Ontogenetic variations in leaf traits of the homoblastic species dipterocarpus alatus roxb ex g don under two light conditions at cat tien national park, vietnam
Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 268 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
268
Dung lượng
6,87 MB
Nội dung
UNIVERSITY OF MONTPELLIER II UNIVERSITY OF SCIENCE IN HO CHI MINH CITY Doctoral School SIBAGHE Speciality Evolution, Ecology, Genetic Resources, Paleontology ONTOGENETIC VARIATIONS IN LEAF TRAITS OF THE HOMOBLASTIC SPECIES DIPTEROCARPUS ALATUS ROXB EX G DON UNDER TWO LIGHT CONDITIONS AT CAT TIEN NATIONAL PARK, VIETNAM Joint Thesis submitted in fulfillment of the requirements for the degree of Doctor of Sciences By Anh Tuan DANG LE Presented on 21 December 2012 Before the jury MEYER-BERTHAUD Brigitte Directrice of Research Examinator CNRS UMR AMAP Montpellier COCHARD Hervé Director of Research Reporter INRA UMR PIAF Clermont-Ferrand SANOJA Elio Professor Reporter UNED, Puerto Ordaz, Venezuela EDELIN Claude Senior Researcher Co-director CNRS UMR AMAP Montpellier LE CONG Kiet Emeritus Professor University of Sciences, Ho Chi Minh City Co-director ONTOGENETIC VARIATIONS IN LEAF TRAITS OF THE HOMOBLASTIC SPECIES DIPTEROCARPUS ALATUS UNDER TWO LIGHT CONDITIONS AT CAT TIEN NATIONAL PARK, VIETNAM ABSTRACT When explaining variations in leaf parameters, analysis is based solely on environmental factors will lead to significant errors if the plant shows substantial ontogenetic variations in leaf properties We evaluated variations in 27 morphoanatomical leaf traits of Dipterocarpus alatus over six architectural development stages and between axes at a given development stage under two different light conditions An architectural analysis was conducted to distinguish precisely and objectively axis categories and developmental stages of D alatus Leaves were collected on the most recent complete growth unit on the top of the trunk and the outermost part of the middle-crown branch from trees growing under two different light conditions Twenty two leaf traits were measured and calculated using ImageJ on images of leaf tracings and cross-sections Stomatal density was calculated on nail varnish impression of the leaf lower surface Four chlorophyll traits were determined ANOVA and Tukey post-hoc tests were used to determine differences between development stages and axes The lmg relative contribution was calculated and compared to determine ontogenetic stage, axis category or light intensity, which explained more the variations in leaf traits Leaf traits differed strongly during ontogeny for all four axes and under both light conditions The axis effect was displayed at stages B, C, D and F but was insignificant at stage E Tree ontogeny explained more variations in leaf traits than light intensity Axis category explained more variations in leaf morphology but not in leaf anatomy than tree ontogeny Strong and significant intraspecific variations (ontogeny and axes) may influence the interspecific variations, and thus challenge the validity of the mean value of leaf traits between species Tree ontogeny contributed more than light intensity in explanation of the variability in leaf traits both on the trunk and second axis order strongly recommends that studies on the responses of leaf anatomy to the environment might need to correct for an ontogeny effect Key words: Dipterocarpus alatus; architecture; ontogeny; intraspecific; leaf morphology; leaf anatomy, homoblastic, light intensity VARIATIONS ONTOGENETIQUES DES TRAITS FOLIAIRES DE L'ESPÈCE HOMOBLASTIQUE DIPTEROCARPUS ALATUS SOUS DEUX CONDITIONS LUMINEUSES AU PARC NATIONAL DE CAT TIEN, VIETNAM RÉSUMÉ En expliquant les variations des paramètres feuilles, l'analyse est fondée uniquement sur des facteurs environnementaux conduire des erreurs importantes si la plante montre des variations ontogénétiques substantielles des propriétés des feuilles Nous avons évalué les variations des 27 traits morpho-anatomiques des feuilles de Dipterocarpus alatus durant six stades de développement architectural et entre les axes un stade de développement donné sous deux conditions lumineuses différentes Une analyse architecturale a été réalisée pour distinguer précisément et objectivement des catégories d'axes et stades de développement de D alatus Les feuilles ont été collectées sur l'unité de croissance plus récente et complète sur la partie supérieure du tronc et sur la partie plus externe de la branche du milieu couronne des arbres qui poussent sous deux différentes conditions lumineuses Vingtdeux traits foliaires ont été mesurées et calculées sur des images de tracés feuilles et de sections transversaux l'aide de logiciel ImageJ Densité stomatal a été calculée sur l'impression de vernis ongles de la surface inférieure des feuilles Quatre traits de chlorophylle ont été déterminés Les tests d’ANOVA et Tukey ont été utilisés pour déterminer les différences entre les stades de développement et des axes La contribution relative lmg a été calculée et comparées pour déterminer le stade ontogénétique, catégorie d’axe ou l'intensité lumineuse, ce qui est expliqué plus les variations de traits foliaire Les traits foliaires diffère fortement durant l'ontogenèse pour les quatre axes et sous des conditions lumineuses L'effet de l'axe a été présentée au stade B, C, D et F, mais a été insignifiante au stade E Ontogenèse de l’arbre