Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 100 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
100
Dung lượng
2,67 MB
Nội dung
学校代号 分 类 号 学 密 10532 号 级 LB2010001 博士学位论文 改性二氧化钛纳米管在环境污染物检 测和处理方面的应用 (英文版) 学位申请人姓名 TRAN THI THANH THUY (陈氏青翠) 培 化学化工学院 养 单 位 导师姓名及职称 蔡青云教授 学 科 专 业 分析化学 研 究 方 向 生命科学中新分析技术 论文提交日期 2013 年 04 月 学校代号:10532 学 号:LB2010001 密 级: 湖南大学博士学位论文 改性二氧化钛纳米管在环境污染物 检测和处理方面的应用 (英文版) 学位申请人姓名: TRAN THI THANH THUY(陈氏青翠) 导师姓名及职称: 蔡青云教授 培 养 单 位: 化学化工学院 专 业 名 称: 分析化学 论 文 提 交 日 期: 2013 年 04 月 论 文 答 辩 日 期: 2013 年 05 月 答辩委员会主席: 王玉枝教授 Application of Modified TiO2 Nanotube Arrays in Determination and Removal of Environmental Pollutants By TRAN THI THANH THUY B.S (Vietnam National University-Ho Chi Minh City University of Natural Sciences) 2002 M.S (Vietnam National University-Ho Chi Minh City University of Natural Sciences) 2009 A dissertation submitted in partial satisfaction of the Requirements for the degree of Doctor of Science in Analytical Chemistry in the Graduate School of Hunan University Supervisors Professor Cai Qingyun May, 2013 湖 南 大 学 学位论文原创性声明 本 人 郑 重 声 明 :所 呈 交 的 论 文 是 本 人 在 导 师 的 指 导 下 独 立 进 行 研 究所取得的研究成果。除了文中特别加以标注引用的内容外,本论 文不包含任何其他个人或集体已经发表或撰写的成果作品。对本文 的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。 本人完全意识到本声明的法律后果由本人承担。 作者签名: 日期: 年 月 日 学位论文版权使用授权书 本学位论文作者完全了解学校有关保留、使用学位论文的规定, 同意学校保留并向国家有关部门或机构送交论文的复印件和电子 版,允许论文被查阅和借阅。本人授权湖南大学可以将本学位论文 的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印 或扫描等复制手段保存和汇编本学位论文。 本学位论文属于 1、 保 密 □ , 在 年 解 密 后 适 用 本 授 权 书 。 2、 不 保 密√ □。 ( 请 在 以 上 相 应 方 框 内 打 “√” ) 作者签名: 日期: 年 月 导师签名: 日期: 年 月 I 日 日 Doctoral thesis Abstract Nowadays, with outstanding development of industry, environment becomes seriously contaminated, which directly affects people’s health Determination and removal of organic pollutants, therefore, draw a great deal of attentions We can’t solve these entirely, of course, but we can hope to take a small part for general scence In this thesis, some basic researchs have been carried out based on using the modified titanium dioxide nanotube arrays for analysis and removal of some organic pollutants Base on the optical/electrical activity of the titanium dioxide nanotube arrays, new titanium dioxide nano-composite materials were fabricated by modification of the titanium dioxide nanotube arrays for detetermination and removal of organic pollutants in environment TiO2 nanotube arrays, which were synthesized for the first time in 2001, have been used in many fields, including photocatalysis and sensor due to their highly ordered orientation, uniform surface morphology, adjustable pore size, length; and special electrical, and optical properties On the other hand, TiO2 nanotube arrays were greatly used due to its low cost, widespread availability, non-toxicity, high photocatalytic activity, and excellent chemical stability However, as is commonly known, photocatalytic application of TiO2 is limited by its relatively large bandgap of 3.0 eV for rutile and 3.2 eV for the anatase phases, which limits photoactivity to the ultraviolet region Moreover, the recombination of the photogenerated electron-hole pairs can lead to reduce the photoconversion efficiency With the modification of TiO , the functional nano-TiO composite materials would be with enhanced absorption in visible light and photoconversion efficiency Those are our research goals and the contents are as belows: To enhance conductivity and also reduce recombination of photogenerated electron-hole pairs within TiO2 , we have chosen appropriate narrow-band semiconductor materials such as ZnSe and Cu-Zn-S