3353–3356 166 Vuljanic, T.; Kihlberg, J.; Somfai, P Tetrahedron Lett 1994, 35, 6937–6940 167 Roush, W R.; Adam, M A.; Walts, A E.; Harris, D J J Am Chem Soc 1986, 108, 3422–3434 168 Gryko, D.; Jurczak, J Tetrahedron Lett 1997, 38, 8275–8278 169 Dondoni, A.; Merino, P.; Perrone, D Tetrahedron 1993, 49, 2939–2956 170a Dondoni, A.; Perrone, D J Org Chem 1995, 60, 4749–4754 170b Dondoni, A.; Marra, A.; Boscarato, A Chem Eur J 1999, 5, 3562–3572 171 Narasaka, K.; Pai, F.-C Tetrahedron 1984, 40, 2233–2238 172 Sames, D.; Polt, R J Org Chem 1994, 59, 4596–4601 173a For other three-carbon homologations, see, for example: Majewski, M.; Nowak, P J Org Chem 2000, 65, 5152–5160 173b Stepowska, H.; Zamojski, A Carbohydr Res 2001, 332, 429–438 173c Li, L.-S.; Wu, Y.-L Tetrahedron 2002, 58, 9049–9054 173d Palmelund, A.; Madsen, R J Org Chem 2005, 70, 8248–8251 173e Francisco, C G.; Gonza´lez, C C.; Paz, N R.; Sudrez, E Org Lett 2003, 5, 4171–4173 174a Marshall, J A.; Seletsky, B M.; Coan, P S J Org Chem 1994, 59, 5139–5140 174b Marshall, J A.; Seletsky, B M.; Luke, G P J Org Chem 1994, 59, 3413–3420 175 Marshall, J A Chem Rev 1996, 96, 31–47 176 Marshall, J A.; Beaudoin, S J Org Chem 1996, 61, 581–586 177a See also: Hashimoto, H.; Asano, K.; Fujii, F.; Yoshimura, J Carbohydr Res 1982, 104, 87–104 177b Dondoni, A.; Franco, S.; Mercha´n, F.; Merino, P.; Tejero, T Synlett 1993, 78–80 178 Martin, S F.; Zinke, P W J Am Chem Soc 1989, 111, 2311–2313 179 Casiraghi, G.; Zanardi, F.; Appendino, G.; Rassu, G Chem Rev 2000, 100, 1929–1972 180 Rassu, G.; Pinna, L.; Spanu, P.; Culeddu, N.; Casiraghi, G.; Gaspari Fava, G.; Belicchi, M.; Pelosi, G Tetrahedron 1992, 48, 727–742 181a Casiraghi, G.; Rassu, G.; Spanu, P.; Pinna, L J Org Chem 1992, 57, 3760–3763 181b Rassu, G.; Casiraghi, G.; Spanu, P.; Pinna, L Tetrahedron: Asymmetry 1992, 3, 1035–1048 182 Casiraghi, G.; Rassu, G.; Spanu, P.; Pinna, L Tetrahedron Lett 1994, 35, 2423–2426 183 Casiraghi, G.; Spanu, P.; Rassu, G.; Pinna, L.; Ulgheri, F J Org Chem 1994, 59, 2906–2909 184 Zanardi, F.; Battistini, L.; Nespi, M.; Rassu, G.; Spanu, P.; Cornia, M.; Casiraghi, G Tetrahedron: Asymmetry 1996, 7, 1167–1180 185 Rassu, G.; Zanardi, F.; Battistini, L.; Casiraghi, G Chem Soc Rev 2000, 29, 109–118 186 Depezay, J.-C.; Dure´ault, A.; Prange, T Tetrahedron Lett 1984, 25, 1459–1462; see also Ref.: 144 187 Heathcock, C H.; Montgomery, S H Tetrahedron Lett 1985, 26, 1001–1004 188 Hoppe, D.; Tarara, G.; Nilckens, M.; Jones, P G.; Schmidt, D.; Stezowski, J J Angew Chem., Int Ed Engl 1987, 26, 1034–1035 189 Hatakeyama, S.; Sugawara, K.; Takano, S Tetrahedron Lett 1991, 32, 4513–4516 190 Casiraghi, G.; Pinna, L.; Rassu, G.; Spanu, P.; Ulgheri, F Tetrahedron: Asymmetry 1993, 4, 681–686 191 Bednarski, M.; Danishefsky, S J Am Chem Soc 1986, 108, 7060–7067 192 Danishefsky, S.; Bednarski, M.; Izawa, T.; Maring, C J Org Chem 1984, 49, 2290–2292 193 Danishefsky, S.; Bednarski, M Tetrahedron Lett 1985, 26, 3411–3412 194 Luche, J.