expliqué plus de variations des traits foliaire que l'intensité lumineuse Catégorie d’axe expliqué plus de variations dans la morphologie des feuilles, mais pas dans l'anatomie des feuilles que l’ontogenèse de l’arbre Fortes et significatives variations intra-spécifiques (l'ontogenèse et axes) peuvent influencer les variations inter-spécifiques, et donc contestent la validité de la valeur moyenne des traits foliaires entre les espèces Ontogenèse de l’arbre contribué plus que l'intensité lumineuse dans l'explication de la variabilité des traits foliaire la fois sur le tronc et deuxième l’ordre l’axe recommande fortement que les études sur les réponses de la morphologie et l'anatomie des feuilles l'environnement doivent corriger l'effet de l'ontogenèse Mots clés: Dipterocarpus alatus, architecture, ontogénèse; intraspécifique; la morphologie des feuilles; l'anatomie des feuilles, homoblastique, l’intensité lumineuse This thesis was granted by Agence Universitaire de la Francophonie (AUF), programme Sud Experts Plantes (SEP), University of Montpellier (UM2), UMR-AMAP, France and Vietnam International Education Development, programme 322 (VIED), Vietnam PREFACE The purpose of this thesis is to study the variations in leaf morphological and anatomical traits during ontogeny and between axes at a given development stage of the homoblastic species, Dipterocarpus alatus that grows under two contrasting light conditions at Cat Tien national park, Vietnam This manuscript was represented under article format in six chapters The first chapter introduced the basic structure of leaf morphology and anatomy, their applications in plant taxonomy, floristic, evolution and ecology The general variations of leaf traits during plant development, within different positions in a plant and due to environment were also mentioned Finally, the remained problems and objectives were noted In the second chapter, the general methods used in this thesis were described in details Within the next three chapters, the 3rd, 4th and 5th, variations in leaf morphology and anatomy during tree ontogeny and among different axes (orders and categories) were evaluated for trees that grow under low light and high light Ontogenetic changes in leaf morphological traits of the trunk were found in chapter three Variations in leaf morphology during ontogeny of four axes and variations in leaf morphological traits between axes at a given development stage were reported in chapter The same analysis was performed for leaf anatomy in chapter Chapter gives a general discussion on how leaf morphology and anatomy changes during ontogeny of an axis and between axes at a given development stage This last chapter also provides the interpretation of variations in leaf traits in the viewpoint of adaptation and morphogenetic movement In brief, both leaf morphological and anatomical traits changed significantly during tree ontogeny and between different axes at a given development stage The most important result was that tree ontogeny explained much more the variability in leaf traits than light intensity did, and this was found on the trunk and second order axis under both low light and high light Our results give a strong argument that studies on the responses of leaf traits to the environment might need to correct for the ontogeny effect Montpellier, France November 2012 Anh Tuan DANG LE For the circle of life, Buddha told Goethe: “Everything is born, grows, gets old, has sickness and finally disappears” Goethe would praise: “What a beautiful metamorphosis” - Be inspired - ACKNOWLEDGEMENT To be here, I am grateful to: Teachings of Buddha, Yoga and Mediation for my peacefulness, Ms VO Kim Tien for her heart to show me the first step of research, Prof LE CONG Kiet for his wisdom to refine me on the stair of research, Dr EDELIN Claude and Ms Martine for their great enthusiasm and patience to enlarge my view of humanity and to extend my vision of research, Dr MILLET Jérôme for his generosity to be a teacher and a friend, Staffs in Cat Tien National Park for their help to facilitate my field trip, Dr LE MOGUÉDEC Gilles for his statistical lessons at the first step, Dr MUNOZ Franỗois and Prof NIMON Kim for their help on statistical issues, Dr ROWE Nick, Dr REY Hervé and Dr HEINZ Christine for their useful comments to the manuscript, Ms BROHARD Yannick for her great sympathy to find any document I need, Ms DE GUILLEN Marie-Laure and Ms LOPEZ Joelle for their rapid solution to any administrative difficulties, Dr AUCLAIR Daniel , Dr CARAGLIO Yves, Dr BARTHELEMY Daniel, Dr COUTERON Pierre, Dr MEYER-BERTHAUD Brigitte, Dr LEBRUN Michel, Ms TRAN Thi Phuong Giang and Mr TRUONG Quang The for their help to facilitate administration process, Tristan, Mathieu, Trung, Mai and Hang for their great friendship, All AMAPiens for sharing a friendly research life at UMR AMAP with a lot of smiles, The students who help me on field trip and laboratory work, My family for their unconditional support, For all of you, Om vajra patra hum phat (All wishes become true) Groemping U (2006) Relative Importance for Linear Regression in R: The Package relaimpo Journal of Statistical Software 17 (1):1-27 Haberlandt G (1914) Physiological Plant Anatomy Macmillan, Hagemann W, Gleissberg S (1996) Organogenetic capacity of leaves: The significance of marginal blastozones in angiosperms Plant Systematics and Evolution 199 (34):121-152 Hallé F, Oldeman RAA (1970) Essai sur l’architecture et la dynamique de croissance des arbres tropicaux Masson, Paris Hallé F, Oldeman RAA, Tomlinson PB (1978) Tropical trees and forest - an architectural analysis Springer, Berlin Hanba YT, Kogami H, Terashima I (2002) The effect of growth irradiance on leaf anatomy and photosynthesis in Acer species differing in light demand Plant Cell Environ 25 (8):1021-1030 Hanba YT, Miyazawa SI, Terashima I (1999) The influence of leaf thickness on the CO2 transfer conductance and leaf stable carbon isotope ratio for some evergreen tree species in Japanese warm-temperate forests Func Ecol 13 (5):632-639 Heckenberger U, Roggatz U, Schurr U (1998) Effect of drought stress on the cytological status in Ricinus communis J Exp Bot 49:181-189 Hegazy A, El Amry M (1998) Leaf temperature of desert sand dune plants: perspectives on the adaptability of leaf morphology Afr J Ecol 36 (1):34-43 Hetherington A, Woodward F (2003) The role of stomata in sensing and driving environmental change Nature 424:901–908 Heuret P, Barthélémy D, Nicolini E, Atger C (2000) Analyse des composantes de la croissance en hauteur et de la formation du tronc chez le chêne sessile (Quercus petraea (Matt.) Liebl (Fagaceae) en sylviculture dynamique Can J Bot 78:361– 373 Hickey L (1979) A revised classification of the architecture of Dicotyledonous leaves In: Anatomy of the dicotyledons, vol 1, Systematic anatomy of the leaf and stem edn Clarendon Press, Oxford, pp 25-39 Hodge A, Berta G, Doussan C, Merchan F, Crespi M (2009) Plant root growth, architecture and function Plant and Soil 321 (1-2):153-187 Holland N, Richardson AD (2009) Stomatal length correlates with elevation of growth in 240 four temperate species J Sustainable For 28:63-73 Hölscher D (2004) Leaf traits and photosynthetic parameters of saplings and adult trees of co-existing species in a temperate broad-leaved forest Basic and Applied Ecology (2):163-172 Houter N, Pons T (2012) Ontogenetic changes in leaf traits of tropical rainforest trees differing in juvenile light requirement Oecologia 169 (1):33-45 IIo A, Fukasawa H, Nose Y, Kato S, Kakubari Y (2005) Vertical, horizontal and azimuthal variations in leaf photosynthetic characteristics within a Fagus crenata crown in relation to light acclimation Tree Physiology 25 (5):533-544 Ishida A, Yazaki K, Hoe AL (2005) Ontogenetic transition of leaf physiology and anatomy from seedlings to mature trees of a rain forest pioneer tree, Macaranga gigantea Tree Physiol 25 (5):513-522 Ishii H, Ford ED, Boscolo ME, Manriquez AC, Wilson ME, Hinckley TM (2002) Variation in specific needle area of old-growth Douglas-fir in relation to needle age, within-crown position and epicormic shoot production Tree Physiology 22 (1):31-40 James SA, Smith WK, Vogelmann TC (1999) Ontogenetic differences in mesophyll structure and chlorophyll distribution in Eucalyptus globulus ssp globulus (Myrtaceae) Am J Bot 86 (2):198-207 Jensen R (2003) The conundrum of morphometrics Taxon 52:663–671 Keller R (1996) Identification of tropical woody plants in the absence of flowers, a field guide Second edn Birkhauser, Kenzo T, Ichie T, Watanabe Y, Yoneda R, Ninomiya I, Koike T (2006) Changes in photosynthesis and leaf characteristics with tree height in five dipterocarp species in a tropical rain forest Tree Physiol 26 (7):865-873 Kenzo T, Ichie T, Yoneda R, Kitahashi Y, Watanabe Y, Ninomiya I, Koike T (2004) Interspecific variation of photosynthesis and leaf characteristics in canopy trees of five species of Dipterocarpaceae in a tropical rain forest Tree Physiology 24 (10):1187-1192 Kincaid DT, Anderson PJ, Mori SA (1998) Leaf variation in a tree of Pourouma tomentosa (Cecropiaceae) in French Guiana Brittonia 50 (3):324-338 Kitajima K (1992) Relationship between photosynthesis and thickness of cotyledons for 241 tropical tree species Funct Ecol 6:582-589 Koch GW, Sillett SC, Jennings GM, Davis SD (2004) The limits to tree height Nature 428 (6985):851-854 Kouwenberg L, Kűrschner W, McElwain C (2007) Stomatal frequency changes over altitudinal gradients: prospects for paleoaltimetry Reviews in Mineralogy and Geochemistry 66:215-241 Kouwenberg L, Kűrschner W, Visscher H (2004) Changes in stomatal frequency and size during elongation of Tsuga heterophylla needles Ann Bot-London 94:561-569 Kouwenberg L, Wagner R, Kűrschner W, Visscher H (2005) Atmospheric CO2 fluctuations during the last millennium reconstructed by stomatal frequency analysis of Tsuga heterophylla needles Geology 33:33-36 Kowalski CJ, Schneiderman ED, Willis SM (1994) ANCOVA for nonparallel slopes: the Johnson-Neyman technique Int J Biomed Comput 37 (3):273-286 Kozlowski TT, Pallardy SG (1996) Growth control in woody plants Academic Press, Kusumi K, Hirotsuka S, Kumamaru T, Iba K (2012) Increased leaf photosynthesis caused by elevated stomatal conductance in a rice mutant deficient in SLAC1, a guard cell anion channel protein J Exp Bot Lamont BB, Groom PK, Cowling RM (2002) High leaf mass per area of related species assemblages may reflect low rainfall and carbon isotope discrimination rather than low phosphorus and nitrogen concentrations Funct Ecol 16 (3):403-412 Lauri PÉ, Térouanne E (1991) Eléments pour une approche morphométrique de la croissance végétale et de la floraison: le cas d’expèces tropicales du modèle de Leeuwenberg Can J Bot 69:2095-2112 LAWG (1999) Manual of