to decorate TiO The decorated TiO semiconductor can be excited under solar light When the conduction band of a selected narrow-band semiconductor is more negative than that of TiO , the photogenerated electrons of the narrow-band semiconductor will transfer to the conduction band of TiO or vice versa, and then participate in reduction Whereas, the photogenerated holes of TiO2 formed at the valence band may transfer to the narrow-band semiconductor and take part in oxidation This is why functionaized nano-TiO2 composite materials can II Application of modified TiO2 nanotube arrays in determination and removal of environmental pollutants promote the photo-carriers separation and absorb visible light, leading to enhanced optical properties of the composite materials Based on this theory, we fabricated novel functional nano-TiO composite materials by decoration of TiO2 nanotubes with narrow-band binary or ternary semiconductor heterostructures (ZnSe/TiO and Cu-Zn-S/TiO ) ZnSe nanoparticles-sensitized TiO2 nanotube arrays show higher photocatalytic ability by 35% compared with that of non-sensitized TiO2 nanotube arrays for photocatalytic degradation of pentachlorophenol Moreover, they exhibit a significantly increased capability for photocatalytic degradation of this compound with support of the photo-Fenton system which is investigated as oxidants Cu-Zn-S ternary semiconductor sensitized TiO2 nanotube arrays exhibits high photoelectrocatalytic degradation capability to 2,4-dichlorophenoxyacetic acid and anthracene-9-carboxylic acid This photoelectrocatalytic degradation capability of Cu-Zn-S/TiO2 toward 2,4-dichlorophenoxyacetic acid and anthracene-9-carboxylic acid is higher than that of the non- sensitized TiO nanotube arrays by 48.2% and 31.5%, respectively The good photoelectrical, chemical, and physical properties of TiO nanotubes offer a good chance for using the TiO nanotubes as the substrate of photoelectrical sensors Photoelectrochemical sensors were therefore prepared by modifying molecularly imprinted polymer on the TiO nanotube arrays (MIP@TiO NTAs) The proposed sensor is highly sensitive to perfluorooctane sulfonate (PFOS) in water samples with a limit of detection of 86ng/mL Moreover, the PFOS MIP@TiO NTA photoelectrochemical sensor exhibits outstanding selectivity These results affirm that semiconductor is a good choice for application in the analytical field, especially in determination of organic pollutants In conclusion, we have fabricated, modified, and applied the composite nano-materials based on TiO2 nanotube arrays These researches have been continuous developed the photoelectrocatalytic and photoelectrochemical analysis based on semiconductor materials Keywords: Semiconductor; TiO2 nanotube; photocatalytic; sensor; organic pollutants III molecularly imprinted polymer; Doctoral thesis 摘 要 如今,随着工业的快速发展,环境污染已经越来越严重,并且直接 影 响 人 们 的 身 体 健 康 。因 此 ,检 测 和 处 理 有 机 污 染 物 已 经 引 起 广 泛 关 注 。 虽然我们不能够一次性解决所有问题,但是,我们也希望为科学的保护 环境尽我们的一份力量。在这篇论文中,我们所从事的二氧化钛纳米管 阵列修饰应用方面的基本研究就是为了达到这样的目的而进行的。基于 二 氧 化 钛 纳 米 管 阵 列 的 光 学 /电 学 活 性 , 我 们 通 过 修 饰 二 氧 化 钛 纳 米 管 得 复合材料以用于有机污染物的检测和处理。 TiO 纳 米 管 阵 列 具 有 高 度 取 向 、 表 面 形 貌 均 一 、 孔 径 长 度 可 调 、 以 及 独 特 的 电 学 、 光 学 特 性 。 自 2001 年 首 次 通 过 阳 极 氧 化 法 制 备 以 来 , 在 很 多 领 域 如 光 催 化 与 传 感 得 到 广 泛 的 应 用 。 此 外 , TiO 纳 米 管 阵 列 还 具 有成本低,应用范围广,低毒性,高的光催化活性以及高的化学稳定性 等 优 点 。然 而 ,TiO 半 导 体 材 料 禁 带 宽 度 较 高 ( 锐 钛 矿 型 E g =3 2eV,金 红 石 型 E g=3 0eV) , 只 对 紫 外 光 有 吸 收 , 从 而 限 制 了 其 在 光 催 化 上 的 应 用 。 而 且 , 光 生 空 穴 与 电 子 的 复 合 可 降 低 光 转 换 效 率 。 我 们 通 过 对 TiO 进 行 修饰制备出功能化的纳米复合材料,增大它在可见光区的吸收及光电转 换效率,可以用其来检测和处理有机污染物。