-L J Am Chem Soc 1978, 100, 2226–2227 195 Hu, Y.-J.; Huang, X.-D.; Yao, Z.-J.; Wu, Y.-L J Org Chem 1998, 63, 2456–2461 196 Lubineau, A.; Auge´, J.; Lubin, N Tetrahedron 1993, 49, 4639–4650 197a Cousins, R P C.; Pritchard, R G.; Raynor, C M.; Smith, M.; Stoodley, R J Tetrahedron Lett 2002, 43, 489–492 197b Bataille, C.; Be´gin, G.; Guillam, A.; Lemie`gre, L.; Lys, C.; Maddaluno, J.; Toupet, L J Org Chem 2002, 67, 8054–8062 198a For other examples of hetero-Diels–Alder additions of aldehydes, see: Osborn, H M I.; Coisson, D Mini-Rev Org Chem 2004, 1, 41–54 578 Synthesis of Monosaccharides and Analogs Winkler, J D.; Oh, K Org Lett 2005, 7, 2421–2423 Unni, A K.; Takenaka, N.; Yamamoto, H.; Rawal, V H J Am Chem Soc 2005, 127, 1336–1337 Anada, M.; Washio, T.; Shimada, N.; Kitagaki, S.; Nakajima, M.; Shiro, M.; Hashimoto, S Angew Chem., Int Ed Engl 2004, 43, 2665–2668 Furuno, H.; Hayano, T.; Kambara, T.; Sugimoto, Y.; Hanamoto, T.; Tanaka, Y.; Jin, Y Z.; Kagawa, T.; Inanaga, J Tetrahedron 2003, 59, 10509–10523 199 Danishefsky, S J.; DeNinno, M P.; Chen, S.-H J Am Chem Soc 1988, 110, 3929–3940 200 Isono, K.; Crain, P F.; McCloskey, J A J Am Chem Soc 1975, 97, 943–945 201 Danishefsky, S J.; Hungate, R.; Schulte, G J Am Chem Soc 1988, 110, 7434–7440 202 Danishefsky, S J.; Larson, E.; Springer, J P J Am Chem Soc 1985, 107, 1274–1280 203 Golebiowski, A.; Jurczak, J Tetrahedron 1991, 47, 1045–1052 204 Golebiowski, A.; Kosak, J.; Jurczak, J J Org Chem 1991, 56, 7344–7347 205a Desimoni, G.; Tacconi, G Chem Rev 1975, 75, 651–692 205b Boger, D L.; Weinreb, S M Hetero-Diels–Alder Methodology in Organic Synthesis; Academic Press: New York, 1987 205c Snider, B B Acc Chem Res 1980, 13, 426–432 205d Tietze, L F.; Beifuss, U Angew Chem., Int Ed Engl 1993, 32, 131–163 205e Tietze, L F.; Kettschau, G.; Gewert, J A.; Schuffenhauer, A Curr Org Chem 1998, 2, 19–62 205f Tietze, L F.; Schneider, C.; Montenbruck, A Angew Chem., Int Ed Engl 1994, 33, 980–982 206 De Meijere, A.; Leonov, A.; Heiner, T.; Noltemeyer, M.; Bes, M T Eur J Org Chem 2003, 472–478 207a Ismail, Z M.; Hoffmann, H M R Angew Chem., Int Ed Engl 1982, 21, 859–860 207b El-Abed, D.; Jellal, A.; Santelli, M Tetrahedron Lett 1984, 25, 4503–4504 207c Tietze, L F.; Voss, E Tetrahedron Lett 1986, 27, 6181–6184 207d Apparao, S.; Maier, M E.; Schmidt, R R Synthesis 1987, 900–904 207e Schmidt, R R Pure Appl Chem 1987, 59, 415–424 207f Tietze, L F.; Voss, E.; Harms, K.; Sheldrick, G M Tetrahedron Lett 1985, 26, 5273–5276 207g Tietze, L F.; Hartfiel, U Tetrahedron Lett 1990, 31, 1697–1700 207h Hayman, C M.; Larsen, D S.; Brooker, S Aust J Chem 1998, 51, 545–553 208 Boger, D L.; Robarge, K D J Org Chem 1988, 53, 5793–5796 209a Tietze, L F.; Montenbruck, A.; Schneider, C Synlett 1994, 509–510 209b See also: Tietze, L F.; Schneider, C.; Grote, A Chem Eur J 1996, 2, 139–148 210a Schmidt, R R.; Maier, M Tetrahedron Lett 1985, 26, 1065–2068 210b See also: Hayman, C M.; Hanton, L R.; Larsen, D S.; Guthrie, J M Aust J Chem 1999, 52, 921–927 210c De Gaudenzi, L.; Apparao, S.; Schmidt, R R Tetrahedron 1990, 46, 277–290 211a Dujardin, G.; Rossignol, S.; Brown, E Synthesis 1998, 763–770 211b Dujardin, G.; Rossignol, S.; Brown, E Tetrahedron Lett 1996, 37, 4007–4010 211c Liu, H.