Leaf Architecture - morphological description and categorization of dicotyledonous and net-veined monocotyledonous angiosperms Smithsonian Institution, Washington Lawrence A, Hawthorne W (2006) Plant Identification: Creating User-Friendly Field Guides for Biodiversity Management People and Plants Conservation Earthscan, London, Sterling Le Cong K (2002) Field keys to identify the forest trees in Cat Tien National Park Programme MIRA, Lee DW (1986) Unusual strategies of light absorption in rain-forest herbs In: Givinish 242 TJ (ed) On the Economy of Plant Form and Function Cambridge University Press, pp 105-126 Lee DW, Oberbauer SF, Johnson P, Krishnapilay B, Mansor M, Mohamad H, Yap SK (2000) Effects of irradiance and spectral quality on leaf structure and function in seedlings of two Southeast Asian Hopea (Dipterocarpaceae) species Am J Bot 87 (4):447-455 Leigh A, Sevanto S, Ball MC, Close JD, Ellsworth DS, Knight CA, Nicotra AB, Vogel S (2012) Do thick leaves avoid thermal damage in critically low wind speeds? New Phytol 194 (2):477-487 Lemoinea D, Cochard H, Graniera A (2002) Within Crown Variation In Hydraulic Architecture In Beech (Fagus Sylvatica L): Evidence For A Stomatal Control Of Xylem Embolism Ann For Sci 59:19-27 Leroy C, Guéroult M, Wahyuni N, Escoute J, Céréghino R, Sabatier S, Auclair D (2008) Morphogenetic trends in the morphological, optical and biochemical features of phyllodes in Acacia mangium Willd (Mimosaceae) Trees 23 (1):37-49 Leroy C, Heuret P (2008) Modelling changes in leaf shape prior to phyllode acquisition in Acacia mangium Willd seedlings C R Biol 331 (2):127-136 Lin ZF, Ehleringer J (1983) Epidermis effects on spectral properties of leaves of four herbaceous species Physiol Plantarum 59 (1):91-94 Lynn DE, Waldren S (2001) Morphological Variation in Populations of Ranunculus repens from the Temporary Limestone Lakes (Turloughs) in the West of Ireland Annals of Botany 87 (1):9-17 Marchi S, Tognetti R, Minnocci A, Borghi M, Sebastiani L (2008) Variation in mesophyll anatomy and photosynthetic capacity during leaf development in a deciduous mesophyte fruit tree (Prunus persica) and an evergreen sclerophyllous Mediterranean shrub (Olea europaea) Trees 22 (4):559-571 Markesteijn L, Poorter L, Bongers F (2007) Light-dependent leaf trait variation in 43 tropical dry forest tree species Am J Bot 94 (4):515-525 Marques AR, Garcia QS, Rezende JLP, Fernandes GW (2000) Variations in leaf characteristics of two species of Miconia in the Brazilian cerrado under different light intensities Trop Ecol 41 (1):47-56 Martin G, Vogelmann TC, Josserand S (1989) Epidermal focussing and the light 243 microenvironment within leaves of Medicago sativa Physiol Plant 76:485-492 Martínez-Garza C, Pa V, Ricker M, Campos A, Howe HF (2005) Restoring tropical biodiversity: Leaf traits predict growth and survival of late-successional trees in early-successional environments Forest Ecology and Management 217:365-379 doi:doi: 10.1016/j.foreco.2005.07.001 McDonald PG, Fonseca CR, Overton JM, Westoby M (2003) Leaf-size divergence along rainfall and soil-nutrient gradients: is the method of size reduction common among clades? Funct Ecol 17 (1):50-57 McLellan T, Endler JA (1998) The relative success of some methods for measuring and describing the shape of complex objects Systematic Biology 47 (2):264-281 doi:10.1080/106351598260914 McMillen GG, McClendon JH (1983) Dependence of Photosynthetic Rates on Leaf Density Thickness in Deciduous Woody Plants Grown in Sun and Shade Plant Physiol 72 (3):674-678 Mediavilla S, Escudero A, Heilmeier H (2001) Internal leaf anatomy and photosynthetic resource-use efficiency: interspecific and intraspecific comparisons Tree Physiol 21 (4):251-259 Meng X-L, Rosenthal R, Rubin DB (1992) Comparing Correlated Correlation Coefficients Psychol B 111 (1):172-175 Milla R, Reich PB (2010) Multi-trait interactions, not phylogeny, fine-tune leaf size reduction with increasing altitude Ann Bot-London 107 (3):455-465 Milla R, Reich PB, Niinemets Ü, Castro-Díez P (2008) Environmental and developmental controls on specific leaf area are little modified by leaf allometry Funct Ecol 22 (4):565-576 Miranda V, Baker NR, Long SP (1981) Anatomical Variation Along the Length of the Zea mays Leaf in Relation to Photosynthesis New Phytol 88 (4):595-605 Miyazawa SI, Makino A, Terashima I (2003) Changes in mesophyll anatomy and sink– source relationships during leaf development in Quercus glauca, an evergreen tree showing delayed leaf greening Plant Cell Environ 26 (5):745-755 Myers DA, Vogelmann TC, Bornman JF (1994) Epidermal focussing and effects on light utilization in Oxalis acetosella Physiol Plant 91:651-656 Nardini A, Salleo S, Raimondo F (2003) Changes in leaf hydraulic conductance correlate 244 with leaf vein embolism in Cercis siliquastrum L Trees 17:529-534 Nibau C, Gibbs DJ, Coates JC (2008) Branching out in new directions: the control of root architecture by lateral root formation New Phytologist 179 (3):595-614 Nicolini E, Barthélémy D, Heuret P (2000) Influence de la densité du couvert forestier sur le développement architectural de jeunes chênes sessiles, Quercus petraea (Matt.) Liebl (Fagaceae), en régénération forestière Can J Bot 78:1531–1544 Nicolini E, Caraglio Y, Pélissier R, Leroy C, Roggy JC (2003) Epicormic branches: a growth indicator for the tropical forest tree, Dicorynia guianensis Amshoff (Caesalpiniaceae) Ann Bot-London 92 (1):97-105 Nicolini E, Chanson B (1999 ) La pousse courte, un indicateur du degré de maturation chez le hêtre (Fagus sylvatica L.) Can J Bot 77:1539–1550 Nielsen, S L, Enriquez, S, Duarte, C M, Sand J, K (1996) Scaling maximum growth rates across photosynthetic organisms Func Ecol 10:167-175 Nii N, Watanabe T, Yamaguchi K, Nishimura M (1995) Changes of Anatomical Features, Photosynthesis and Ribulose Bisphosphate Carboxylase-Oxygenase Content of Mango Leaves Ann Bot - London 76 (6):649-656 Niinemets Ü (1999) Components of leaf dry mass per area – thickness and density – alter leaf photosynthetic capacity in reverse directions in woody plants New Phytol 144 (1):35-47 Niinemets Ü (2010) A review of light interception in plant stands from leaf to canopy in different plant functional types and in species with varying shade tolerance Ecological Research 25 (4):693-714 Nobel, S P (1976) Photosynthetic Rates of Sun versus Shade Leaves of Hyptis emoryi Torr Plant Physiol 58:218-223 Normand F, Bello AKP, Trottier C, Lauri P-É (2009) Is axis position within tree architecture a determinant of axis morphology, branching, flowering and fruiting? An essay in mango Annals of Botany 103 (8):1325-1336 Nozeran (1984) Integration of organismal development In: Barlow PW, Carr DJ (eds) Positional controls in plant development Cambridge University Press pp 375-401 Nozeran R (1978) Multiple growth correlations in phanerogams In: Tomlinson PB, Zimmermann MH (eds) Tropical trees as living systems Cambridge University Press, pp 423-443 245 Oberbauer SF, Strain BR (1986) Effects of canopy position and irradiance on the leaf physiology and morphology on Pentaclethra macroloba (Mimosaceae) Am J Bot 73:409–416 Obeso J, Herrera C (1994) Inter- and intraspecific variation in fruit traits in co-occurring vertebrate-dispersed plants Int J Plant Sci 155:382-387 Ohsumi A, Hamasaki A, Nakagawa H, Yoshida H, Shiraiwa T, Horie T (2007) A model explaining genotypic and ontogenetic variation of leaf photosynthetic rate in rice (Oryza sativa) based on leaf nitrogen content and stomatal conductance Ann Bot - London 99:265–273 Osone Y, Ishida A, Tateno M (2008) Correlation between relative growth rate and specific leaf area requires associations of specific leaf area with nitrogen absorption rate of roots New Phytol 179 (2):417-427 Ounis A, Cerovic ZG, Briantais JM, Moya I (2001) Dual-excitation FLIDAR for the estimation of epidermal UV absorption in leaves and canopies Remote Sens Environ 76 (1):33-48 Parkhurst DF, Loucks OL (1972) Optimal leaf size in relation to environment Journal of Ecology 60:505–537 Pascal JP, Ramesh BR (1997) A field key to the trees and lianas of the evergreen forests of the Western Ghats (India) Institut Franỗais de Pondichéry, Pearcy RW (2007) Responses of plant to heterogenous light environments In: Pugnaire FI, Valladares F (eds) Funtional plant ecology CRC Press, Boca Raton, London, New York, pp 213-245 Peri PL, Moot DJ, Jarvis P, McNeil DL, Lucas RJ (2007) Morphological, Anatomical, and Physiological Changes of Orchardgrass Leaves Grown under Fluctuating Light Regimes Agron J 99 (6):1502-1513 Poethig RS (1990) Phase Change and the Regulation of Shoot Morphogenesis in Plants Science 250 (4983):923-930 Poorter H (1989) Interspecific variation in relative growth rate: on ecological causes and physiological consequences In: Lambers H (ed) Causes and consequences of variation in growth rate and productivity of higher plants SPB Academic Publishing, The Hague, Netherlands, pp 45–68 Poorter H, Niinemets Ü, Poorter L, Wright IJ, Villar R (2009) Causes and consequences 246 of variation in leaf mass per area (LMA): a meta-analysis New Phytol 182 (3):565-588 Poorter H, Niklas KJ, Reich PB, Oleksyn J, Poot P, Mommer L (2011) Biomass allocation to leaves, stems and roots: meta-analyses of interspecific variation and environmental control New Phytol 193 (1):30-50 Poorter L, Rozendaal DMA (2008) Leaf size and leaf display of thirty-eight tropical tree species Oecologia 158 (1):35-46 Puntieri JG, Souza MS, Brion C, Mazzini C, Barthélémy D (2003) Axis Differentiation in Two South American Nothofagus Species (Nothofagaceae) Ann Bot - London 92 (4):589-599 Radford AE, Dickison WC, Massey JR, Bell CR (1976) Vascular Plant Systematics Harper and Row, New York Reddy KR, Robana RR, Hodges HF, Liu XJ, McKinion JM (1998) Interactions of CO2 enrichment and temperature on cotton growth and leaf characteristics Environ Exp Bot 39:117-129 Reich A, Holbrook NM, Ewel JJ (2004) Developmental and physiological correlates of leaf size in Hyeronima alchorneoides (Euphorbiaceae) American Journal of Botany 91 (4):582-589 Reich PB, Ellsworth DS, Walters MB (1998) Leaf structure (specific leaf area) modulates photosynthesis–nitrogen relations: evidence from within and across species and functional groups Functional Ecology 12 (6):948-958 Richardson AD, Ashton PMS, Berlyn GP, McGroddy ME, Cameron IR (2001) Withincrown foliar plasticity of Western Hemlock, Tsuga heterophylla, in relation to stand age Ann Bot - London 88 (6):1007-1015 Richardson AD, Berlyn GP, Ashton PMS, Thadani R, Cameron, I R (2000) Foliar plasticity of hybrid spruce in relation to crown position and stand age Can J Bot 78 305-317 Roggy JC, Nicolini E, Imbert P, Caraglio Y, Bosc A, Heuret P (2005) Links between tree structure and functional leaf traits in the tropical forest tree