研究内容具体如下: 为 了 增 加 TiO 导 电 性 并 降 低 光 生 空 穴 - 电 子 对 的 复 合 率 ,我 们 选 择 合 适 的 窄 带 隙 半 导 体 材 料 对 其 进 行 修 饰 。 窄 带 隙 半 导 体 修 饰 的 TiO 可 以 在 太 阳 光 下 被 激 发 。 由 于 所 选 窄 带 半 导 体 材 料 的 导 带 更 负 于 TiO 导 带 , 光 生 电 子 较 易 从 窄 带 隙 半 导 体 的 导 带 转 移 至 TiO 导 带 ,然 后 参 与 还 原 反 应 。 而且,在半导体的价带形成光生空穴并参与氧化,这就是为什么功能化 的 纳 米 TiO 复 合 材 料 能 加 速 光 生 载 流 子 的 分 离 从 而 增 大 它 的 光 学 活 性 的 原 因 。 基 于 此 , 我 们 通 过 在 TiO 表 面 修 饰 二 元 或 三 元 异 质 窄 带 隙 半 导 体 Z nS e/ TiO a nd Cu - Z n- S / TiO 来 构 建 新 型 的 纳 米 TiO 复 合 材 料 。 Z nS e 纳 米 粒 子 修 饰 的 TiO 纳 米 管 阵 列 用 于 降 解 五 氯 苯 酚 比 未 修 饰 的 TiO 纳 米 管 阵 列 高 出 35% 的 光 催 化 降 解 能 力 , 而 Cu - Z n- S 三 元 半 导 体 修 饰 的 TiO 纳 米 管 阵 列 对 2, - 二 氯 苯 氧 基 乙 酸 和 - 蒽 酸 显 示 出 很 强 的 光 催 化 降 解 能 力 , 比 未 修 饰 的 TiO 纳 米 管 阵 列 分 别 高 出 48 2% 和 31 5% 。 TiO 纳 米 管 优 良 的 物 理 化 学 以 及 光 学 性 质 使 得 其 可 以 在 光 电 传 感 领 域 发 挥 作 用 。基 于 TiO 纳 米 管 的 光 电 性 质 ,我 们 制 备 通 过 在 TiO 纳 米 管 IV Application of modified TiO2 nanotube arrays in determination and removal of environmental pollutants 上 修 饰 分 子 印 记 聚 合 物 构 建 了 光 电 化 学 传 感 器 ( MI P @TiO NTAs) ,实 现 了 对 水 样 中 全 氟 辛 烷 磺 酸 ( P FOS ) 的 测 定 。 该 传 感 器 具 有 高 灵 敏 度 , 检 测 限 达 86 ng / mL 。 而 且 , 这 种 MI P @TiO N TA 光 电 化 学 传 感 器 表 现 出 高 选 择 性,这些结果表明将半导体应用于分析领域是一个很好的选择,特别是 在检测有机污染物方面。 总 之 , 构 建 了 基 于 TiO 纳 米 管 的 纳 米 功 能 复 合 材 料 并 开 展 了 有 机 污 染物的检测以及去除的研究。这些研究对于开发半导体材料在光电催化 和光电化学分析上的应用具有启示作用。 关 键 词 : 半 导 体 ; TiO 纳 米 管 ; 分 子 印 记 聚 合 物 ; 光 催 化 ; 传 感 器 ; 有 机 污染物。 V Doctoral thesis TABLE OF CONTENTS 学位论文原创性声明 I Abstract II 摘 要 IV LIST OF FIGURES IX LIST OF SCHEMES…………………………………………………………………….X LIST OF TABLES XI CHAPTER INTRODUCTION .1 1.1 Semiconductor nanostructure materials .1 1.1.1 Preparation of semiconductor nano structure materials .2 1.1.2 Properties of semiconductor nano structure materials 1.2.3 Application of semiconductor nanomaterials 1.2 TiO2 nanotube arrays 1.2.1 Anodization preparation of TiO NTAs 1.2.2 Properties of TiO2 NTAs 1.2.3 Modiffication of TiO2 NTAs 10 1.2.4 Application of TiO2 NTAs and its modification 12 1.3 Research Objectives 14 CHAPTER PREPARATION AND PROPERTIES OF TiO2 NANOTUBE…… 16 2.1 Introduction 16 2.2 Experimental procedures 16 2.2.1 Materials 16 2.2.2 Methods 16 2.3 Results and Discussions 17 2.3.1 Characterization of the TiO2 NTAs 17 2.3.2 Photoelectrochemical properties of the TiO2 NTAs 19 2.4 Section summary 20 CHAPTER SYNTHESIS AND PHOTOCATALYTIC APPLICATIONS OF TERNARY Cu–Zn–S NANOPARTICLE-SENSITIZED TiO2 NANOTUBE …….21 3.1 Introduction 21 3.2 Experimental procedures 22 3.2.1 Materials 22 3.2.2 Methods 22 VI Application of modified TiO2 nanotube arrays in determination and removal of environmental pollutants 3.3 Results and Discussions 23 3.3.1 Characterization of the Cu–Zn–S ternary-sensitized TiO NTAs…………23 3.3.2 Photoelectrochemical properties of the Cu–Zn–S sensitized TiO NTAs…25 3.3.3 Photocatalytic degradation of organic pollutants 26 3.3.4 Cu-Zn-S sensitized TiO NTAs Stability 31 3.4 Section summary 32 CHAPTER PHOTOCATALYTIC PENTACHLOROPHENOL ON DEGRADATION ZnSe/TiO2 NTAs SUPPORTED OF BY PHOTO-FENTON SYSTEM 33 4.1 Introduction 33 4.2 Experimental procedures 34 4.2.1 Materials 34 4.2.2 Methods 34 4.3 Results and discussions 36 4.3.1 Characterization of the ZnSe/TiO2 NTAs 36 4.3.2 Photoelectrochemical properties of the ZnSe/TiO NTAs 39 4.3.3 Photocatalytic degradation of PCP 40 4.3.4 Stability of the ZnSe/TiO NTAs 48 4.4 Section summary 49 CHAPTER MOLECULARLY IMPRINTED POLYMER MODIFIED TiO NANOTUBE ARRAYS FOR PHOTOELECTROCHEMICAL DETERMINATION OF PERFLUOROOCTANE SULFONATE (PFOS)… 50 5.1 Introduction 50 5.2 Experimental procedure 51 5.2.1 Materials 51 5.2.2 Fabrication of the PFOS MIP@TiO NTA photoelectrochemical