-M.; Zou, D.-P.; Zhang, F.; Zhu, W.-G.; Peng, T Eur J Org Chem 2004, 2103–2106 212a Evans, D A.; Johnson, J S J Am Chem Soc 1998, 120, 4895–4896 212b Evans, D A.; Olhava, E J.; Johnson, J S.; Janey, J M Angew Chem., Int Ed 1998, 37, 3372–3375 212c Evans, D A.; Johnson, J S.; Olhava, E J J Am Chem Soc 2000, 122, 1635–1649 213 Thorhauge, J.; Johannsen, M.; Jrgensen, K A Angew Chem., Int Ed 1998, 37, 2404–2406 214 Audrain, H.; Thorhauge, J.; Hazell, R G.; Jrgensen, K A J Org Chem 2000, 65, 4487–4497 215 Saito, T.; Takekawa, K.; Takahashi, T Chem Commun 1999, 1001–1002 216a Werbitzky, O.; Klier, K.; Felber, H Liebigs Ann Chem 1990, 267–270 216b Braun, H.; Felber, H.; Kresze, G.; Schmidtchen, F P.; Prewo, R.; Vasella, A Liebigs Ann Chem 1993, 261–268 216c Streith, J.; Defoin, A Synlett 1996, 189–200 216d Defoin, A.; Joubert, M.; Heuchel, J.-M.; Strehler, C.; Streith, J Synthesis 2000, 1719–1726 217 Felber, H.; Kresze, G.; Prewo, R.; Vasella, A Helv Chim Acta 1986, 69, 1137–1146 218a Defoin, A.; Sarazin, H.; Streith, J Synlett 1995, 1187–1188 218b Defoin, A.; Sarazin, H.; Streith, J Helv Chim Acta 1996, 79, 560–567 218c Defoin, A.; Sarazin, H.; Streith, J Tetrahedron 1997, 53, 13769–13782 219 Sifferlen, T.; Defoin, A.; Streith, J.; Le Noveăn, D.; Tarnus, C.; Dosbaaˆ, I.; Foglietti, M.-J Tetrahedron 2000, 56, 971–978 220a Joubert, M.; Defoin, A.; Tarnus, C.; Streith, J Synlett 2000, 1366–1368 220b See also: Defoin, A.; Sifferelen, T.; Streith, J.; Dosbaaˆ, I.; Foglietti, M.-J Tetrahedron: Asymmetry 1997, 8, 363–366 220c Defoin, A.; Sarazin, H.; Sifferlen, T.; Strehler, C.; Streith, J Helv Chim Acta 1998, 81, 1417–1428 220d Bach, P.; Bols, M Tetrahedron Lett 1999, 40, 3461–3464 221 Liang, X.; Bols, M J Org Chem 1999, 64, 8485–8488 222 Ernholt, B V.; Thomsen, I B.; Lohse, A.; Plesner, I W.; Jensen, K B.; Hazell, R G.; Liang, X.; Jakobsen, A.; Bols, M Chem Eur J 2000, 6, 278–287 223a Just, G.; Martel, A Tetrahedron Lett 1973, 5, 1517–1520 223b Just, G.; Grozinger, K Tetrahedron Lett 1974, 6, 4165–4168 223c Just, G.; Grozinger, K Can J Chem 1975, 53, 2701–2706 223d Just, G.; Martel, A.; Grozinger, K.; Ramjeesingh, M Can J Chem 1975, 53, 131–137 223e Just, G.; Ramjeesingh, M.; Liak, T J Can J Chem 1976, 54, 2940–2947 224a Just, G.; Lim, M.-I Can J Chem 1977, 55, 2993–2997 224b Just, G.; Liak, T J.; Lim, M.