Dicorynia guianensis Amshoff (Caesalpiniaceae) Ann For Sci 62:12 Roth I (1984) Stratification of tropical forest as seen in leaf structure Dr W Junk Publishers, 247 Roth I (1996) Microscopic venation patterns of leaves Gebrueder Borntraeger, Berlin Roth-Nebelsick A (2005) Reconstructing atmospheric carbon dioxide with stomata: possibilities and limitations of a botanical pCO2-sensor Trees 19:251-265 Roth-Nebelsick A, Uhl D, Mosbrugger V, Kerp H (2001) Evolution and Function of Leaf Venation Architecture: A Review Annals of Botany 87 (5):553-566 Royer DL (2001) Stomatal density and stomatal index as indicators of paleoatmospheric CO2 concentration Rev Paleobot Palyno 114 (1-2):1-28 Royer DL, Wilf P, Janesko DA, Kowalski EA, Dilcher DL (2005) Correlations of climate and plant ecology to leaf size and shape: potential proxies for the fossil record Am J Bot 92 (7):1141-1151 Rundel PW, Sharifi MR, Gibson AC, Esler KJ (1998) Structural and physiological adaptation to light environments in neotropical Heliconia (Heliconiaceae) Journal of Tropical Ecology 14 (06):789-801 M783 - 710.1017/S0266467498000571 Ryan MG, Phillips N, Bond BJ (2006) The hydraulic limitation hypothesis revisited Plant Cell Environ 29 (3):367-381 Sabatier S, Barthélémy D (1999) Growth Dynamics and Morphology of Annual Shoots, According to their Architectural Position, in Young Cedrus atlantica (Endl.) Manetti ex Carrire (Pinaceae) Annals of Botany 84 (3):387-392 Sack L, Cowan PD, Jaikumar N, Holbrook NM (2003) The ‘hydrology’ of leaves: coordination of structure and function in temperate woody species Plant Cell Environ 26 (8):1343-1356 Sack L, Grubb PJ, Marón T (2003) The functional morphology of juvenile plants tolerant of strong summer drought in shaded forest understories in southern Spain Plant Ecology 168 (1):139-163-163 Sack L, Melcher PJ, Liu WH, Middleton E, Pardee T (2006) How strong is intracanopy leaf plasticity in temperate deciduous trees? American Journal of Botany 93 (6):829-839 Sack L, Streeter CM, Holbrook NM (2004) Hydraulic Analysis of Water Flow through Leaves of Sugar Maple and Red Oak Plant Physiology 134 (4):1824-1833 Schlichting C, Smith H (2002) Phenotypic plasticity: linking molecular mechanisms with evolutionary outcomes Evol Ecol 16:189–211 248 Schuepp PH (1993) Leaf boundary layers New Phytol 125 (3):477-507 Sellin A (2001) Morphological and stomatal responses of Norway spruce foliage to irradiance within a canopy depending on shoot age Environmental and Experimental Botany 45 (2):115-131 Sellin A, Kupper P (2004) Within-crown variation in leaf conductance of Norway spruce: effects of irradiance, vapour pressure deficit, leaf water status and plant hydraulic constraints Ann For Sci 61 (5):419-429 Sellin A, Kupper P (2006) Spatial variation in sapwood area to leaf area ratio and specific leaf area within a crown of silver birch Trees 20 (3):311-319 Sestak Z (1959) A method of storage of leaf sampls for chlorophyll analysis Biol Plantarium (4):287-294 Sharma GK, Dunn DB (1969) Environmental modications of leaf surface traits in Datura stramonium Can J Bot 47:1211-1216 Sinnott EW (1921) The relation between body size and orhan size in plants Am Nat 55:385-403 Sisó S, Camarero J, Gil-Pelegrín E (2001) Relationship between hydraulic resistance and leaf morphology in broadleaf Quercus species: a new interpretation of leaf lobation Trees 15:341–345 Smith ND, Turner AH (2005) Morphology’s role in phylogeny reconstruction: Perspectives from Paleontology Syst Biol 54 (3):166-173 Smith S, Weyers JDB, Berry WG (1989) Variation in stomatal characteristics over the lower surface of Commelina communis leaves Plant Cell Environ 12:653-659 Smith WK (1978) Temperatures of desert plants: another perspective on the adaptability of leaf size Science 201:614–616 Smith WK, Vogelmann TC, Delucia EH, Belland DT, Shepherd KA (1997) Leaf form and photosynthesis Bioscience 47:785-793 Stearn WT (2000) Botanical Latin 4th edn David & Charles Book, Newton Abbot, London, North Pomfret Stewart JD, Hoddinott J (1993) Photosynthetic acclimation to elevated atmospheric carbon dioxide and UV irradiation in Pinus banksiana Physiol Plant 88:493-500 Suzuki AA (2003) Shoot growth patterns in saplings of Cleyera japonica in relation to light and architectural position Tree Physiology 23 (1):67-71 249 Takenaka A (1994) Effects of leaf blade narrowness and petiole length on the light capture efficiency of a shoot Ecol Res (2):109-114-114 Takhtajan AL (1954) Essays on the evolutionary morphology of plants (trans: Gankin OH) The American Institute of biological sciences, Temesgen H, Weiskittel A (2006) Leaf mass per area relationships across light gradients in hybrid spruce crowns Trees - Structure and Function 20 (4):522-530 Terashima I (1989) Productive structure of a leaf In: Briggs WR (ed) Photosynthesis Liss, New York, pp pp 207–226 Terashima I, Miyazawa S-I, Hanba YT (2001) Why are Sun Leaves Thicker than Shade Leaves? — Consideration based on Analyses of CO2 Diffusion in the Leaf J Plant Res 114 (1):93-105 Terashima I, Saeki T (1983) Light environment within a leaf I Optical properties of paradermal sections of Camellia leaves with special reference to differences in the optical properties of palisade and spongy tissues Plant Cell Physiol 24:14931501 Thomas SC (2011) Age-Related Changes in Tree Growth and Functional Biology In: Meinzer FC, Lachenbruch B, Dawson TE (eds) Size