sensor…51 5.2.3 Characterization and photoelectrochemical measurements of the PFOS photoelectrochemical sensor…………………………………………………… 52 5.3 Results and discussions 53 5.3.1 Fabrication and characterization of the PFOS MIP@TiO2 NTA photoelectrochemical sensor………………………………………………………53 5.3.2 Determination of PFOS 58 5.4 Section summary 62 CONCLUSIONS 63 REFERENCES 64 VII Application of modified TiO2 nanotube arrays in determination and removal of environmental pollutants the Chemical Society, 1980, 70 (0): 285-298 [108] Grätzel M Dye-sensitized solar cells Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2003, (2): 145-153 [109] Huang S, Kavan L, Exnar I, et al Rocking chair lithium battery based on nanocrystalline TiO (anatase) Journal of The Electrochemical Society, 1995, 142 (9): L142-L144 [110] Cronemeyer D C Electrical and optical properties of rutile single crystals Physical Review, 1952, 87 (5): 876 [111] Cronemeyer D C Infrared absorption of reduced rutile TiO2 single crystals Physical Review, 1959, 113 (5): 1222 [112] Ohzuku T, Sawai K, Hirai T, et al Electrochemistry of L-niobium pentoxide a lithium/non-aqueous cell Journal of Power Sources, 1987, 19 (4): 287-299 [113] Bauer S, Kleber S, Schmuki P, et al TiO2 nanotubes: tailoring the geometry in H3 PO4 /HF electrolytes Electrochemistry Communications, 2006, (8): 1321-1325 [114] Von Wilmowsky C, Bauer S, Lutz R, et al In vivo evaluation of anodic TiO nanotubes: An experimental study in the pig Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2009, 89 (1): 165-171 [115] Kim I D, Rothschild A, Lee B H, et al Ultrasensitive chemiresistors based on electrospun TiO2 nanofibers Nano Letters, 2006, (9): 2009-2013 [116] Seo M H, Yuasa M, Kida T, et al Gas sensing characteristics and porosity control of nanostructured films composed of TiO nanotubes Sensors and Actuators B: Chemical, 2009, 137 (2): 513-520 [117] Varghese O K, Gong D, Paulose M, et al Hydrogen sensing using titania nanotubes Sensors and Actuators B: Chemical, 2003, 93 (1): 338-344 [118] Ghicov A, Schmuki P Self-ordering electrochemistry: A review on growth and functionality of TiO2 nanotubes and other self-aligned MOx structures Chemical Communications, 2009 (20): 2791-2808 [119] Wang D, Liu Y, Yu B, et al TiO nanotubes with tunable morphology, diameter, and length: Synthesis and photo-electrical/catalytic performance Chemistry of Materials, 2009, 21 (7): 1198-1206 [120] Grimes C A, Mor G K Material properties of TiO2 nanotube arrays: structural, elemental, mechanical, optical and electrical Springer, 2009, 67 - 113 [121] Shankar K Effect of architecture and doping on the photoelectrochemical properties of titania nanotubes Pennsylvania State University, Dissertation, 2007 72 Doctoral thesis [122] Yang L, Cai Q, Yu Y, et al Size-controllable fabrication of noble metal nanonets using a TiO2 template Inorganic Chemistry, 2006, 45 (24): 9616-9618 [123] Lencka M M, Riman R E Thermodynamic modeling of hydrothermal synthesis of ceramic powders Chemistry of Materials, 1993, (1): 61-70 [124] Imai H, Takei Y, Shimizu K, et al Direct preparation of anatase TiO2 nanotubes in porous alumina membranes Journal of Materials Chemistry, 1999, (12): 2971-2972 [125] Shimizu K, Imai H, Hirashima H, et al Low-temperature synthesis of anatase thin films on glass and organic substrates by direct deposition from aqueous solutions Thin Solid Films, 1999, 351 (1): 220-224 [126] Liu R, Liu Y, Liu C, et al Enhanced photoelectrocatalytic degradation of 2, 4-dichlorophenoxyacetic acid by CuInS2 nanoparticles deposition onto TiO2 nanotube arrays