-I.; Potvin, P.; Tsantrizos, Y S Can J Chem 1980, 58, 2024–2033 224c See also: Kozikowski, A P.; Floyd, W C Tetrahedron Lett 1978, 19–22 225 Kowarski, C R.; Sarel, S J Org Chem 1973, 38, 117–119 226 Schmidt, R R.; Lieberknecht, A Angew Chem 1978, 90, 821–822 227a Sadeghi-Khomani, A.; Blake, A J.; Wilson, C.; Thomas, N R Org Lett 2005, 7, 4891–4894 227b Buser, S.; Vasella, A Helv Chim Acta 2005, 88, 3151–3173 198b 198c 198d 198e Synthesis of Monosaccharides and Analogs 579 228a Vieira, E.; Vogel, P Helv Chim Acta 1983, 66, 1865–1871 228b Reymond, J.-L.; Vogel, P Tetrahedron: Asymmetry 1990, 1, 729–736 228c Foster, A.; Kovac, T.; Mosimann, H.; Renaud, P.; Vogel, P Tetrahedron: Asymmetry 1999, 10, 567–571 229 Warm, A.; Vogel, P Helv Chim Acta 1987, 70, 690–700 230 For other enantiomerically enriched 7-oxabicyclo[2.2.1]heptane derivatives, see: Vogel, P.; Cossy, J.; Plumet, J.; Arjona, O Tetrahedron 1999, 55, 13521–13642 231 Kiss, J.; D’Souza, R.; Van Koeveringe, J A.; Arnold, W Helv Chim Acta 1982, 65, 1522–1537 232 Arvai, G.; Fattori, D.; Vogel, P Tetrahedron 1992, 48, 10621–10636 233 Auberson, Y.; Vogel, P Helv Chim Acta 1989, 72, 278–286 234a Le Drian, C.; Vionnet, J P.; Vogel, P Helv Chim Acta 1987, 70, 1703–1720 234b Le Drian, C.; Vieira, E.; Vogel, P Helv Chim Acta 1989, 72, 338–347 234c Le Drian, C.; Vogel, P Helv Chim Acta 1990, 73, 161–168 235 Emery, F.; Vogel, P Synlett 1995, 420–422 236a Carrupt, P.-A.; Vogel, P Tetrahedron Lett 1982, 23, 2563–2566 236b Carrupt, P.-A.; Vogel, P Tetrahedron Lett 1984, 25, 2879–2882 236c Carrupt, P.-A.; Vogel, P J Phys Org Chem 1988, 1, 287–298 236d Carrupt, P.-A.; Vogel, P Helv Chim Acta 1989, 72, 1008–1028 236e Carrupt, P.-A.; Vogel, P J Org Chem 1990, 55, 5696–5700 236f Gerber, P.; Vogel, P Indian J Chem B 2001, 40, 898–904 237 Gasparini, F.; Vogel, P J Org Chem 1990, 55, 2451–2457 238 Fattori, D.; de Guchteneere, E.; Vogel, P Tetrahedron Lett 1989, 30, 7415–7418 239 Fattori, D.; Vogel, P Tetrahedron 1992, 48, 10587–10602 240a Warm, A.; Vogel, P J Org Chem 1986, 51, 5348–5353 240b Vogel, P.; Fattori, D.; Gasparini, F.; Le Drian, C Synlett 1990, 173–185 240c Vogel, P Bull Soc Chim Belg 1990, 99, 395–439 240d Vogel, P J Curr Org Chem 2000, 4, 455–480 241a Bimwala, R M.; Vogel, P J Org Chem 1992, 57, 2076–2083 241b Ferritto, R.; Vogel, P Tetrahedron: Asymmetry 1994, 5, 2077–2092 241c Emery, F.; Vogel, P J Org Chem 1995, 60, 5843–5854 241d Cossy, J.; Ranaivosata, J.-L.; Bellosta, V.; Ancerewicz, J.; Ferritto, R.; Vogel, P J Org Chem 1995, 60, 8351–8359 241e Ferritto, R.; Vogel, P Synlett 1996, 281–282 241f Jeanneret, V.; Meerpoel, L.; Vogel, P Tetrahedron Lett 1997, 38, 543–546 241g Baudat, A.; Vogel, P J Org Chem 1997, 62, 6252–6260 241h Kraehenbuehl, K.; Picasso, S.; Vogel, P Helv Chim Acta 1998, 81, 1439–1479 241i Marquis, C.; Picasso, S.; Vogel, P Synthesis 1999, 1414–1452 241j Pasquarello, C.; Picasso, S.; Demange, R.; Malissard, M.; Berger, E G.; Vogel, P J Org Chem 2000, 65, 4251–4260 241k Gerber, P.; Vogel, P Helv Chim Acta 2001, 84, 1363–1395 242 Allemann, S.; Vogel, P Helv Chim Acta 1994, 77, 1–9 243a Gasparini, F.; Vogel, P Helv Chim Acta 1989, 72, 271–277 243b Bimwala, R M.; Vogel, P Helv Chim Acta 1989, 72, 1825–1832 243c Jeanneret, V.; Gasparini, F.; Pe´chy, P.; Vogel, P Tetrahedron 1992, 48, 10637–10644 243d Pe´chy, P.; Gasparini, F.; Vogel, P Synlett 1992, 676–678 244 Nativi, C.; Reymond, J.