and age related changes in tree structure and function, vol Tree Physiology Springer, Dordrecht, Heidelberg, London, New York, pp 33-64 doi:10.1007/978-94-007-1242-3 Thomas SC, Ickes K (1995) Ontogenetic changes in leaf size in Malaysian rain forest trees Biotropica 27(4):427-434 Thomas SC, Winner WE (2002) Photosynthetic differences between saplings and adult trees: an integration of field results by meta-analysis Tree Physiol 22 (2-3):117127 Tichá I (1982) Photosynthetic characteristics during ontogenesis of leaves Stomata density and sizes Photosynthetica 16:375-471 Tsukaya H (2005) Leaf shape: genetic controls and environmental factors Int J Dev Biol 49:547 - 555 Uemura A, Harayama H, Koike N, Ishida A (2006) Coordination of crown structure, leaf plasticity and carbon gain within the crowns of three winter-deciduous mature trees Tree Physiology 26 (5):633-641 van Hoof TB, Kaspers KA, Wagner F, van de Wal RSW, Kűrschner WM, Visscher H 250 (2005) Atmospheric CO2 during the 13th century AD: reconciliation of data from ice core measurements and stomatal frequency analysis Tellus 57B:351-355 Vile D, Garnier E, Shipley B, Laurent G, Navas M-L, Roumet C, Lavorel S, Díaz S, Hodgson J, Lloret F, Midgley G, Poorter H, Rutherford M, Wilson P, Wright I (2005) Specific Leaf Area and Dry Matter Content Estimate Thickness in Laminar Leaves Ann Bot-London 96:1129-1136 Violle C, Enquist BJ, McGill BJ, Jiang L, Albert CH, Hulshof C, Jung V, Messier J (2012) The return of the variance: intraspecific variability in community ecology Trends Ecol Evol 27 (4):244-252 Vogelman TC, Nishio JN, Smith WK (1996a) Leaves and light capture: Light propagation and gradients of carbon fixation within leaves Trends plant sci (2):65-70 Vogelmann TC (1994) Light within the plant In: Kendrick RE, Kronenberg GHM (eds) Photomorphogenesis in Plants M Nijhoff Publishers, pp 491-535 Vogelmann TC, Bornman JF, Yates DJ (1996b) Focusing of light by leaf epidermal cells Physiol Plantarum 98 (1):43-56 Vogelmann TC, Martin G (1993) The functional significance of palisade tissue: penetration of directional versus diffuse light Plant Cell Environ 16 (1):65-72 Wagner F, Kouwenberg LLR, van Hoof TB, Visscher R (2004) Reproducibility of Holocene atmospheric CO2 records based on stomatal frequency Quaternary Sci Rev 23:1947-1954 Weiskittel AR, Temesgen H, Wilson DS, Maguire DA (2008) Sources of within- and between-stand variability in specific leaf area of three ecologically distinct conifer species Ann For Sci 65 (1) Westoby M, Falster DS, Moles AT, Vesk PA, Wright IJ (2002) Plant ecological strategies: Some leading dimensions of variation between species Annu Rev Ecol Syst 33 (1):125-159 Westoby M, Wright IJ (2003) The leaf size - twig size spectrum and its relationship to other important spectra of variation among species Oecologia 135 (4):621-628628 Wiens JJ (2004) The role of morphological data in Phylogeny reconstruction Syst Biol 53 (4):653-661 251 Wilf P, Wing SL, Greenwood DR, Greenwood CL (1998) Using fossil leaves es paleoprecipitation indicators: an Eocene example Geology 26:203-206 Wilson D, Cooper JP (1969) Effect of temperature during growth on leaf anatomy and subsequent light-saturated photosynthesis among contrasting Lolium genotypes New Phytol 68 (4):1115-1123 Witkowski ETF, Lamont BB, Walton CS, Radford S (1992) Leaf Demography, Sclerophylly and Ecophysiology of Two Banksias With Contrasting Leaf Life Spans Aust J Bot 40 (6):849-862 Wolfe JA (1993) A method of obtaining climatic parameters from leaf assemblages US Geol Surv B 2040:1-71 Wolfe JA (1995) Paleoclimatic estimates from tertiary leaf assemblages Annu Rev Earth Pl Sc 23:119–142 Woodruff DR, Bond BJ, Meinzer FC (2004) Does turgor limit growth in tall trees? Plant Cell Environ 27 (2):229-236 Woolley JT (1971) Reflectance and Transmittance of Light by Leaves Plant Physiol 47 (5):656-662 Wright IJ, Westoby M (2001) Understanding seedling growth relationships through specific leaf area and leaf nitrogen concentration: generalisations across growth forms and growth irradiance Oecologia 127 (1):21-29 Wright IJ, Westoby M, Reich PB (2002) Convergence towards higher leaf mass per area in dry and nutrient-poor habitats has different consequences for leaf life span J Ecol 90 (3):534-543 Wright SD, McConnaughay KDM (2002) Interpreting phenotypic plasticity: the importance of ontogeny Plant Species Biol 17 (2-3):119-131 Yamada T, Suzuki E (1996) Ontogenic change in leaf shape and crown form of a tropical tree, Scaphium macropodum (Sterculiaceae) in Borneo J Plant Res 109 (2):211217 Zotz G, Wilhelm K, Becker A (2011) Heteroblasty—A Review Bot Rev 77 (2):109-151 Zwieniecki MA, Melcher PJ, Boyce CK, Sack L, Holbrook NM (2002) Hydraulic architecture of leaf venation in Laurus nobilis L Plant Cell Environ 25 (11):14451450 252 ONTOGENETIC VARIATIONS IN LEAF TRAITS OF THE HOMOBLASTIC SPECIES DIPTEROCARPUS ALATUS UNDER TWO LIGHT CONDITIONS AT CAT TIEN NATIONAL PARK, VIETNAM ABSTRACT When explaining variations in leaf parameters, analysis is based solely on environmental factors will lead to significant errors if the plant shows substantial ontogenetic variations in leaf properties We evaluated variations in 27 morphoanatomical leaf traits of Dipterocarpus alatus over six architectural development stages and between axes at a given development stage under two different light conditions An architectural analysis was