Journal of Alloys and Compounds, 2011, 509 (5): 2434-2440 [127] Yu J, Dai G, Cheng B, et al Effect of crystallization methods on morphology and photocatalytic activity of anodized TiO2 nanotube array films The Journal of Physical Chemistry C, 2010, 114 (45): 19378-19385 [128] Li Y, Yu H, Song W, et al A novel photoelectrochemical cell with self-organized TiO2 nanotubes as photoanodes for hydrogen generation International Journal of Hydrogen Energy, 2011, 36 (22): 14374-14380 [129] Morand R, Lopez C, Koudelka-Hep M, et al Photoelectrochemical behavior in low-conductivity media of nanostructured TiO films deposited on interdigitated microelectrode arrays The Journal of Physical Chemistry B, 2002, 106 (29): 7218-7224 [130] Walters J Environmental fate of 2, 4-dichlorophenoxyacetic acid Department of Pesticide Regulations, Sacramento, CA, 199918 [131] Chinalia F A, Reghali-Seleghin M, Correa E M, et al 2, 4-D toxicity, cause, effect and control Terrestrial and Aquatic Environmental Toxicology, 2007, (2): 24-33 [132] Cupples A M, Sims G K Identification of in situ 2, 4-dichlorophenoxyacetic acid-degrading soil microorganisms using DNA-stable isotope probing Soil Biology and Biochemistry, 2007, 39 (1): 232-238 [133] Yang L, Luo S, Liu R, et al Fabrication of CdSe nanoparticles sensitized long TiO2 nanotube arrays for photocatalytic degradation of anthracene-9-carbonxylic acid under green monochromatic Light The Journal of Physical Chemistry C, 2010, 114 (11): 4783-4789 73 Application of modified TiO2 nanotube arrays in determination and removal of environmental pollutants [134] Zlamal M, Macak J M, Schmuki P, et al Electrochemically assisted photocatalysis on self-organized TiO nanotubes Electrochemistry Communications, 2007, (12): 2822-2826 [135] Liu Z, Zhang X, Nishimoto S, et al Highly ordered TiO2 nanotube arrays with controllable length for photoelectrocatalytic degradation of phenol The Journal of Physical Chemistry C, 2008, 112 (1): 253-259 [136] Kontos A, Katsanaki A, Maggos T, et al Photocatalytic degradation of gas pollutants on self-assembled titania nanotubes Chemical Physics Letters, 2010, 490 (1): 58-62 [137] Asahi R, Morikawa T, Ohwaki T, et al Visible-light photocatalysis in nitrogen-doped titanium oxides, Science, 2001, 293 (5528): 269-271 [138] Chen X, Mao S S Titanium dioxide nanomaterials: Synthesis, properties, modifications, and applications Chemical Reviews, 2007, 107 (7): 2891-959 [139] Zhao H, Chen Y, Quan X, et al Preparation of Zn-doped TiO2 nanotubes electrode and its application in pentachlorophenol photoelectrocatalytic degradation Chinese Science Bulletin, 2007, 52 (11): 1456-1461 [140] Fan L, Dongmei J, Xueming M, et al The effect of milling atmospheres on photocatalytic property of Fe-doped TiO synthesized by mechanical alloying Journal of Alloys and Compounds, 2009, 470 (1): 375-378 [141] Tu Y F, Huang S Y, Sang J P, et al Synthesis and photocatalytic properties of Sn-doped TiO2 nanotube arrays Journal of Alloys and Compounds, 2009, 482 (1): 382-387 [142] Shankar K, Tep K C, Mor G K, et al An electrochemical strategy to incorporate nitrogen in nanostructured TiO thin films: Modification of bandgap and photoelectrochemical properties Journal of Physics D: Applied Physics, 2006, 39 (11): 2361 [143] Yang H, Pan C Synthesis of carbon-modified TiO nanotube arrays for enhancing the photocatalytic activity under the visible light Journal of Alloys and Compounds, 2010, 501 (1): L8-L11 [144] Yu J, Dai G, Huang B, et al Fabrication and characterization of visible-light-driven plasmonic photocatalyst Ag/AgCl/TiO nanotube