-L.; Vogel, P Helv Chim Acta 1989, 72, 882891 245 Huănenberger, P.; Allemann, S.; Vogel, P Carbohydr Res 1994, 257, 175–187 246 Auberson, Y.; Vogel, P Tetrahedron 1990, 46, 7019–7032 247 Auberson, Y.; Vogel, P Angew Chem., Int Ed Engl 1989, 28, 1498–1499 248a de Guchteneere, E.; Fattori, D.; Vogel, P Tetrahedron 1992, 48, 10603–10620 248b See also: Durgnat, J.-M.; Vogel, P Helv Chim Acta 1993, 76, 222–240 249a Jeganathan, S.; Vogel, P J Org Chem 1991, 56, 1133–1142 249b Chen, Y.; Vogel, P J Org Chem 1994, 59, 2487–2496 250 Kernen, P.; Vogel, P Tetrahedron Lett 1993, 34, 2473–2476 251 Sevin, A.-F.; Vogel, P J Org Chem 1994, 59, 5820–5926 252 Guidi, A.; Theurillat-Mortiz, V.; Vogel, P.; Pinkerton, A A Tetrahedron: Asymmetry 1996, 7, 3153–3162 253 Theurillat-Mortiz, V.; Vogel, P Tetrahedron: Asymmetry 1996, 7, 3163–3168 254 Jotterand, N.; Vogel, P.; Schenk, K Helv Chim Acta 1999, 82, 821–847 255 Jotterand, N.; Vogel, P J Org Chem 1999, 64, 8973–8975 256 Vasella, A.; Voeffray, R Helv Chim Acta 1982, 65, 11341144 257a Muăller, I.; Jaăger, V Tetrahedron Lett 1982, 23, 47774780 257b Jaăger, V.; Muăller, I Tetrahedron 1985, 41, 35193528 257c Muăller, R.; Leibold, T.; Paătzel, M.; Jaăger, V Angew Chem., Int Ed Engl 1994, 33, 1295–1298 258 Mangeney, P.; Alexakis, A.; Normant, J.-F Tetrahedron Lett 1988, 29, 2677–2680 259 Kinast, G.; Schedel, M Angew Chem., Int Ed Engl 1981, 20, 805–806 260 Schaller, C.; Vogel, P.; Jaăger, V Carbohydr Res 1998, 314, 25–35 261 Cox, P J.; Simpkins, N S Synlett 1991, 321–323 262 Hoffmann, H M R.; Dunkel, R.; Mentzel, M.; Reuter, H.; Stark, C B W Chem Eur J 2001, 7, 4771–4789 263 Stark, C B W.; Pierau, S.; Wartchow, R.; Hoffmann, H M R Chem Eur J 2000, 6, 684–691 264 Holland, D.; Stoddart, J F J Chem Soc., Perkin Trans 1983, 1, 1553–1571 265 Grethe, G.; Sereno, J.; Williams, T H.; Uskokovic, M R J Org Chem 1983, 48, 5315–5317 266 Johnson, C R.; Golebiowski, A.; Braun, M P.; Sundram, H Tetrahedron Lett 1994, 35, 1833–1834 580 Synthesis of Monosaccharides and Analogs 267 Johnson, C R.; Braun, M P J Am Chem Soc 1993, 115, 11014–11015 268 Johnson, C R.; Adams, J P.; Braun, M P.; Senanayake, C B W.; Wovkulich, P W.; Uskokovic´, M R Tetrahedron Lett 1992, 33, 917–918 269a Johnson, C R.; Penning, T D J Am Chem Soc 1988, 110, 4726–4735 269b Parry, R J.; Haridas, K.; De Jong, R.; Johnson, C R Tetrahedron Lett 1990, 31, 7549–7552 270a Johnson, C R.; Golebiowski, A.; Schoffers, E.; Sundram, H.; Braun, M P Synlett 1995, 313–314 270b Johnson, C R.; Nerukar, B M.; Golebiowski, A.; Sundram, H.; Esker, J L Chem Commun 1995, 1139–1140 271a Mehta, G.; Mohal, N Tetrahedron Lett 2000, 41, 5741–5745 271b Mehta, G.; Mohal, N