conducted to distinguish precisely and objectively axis categories and developmental stages of D alatus Leaves were collected on the most recent complete growth unit on the top of the trunk and the outermost part of the middle-crown branch from trees growing under two different light conditions Twenty two leaf traits were measured and calculated using ImageJ on images of leaf tracings and cross-sections Stomatal density was calculated on nail varnish impression of the leaf lower surface Four chlorophyll traits were determined ANOVA and Tukey post-hoc tests were used to determine differences between development stages and axes The lmg relative contribution was calculated and compared to determine ontogenetic stage, axis category or light intensity, which explained more the variations in leaf traits Leaf traits differed strongly during ontogeny for all four axes and under both light conditions The axis effect was displayed at stages B, C, D and F but was insignificant at stage E Tree ontogeny explained more variations in leaf traits than light intensity Axis category explained more variations in leaf morphology but not in leaf anatomy than tree ontogeny Strong and significant intraspecific variations (ontogeny and axes) may influence the interspecific variations, and thus challenge the validity of the mean value of leaf traits between species Tree ontogeny contributed more than light intensity in explanation of the variability in leaf traits both on the trunk and second axis order strongly recommends that studies on the responses of leaf anatomy to the environment might need to correct for an ontogeny effect Key words: Dipterocarpus alatus; architecture; ontogeny; intraspecific; leaf morphology; leaf anatomy, homoblastic, light intensity VARIATIONS ONTOGENETIQUES DES TRAITS FOLIAIRE DE L'ESPÈCE HOMOBLASTIC DIPTEROCARPUS ALATUS SOUS DEUX CONDITIONS LUMINEUSES AU PARC NATIONAL DE CAT TIEN, VIETNAM RÉSUMÉ En expliquant les variations des paramètres feuilles, l'analyse est fondée uniquement sur des facteurs environnementaux conduire des erreurs importantes si la plante montre des variations ontogénétiques substantielles des propriétés des feuilles Nous avons évalué les variations des 27 traits morpho-anatomiques des feuilles de Dipterocarpus alatus durant six stades de développement architectural et entre les axes un stade de développement donné sous deux conditions lumineuses différentes Une analyse architecturale a été réalisée pour distinguer précisément et objectivement des catégories d'axes et stades de développement de D alatus Les feuilles ont été collectées sur l'unité de croissance plus récente et complète sur la partie supérieure du tronc et sur la partie plus externe de la branche du milieu couronne des arbres qui poussent sous deux différentes conditions lumineuses Vingt-deux traits foliaires ont été mesurées et calculées sur des images de tracés feuilles et de sections transversaux l'aide de logiciel ImageJ Densité stomatal a été calculée sur l'impression de vernis ongles de la surface inférieure des feuilles Quatre traits de chlorophylle ont été déterminés Les tests d’ANOVA et Tukey ont été utilisés pour déterminer les différences entre les stades de développement et des axes La contribution relative lmg a été calculée et comparées pour déterminer le stade ontogénétique, catégorie d’axe ou l'intensité lumineuse, ce qui est expliqué plus les variations de traits foliaire Les traits foliaire diffère fortement durant l'ontogenèse pour les quatre axes et sous des conditions lumineuses L'effet de l'axe a été présentée au stade B, C, D et F, mais a été insignifiante au stade E Ontogenèse de l’arbre expliqué plus de variations des traits foliaire que l'intensité lumineuse Catégorie d’axe expliqué plus de variations dans la morphologie des feuilles, mais pas dans l'anatomie des feuilles que l’ontogenèse de l’arbre Fortes et significatives variations intra-spécifiques (l'ontogenèse et axes) peuvent influencer les variations inter-spécifiques, et donc contestent la validité de la valeur moyenne des traits foliaires entre les espèces Ontogenèse de l’arbre contribué plus que l'intensité lumineuse dans l'explication de la variabilité des traits foliaire la fois sur le tronc et deuxième l’ordre l’axe recommande fortement que les études sur les réponses de la morphologie et l'anatomie des feuilles l'environnement doivent corriger l'effet de l'ontogenèse Mots clés: Dipterocarpus alatus, architecture, ontogénèse; intraspécifique; la morphologie des feuilles; l'anatomie des feuilles, homoblastique, l’intensité lumineuse This thesis was granted by Agence Universitaire de la Francophonie (AUF), program Sud Experts Plantes (SEP), University of Montpellier (UM2), UMR-AMAP, France and Vietnam International Education Development, programme 322 (VIED), Vietnam ... ONTOGENETIC VARIATIONS IN LEAF TRAITS OF THE HOMOBLASTIC SPECIES DIPTEROCARPUS ALATUS UNDER TWO LIGHT CONDITIONS AT CAT TIEN NATIONAL PARK, VIETNAM ABSTRACT When explaining variations in leaf. .. during ontogeny and between axes at a given development stage of the homoblastic species, Dipterocarpus alatus that grows under two contrasting light conditions at Cat Tien national park, Vietnam. .. was calculated and compared to determine ontogenetic stage, axis category or light intensity, which explained more the variations in leaf traits Leaf traits differed strongly during ontogeny for