arrays The Journal of Physical Chemistry C, 2009, 113 (37): 16394-16401 [145] Hou Y, Li X, Zou X, et al Photoeletrocatalytic activity of a Cu2 O-loaded self-organized highly oriented TiO nanotube array electrode for 4-chlorophenol degradation Environmental Science & Technology, 2008, 43 (3): 858-863 74 Doctoral thesis [146] Kang Q, Liu S, Yang L, et al Fabrication of PbS nanoparticle-sensitized TiO nanotube arrays and their photoelectrochemical properties ACS Applied Materials & Interfaces, 2011, (3): 746-749 [147] Lu Y, Yi G, Jia J, et al Preparation and characterization of patterned copper sulfide thin films on n-type TiO2 film surfaces Applied Surface Science, 2010, 256 (23): 7316-7322 [148] Zhou Z J, Fan J Q, Wang X, et al Solution fabrication and photoelectrical properties of CuInS2 nanocrystals on TiO nanorod array ACS Applied Materials & Interfaces, 2011, (7): 2189-2194 [149] Li M, Su J, Guo L, et al Preparation and characterization of ZnIn2 S4 thin films deposited by spray pyrolysis for hydrogen production International Journal of Hydrogen Energy, 2008, 33 (12): 2891-2896 [150] Ishikawa A, Takata T, Kondo J N, et al Oxysulfide Sm2 Ti2 S2 O5 as a stable photocatalyst for water oxidation and reduction under visible light irradiation (λ≤ 650 nm) Journal of The American Chemical Society, 2002, 124 (45): 13547-13553 [151] Uhuegbu C C, Babatunde E B, Oluwafemi C O, et al The study of copper zinc sulphide (CuZnS2 ) thin films Turkish Journal of Physics, 2008, 32 (1): 39-47 [152] Ali Yildirim M, Ateş A, Astam A, et al Annealing and light effect on structural, optical and electrical properties of CuS, CuZnS and ZnS thin films grown by the SILAR method Physica E: Low-dimensional Systems and Nanostructures, 2009, 41 (8): 1365-1372 [153] Uhuegbu C, Babatunde E Spectral analysis of copper zinc sulphide ternary thin film grown by solution growth technique American Journal of Scientific and Industrial Research, 2010, (3): 397-400 [154] Kudo A, Sekizawa M Photocatalytic H2 evolution under visible light irradiation on Zn1-x Cu x S solid solution Catalysis Letters, 1999, 58 (4): 241-243 [155] Valdés M H, Vázquez M Pulsed electrodeposition of p-type CuInSe2 thin films Electrochimica Acta, 2011, 56 (19): 6866-6873 [156] Oliva F Y, Avalle L A B, Santos E, et al Photoelectrochemical characterization of nanocrystalline TiO films on titanium substrates Journal of Photochemistry and Photobiology A: Chemistry, 2002, 146 (3): 175-188 [157] Allam N K, Shankar K, Grimes C A, et al Photoelectrochemical and water photoelectrolysis properties of ordered TiO2 nanotubes fabricated by Ti anodization in fluoride-free HCl electrolytes Journal of Materials Chemistry, 75 Application of modified TiO2 nanotube arrays in determination and removal of environmental pollutants 2008, 18 (20): 2341-2348 [158] Vinodgopal K, Hotchandani S, Kamat P V, et al Electrochemically assisted photocatalysis: titania particulate film electrodes for photocatalytic degradation of 4-chlorophenol The Journal of Physical Chemistry, 1993, 97 (35): 9040-9044 [159] Chen Y, Sun Z, Yang Y, et al Heterogeneous photocatalytic oxidation of polyvinyl alcohol in water Journal of Photochemistry and Photobiology A: Chemistry, 2001, 142 (1): 85-89 [160] Sun Z, Chen Y, Ke Q, et al Photocatalytic degradation of a cationic azo dye by TiO2 /bentonite nanocomposite Journal of Photochemistry AND Photobiology A: Chemistry, 2002, 149 (1–3): 169-174 [161] Barka N, Qourzal S, Assabbane A, et al Factors influencing the photocatalytic degradation of Rhodamine B by TiO2 coated non-woven paper Journal of