Tetrahedron Lett 2000, 41, 5747–5751 272a Hudlicky, T.; Entwistle, D A.; Pitzer, K K.; Thorpe, A J Chem Rev 1996, 96, 1195–1220 272b Banwell, M.; De Savi, C.; Watson, K J Chem Soc., Perkin Trans 1998, 2251–2252 272c Banwell, M C.; Blakey, S.; Harfoot, G.; Longmore, R W Aust J Chem 1999, 52, 137–142 272d Modyanova, L.; Azerad, R Tetrahedron Lett 2000, 41, 3865–3869 273a Johnson, J R.; Golebiowski, A.; Steensma, D H J Am Chem Soc 1992, 114, 9414–9418 273b Johnson, C R.; Kozak, J J Org Chem 1994, 59, 2910–2912 273c Johnson, C R.; Golebiowski, A.; Kozak, J Carbohydr Res 1998, 309, 331–335 273d Pearson, A J.; Katiyar, S Tetrahedron 2000, 56, 2297–2304 274 Mehta, G.; Pallavi, K Tetrahedron Lett 2004, 45, 3865–3867 275 Jung, M E.; Kretschik, O J Org Chem 1998, 63, 2975–2981 276 Rychnovsky, S F.; Griesgaber, G.; Zeller, S.; Skalitzky, D J J Org Chem 1991, 56, 5161–5169 277 Adams, R.; Voorhees, V In Organic Synthesis Collective Volume 1; Gilman, H., Ed.; 1941; pp 280 278a Kaminska, J.; Gornicka, I.; Sikora, M.; Gora, J Tetrahedron: Asymmetry 1996, 7, 907–910 278b Ghanem, A.; Schurig, V Chirality 2001, 13, 118–123 278c Ghanem, A Org Biomol Chem 2003, 1, 1282–1291 279a Mandal, S K.; Sigman, M S J Org Chem 2003, 68, 7535–7537 279b Akai, S.; Naka, T.; Omura, S.; Tanimoto, K.; Imanishi, M.; Takabe, Y.; Matsugi, M.; Kita, Y Chem Eur J 2002, 8, 4255–4264 280a Kobayashi, Y.; Kusakabe, M.; Kitano, Y.; Sato, F J Org Chem 1988, 53, 1586–1587 280b Kametani, T.; Tsubuki, M.; Tatsuzaki, Y.; Honda, T J Chem Soc., Perkin Trans 1, 1990, 639–646 281a Zhu, L.; Talukdar, Y.; Zhang, G.; Kedenburg, J P.; Wang, P G Syntlett 2005, 1547–1550 281b See also: Kamin´ska, J E.; Smigielski, K.; Łobodzin´ska, D.; Go´ra, J Tetrahedron: Asymmetry 2000, 11, 1211–1215 282 Nelson, A New J Chem 2004, 28, 771–776 283 Jung, M E.; Gardiner, J M J Org Chem 1991, 56, 2614–2615 284 Jung, M E.; Gardiner, J M Tetrahedron Lett 1992, 33, 3841–3844 285a For further applications, see also: Matsushima, Y.; Nakayama, T.; Tohyama, S.; Eguchi, T.; Kakinuma, K J Chem Soc., Perkin Trans 1, 2001, 569–577 285b Martı´n, R.; Moyano, A.; Perica`s, M A.; Riera, A Org Lett 2000, 2, 93–95 285c Dı´az, Y.; Bravo, F.; Castillo´n, S J Org Chem 1999, 64, 65086511 286 Jaăger, V.; Huămmer, W Angew Chem., Int Ed Engl 1990, 29, 1171–1173 287 Garner, P.; Park, J M.; Rotello, V Tetrahedron Lett 1985, 26, 3266–3302 288 Giner, J.-L.; Ferris, W V., Jr.; Mullins, J J J Org Chem 2002, 67, 4856–4859 289 Smith, D S.; Wang, Z.; Schreiber, S L Tetrahedron 1990, 46, 4793–4808 290a Roush, W R.; Brown, R J J Org Chem 1982, 47, 1371–1373 290b Roush, W R.; Brown, R J.; DiMare, M J Org Chem 1983, 48, 5083–5093 290c Roush, W R.; Straub, J A.; Van Nieuwenhze, M S J Org Chem 1991, 56, 1636–1648 291a Roush, W R.; Brown, R J J Org Chem 1983, 48, 5093–5101 291b Nicolaou, K C.; Rodriguez, R M.; Mitchell, H J.; van Delft, F L Angew Chem., Int Ed 1998, 37, 1874–1876 292 Kuăfner, U.; Schmidt, R R Angew Chem., Int Ed Engl 1986, 25, 89 293 Dai, L.-x.; Lou, B.-I.; Zhang, Y.-z J Am Chem Soc 1988, 110, 5195–5196 294 Ono, M.; Saotome, C.; Akita, H Heterocycles 1997, 45, 1257–1261 295 Schmidt, R R.; Frische, K Liebigs Ann Chem 1988, 209–214 296a For other applications, see: Xu, Y.-M.; Zhou, W.-S Tetrahedron Lett 1996, 37, 1461–1462 296b Marshall, J A.; Tang, Y J Org Chem 1994, 59, 14571464 296c Jaăger, V.; Huămmer, W Angew Chem., Int Ed Engl 1990, 29, 1171–1173 297 Ko, S Y.; Malik, M Tetrahedon Lett 1993, 34, 4675 298 Jung, M E.; Gardiner, J M Tetrahedron Lett 1994, 35, 6755–6758 299 Taniguchi, T.; Ohnishi, H.; Ogasawara, K Chem Commun 1996, 1477–1478 300a Harris, J M.; Keranen, M D.; O’Doherty, G A J Org Chem 1999, 64, 2982–2983 300b See also: Harris, J M.; O’Doherty, G A Tetrahedron Lett 2000, 41, 183–187 301 Haukaas, M H.; O’Doherty, G A Org Lett 2002, 4, 1771–1774 302a Stille, J K Angew Chem., Int Ed Engl 1986, 25, 508–524 302b Farina, V.; Kapadia, S.; Krishnan, B.; Wang, C.; Liebeskind, L S J Org Chem 1994, 59, 5905–5911 302c Hassan, J.; Se´vignon, M.; Gozzi, C.; Schultz, E.; Lemaire, M Chem Rev 2002, 102, 1359–1469 303 Cox, L R.; De Boos, G A.; Fullbrook, J J.; Percy, J M.; Spencer, N S.; Tolley, M Org Lett 2003, 5, 337–339 304a Ahmed, M M.; Berry, B P.; Hunter, T J.; Tomcik, D J.; O’Doherty, G A Org Lett 2005, 7, 745–748 304b Ahmed, M M.; O’Doherty, G A Tetrahedron Lett 2005, 46, 3015–3019 305 Ahmed, M M.; O’Doherty, G A J Org Chem 2005, 70, 10576–10578 306 Hong, B.-C.; Chen, Z.-Y.; Nagarajan, A.; Kottani, R.; Chavan, V.; Chen, W.-H.; Jiang, Y.-F.; Zhang, S.-C.; Liao, J.-H.; Sarshar, S Carbohydr Res 2005, 340, 2457–2468 307a Hsung, R P.; Zehnder, L R.; Wei, L L.; Cole, K P.; McLaughlin, M J.; Shen, H C.; Wang, J.; Sklenicka, H M.; Wang, J.; Zificsak, C A Org Lett 2001, 3, 2141–2144 Synthesis of Monosaccharides and Analogs 581 307b Vedejs, E.; Kruger, A W J Org Chem 1999, 64, 4790–4797 308 Li, G.; Chang, H.-T.; Sharpless, K B Angew Chem., Int Ed Engl 1996, 35, 451–454 309 Bushey, M L.; Haukaas, M H.; O’Doherty, G A J Org Chem 1999, 64, 2984–2985 310a Yang, C.-F.; Xu, Y.-M.; Liao, L.-X.; Zhou, W.-S Tetrahedron Lett 1998, 39, 9227–9228 310b Ciufolini, M A.; Hermann, C Y W.; Dong, Q.; Shimizu, T.; Swaminathan, S.; Xi, N Synlett 1998, 105–114 311 Haukaas, M H.; O’Doherty, G A Org Lett 2001, 3, 401–404 312a For further applications of asymmetric dihydroxylation, for example: Lemaire-Audoire, S.; Vogel, P Tetrahedron: Asymmetry 1999, 10, 1283–1293 312b Matsushima, Y.; Kino, J Tetrahedron Lett 2005, 46, 86098612 313 Lindstroăm, U M.; Ding, R.; Hidesta˚l, O Chem Commun 2005, 1773–1774 314 Kamata, K.; Yamaguchi, K.; Hikichi, S.; Mizuno, N Adv Synth Catal 2003, 345, 1193–1196 582 Synthesis of Monosaccharides and Analogs Biographical Sketch Inmaculada Robina received her graduate education at the University of Seville, Spain, where she also obtained her Ph.D (Organic