Photochemistry and Photobiology A: Chemistry, 2008, 195 (2): 346-351 [162] Tvrdy K, Kamat P V Substrate driven photochemistry of CdSe quantum dot films: charge injection and irreversible transformations on oxide surfaces The Journal of Physical Chemistry A, 2009, 113 (16): 3765-3772 [163] Serpone N, Maruthamuthu P, Pichat P, et al Exploiting the interparticle electron transfer process in the photocatalysed oxidation of phenol, 2-chlorophenol and pentachlorophenol: chemical evidence for electron and hole transfer between coupled semiconductors Journal of Photochemistry and Photobiology A: Chemistry, 1995, 85 (3): 247-255 [164] Wang K H, Hsieh Y H, Wu C H, et al The pH and anion effects on the heterogeneous photocatalytic degradation of o-methylbenzoic acid in TiO aqueous suspension Chemosphere, 2000, 40 (4): 389-394 [165] Yang L, Luo S, Li Y, et al High efficient photocatalytic degradation of p-nitrophenol on a unique Cu2 O/TiO pn-heterojunction network catalyst Environmental Science & Technology, 2010, 44 (19): 7641-7646 [166] Chen D, Ray A K Photodegradation kinetics of 4-nitrophenol in TiO2 suspension Water Research, 1998, 32 (11): 3223-3234 [167] Zhou B, Zhao X, Liu H, et al Visible-light sensitive cobalt-doped BiVO4 (Co-BiVO4 ) photocatalytic composites for the degradation of methylene blue dye in dilute aqueous solutions Applied Catalysis B: Environmental, 2010, 99 (1): 214-221 [168] Liu H, Cheng S, Wu M, et al Photoelectrocatalytic degradation of sulfosalicylic acid and its electrochemical impedance spectroscopy investigation The Journal 76 Doctoral thesis of Physical Chemistry A, 2000, 104 (30): 7016-7020 [169] Giri R, Ozaki H, Taniguchi S, et al Photocatalytic ozonation of 2, 4-dichlorophenoxyacetic acid in water with a new TiO2 fiber International Journal of Environmental Science and Technology, 2008, (1): 17-26 [170] Galindo H F, Gómez R Degradation of the herbicide 2, 4-dichlorophenoxyacetic acid over TiO2 –CeO2 sol–gel photocatalysts: Effect of the annealing temperature on the photoactivity Journal of Photochemistry and Photobiology A: Chemistry, 2011, 217 (2): 383-388 [171] Modestov A, Lev O Photocatalytic oxidation of 2, 4-dichlorophenoxyacetic acid with titania photocatalyst Comparison of supported and suspended TiO Journal of Photochemistry and Photobiology A: Chemistry, 1998, 112 (2): 261-270 [172] Eisler R Pentachlorophenol hazards to fish, wildlife, and invertebrates: A synoptic review DTIC Document, 1989 [173] He Y, Xu J, Wang H et al Detailed sorption isotherms of pentachlorophenol on soils and its correlation with soil properties Environmental Research, 2006, 101 (3): 362-372 [174] Lamar R T, Larsen M J, Kirk T K, et al Sensitivity to and degradation of pentachlorophenol by phanerochaete spp Applied and Environmental Microbiology, 1990, 56 (11): 3519-3526 [175] Xue X, Hanna K, Despas C, et al Effect of chelating agent on the oxidation rate of PCP in the magnetite/H2 O2 system at neutral pH Journal of Molecular Catalysis A: Chemical, 2009, 311 (1–2): 29-35 [176] Xue X, Hanna K, Abdelmoula M, et al Adsorption and oxidation of PCP on the surface of magnetite: Kinetic experiments and spectroscopic investigations Applied Catalysis B: Environmental, 2009, 89 (3): 432-440 [177] Li Y, Niu J, Yin L, et al Photocatalytic degradation kinetics and mechanism of pentachlorophenol based on superoxide radicals Journal of Environmental Sciences, 2011, 23 (11): 1911-1918 [178] Hanna K, Chiron S, Oturan M A, et al Coupling enhanced water solubilization with cyclodextrin to indirect electrochemical treatment for pentachlorophenol