Chemistry) in 1982 (Prof J Fdez-Bolan˜os Va´zquez, Prof J Fuentes) In 1986, she was promoted to associate professor of organic chemistry She carried out postdoctoral research in Edinburgh, UK (Prof J.G Buchanan), where she worked on the synthesis of imino sugars In 1999, she spent three months in Cambridge, UK (Prof S.V Ley), where she worked on the synthesis of oligosaccharides, in particular the synthesis of glycosyl-phosphatidoinositol anchor analogs She has been an invited professor at the University of Lausanne and at the Ecole Polytechnique Fe´de´rale de Lausanne (EPFL), Switzerland, where she worked in Prof P Vogel’s research group Her research focuses on the synthesis of oligosaccharides, especially those related to the molecular signals of the symbiosis Rhizobium-legume plant, and on the design and synthesis of enzyme inhibitors, imino-C-glycosides, imino-C-disaccharides, thiosugars, and nucleoside analogs She is also interested in the synthesis of novel oligo- and peptidomimetics Recently, she has been also involved in the synthesis of novel glycopeptides and peptidomimetics that would interfere with HIV entry Pierre Vogel spent two years at Yale University with Prof Martin Saunders after his Ph.D studies at the University of Lausanne, Switzerland (1969, Prof Horst Prinzbach) He then joined the research laboratory of Syntex in Mexico City and worked with Prof Pierre Crabbe´ He returned to the University of Lausanne where he was promoted to full professor in 1977 He has been associate professor at the Ecole Normale Supe´rieure in Paris, at the University of Paris VI, and at the University of Montpellier, France He also taught at the Universities of Rouen and Caen in Normandy and at the Ecole Polytechnique in Palaiseau near Paris He obtained the Novartis lectureship for 2003 and was elected Boehringer-Ingelheim Distinguished Lecturer for 2005 Since 2001, Prof Pierre Vogel chairs the Laboratory of Glycochemistry and Asymmetric Synthesis of the Ecole Polytechnique Fe´de´rale de Lausanne (EPFL), Switzerland He has published books and has co-authored more than 400 publications in the fields of physical organic chemistry, organic and organometallic synthesis, catalysis, glycochemistry, and bio-organic chemistry ... reaction of formaldehyde with syngas in the presence of RhCl(CO)(PPh3)2 and tertiary amines (Scheme 4).17 1.13.3 Prebiotic Synthesis of Carbohydrates The formation of Earth from a diffuse cloud of. .. enantioselective de novo synthesis of both enantiomers of natural or unnatural hexoses with up to 99% ee This implied tandem two-step sugar synthesis based on direct aminoacid-catalyzed Synthesis of Monosaccharides... Desymmetrization of meso-diacetate by lipase-catalyzed hydrolysis synthesis of C3-alditol derivatives Instead of applying enantioselective hydrolysis of meso-diacetates, monoacetylation of meso-diols

Ngày đăng: 29/08/2021, 10:18

TỪ KHÓA LIÊN QUAN