contaminated soil remediation Water Research, 2005, 39 (12): 2763-2773 [179] Song H Y, Xiao H L Comparison treatment of various chlorophenols by electro-Fenton method: relationship between chlorine content and degradation Journal of Hazardous Materials, 2005, 118 (1): 85-92 [180] Moncayo-Lasso A, Pulgarin C, Benítez N, et al Degradation of DBPs' precursors 77 Application of modified TiO2 nanotube arrays in determination and removal of environmental pollutants in river water before and after slow sand filtration by photo-Fenton process at pH in a solar CPC reactor Water Research, 2008, 42 (15): 4125-4132 [181] Katsumata H, Kaneco S, Suzuki T, et al Degradation of linuron in aqueous solution by the photo-Fenton reaction Chemical Engineering Journal, 2005, 108 (3): 269-276 [182] Andreozzi R, D’Apuzzo A, Marotta R et al A kinetic model for the degradation of benzothiazole by Fe3+ photo-assisted Fenton process in a completely mixed batch reactor Journal of Hazardous Materials, 2000, 80 (1): 241-257 [183] Fukushima M, Tatsumi K Degradation pathways of pentachlorophenol by photo-Fenton systems in the presence of iron (III), humic acid, and hydrogen peroxide Environmental Science & Technology, 2001, 35 (9): 1771-1778 [184] Fukushima M, Tatsumi K, Morimoto K, et al Influence of iron (III) and humic acid on the photodegradation of pentachlorophenol Environmental Toxicology and Chemistry, 2000, 19 (7): 1711-1716 [185] Mills G, Hoffmann M R Photocatalytic degradation of pentachlorophenol on titanium dioxide particles: Identification of intermediates and mechanism of reaction Environmental Science & Technology, 1993, 27 (8): 1681-1689 [186] Gunlazuardi J, Lindu W A Photocatalytic degradation of pentachlorophenol in aqueous solution employing immobilized TiO2 supported on titanium metal Journal of Photochemistry and Photobiology A: Chemistry, 2005, 173 (1): 51-55 [187] Rajakarunanayake Y, Miles R, Wu G, et al Band structure of ZnSe-ZnTe superlattices Physical Review B, 1988, 37 (17): 10212 [188] Langer J M, Heinrich H Deep-level impurities: A possible guide to prediction of band-edge discontinuities in semiconductor heterojunctions Physical Review Letters, 1985, 55 (13): 1414-1417 [189] Shakir M, Siddharthaa G B Structural, optical and electrical properties of Znse semiconductor nanoparticles Chalcogenide Letters, 2011, (7): 435-440 [190] Murali K, Balasubramanian M Properties of pulse plated ZnSe films Materials Science and Engineering: A, 2006, 431 (1): 118-122 [191] Kalita P K, Sarma B, Das H et al Structural characterization of vacuum evaporated ZnSe thin films Bulletin of Materials Science, 2000, 23 (4): 313-317 [192] Lokhande C, Patil P, Ennaoui A, et al Chemical bath ZnSe thin films: Deposition and characterisation Applied Surface Science, 1998, 123-124 (1): 294-297 [193] Kim D J, Koo K K Synthesis of colloidal ZnSe nanospheres by ultrasonic-assisted aerosol spray pyrolysis Crystal Growth and Design, 2008, 78 Doctoral thesis (2): 1153-1157 [194] Murali K, Manoharana C, Danapandiana S et al Pulse electrodeposited zinc selenide films and their characteristics Chalcogenide Letters, 2009, (1): 51 [195] Zhang C G, Li K Z, Miao J, et al Technology of ultrasonic and pulse electrodeposition for ZnSe thin films Materials Science Forum, 2011,663-665: 1234-1237 [196] Riveros G, Gomez H, Henrıquez R, et al Electrodeposition and characterization of ZnSe semiconductor thin films, Solar Energy Materials and Solar Cells, 2001, 70 (3): 255-268 [197] Kowalik R, Żabiński P, Fitzner K, et al Electrodeposition of ZnSe Electrochimica Acta, 2008, 53 (21): 6184-6190 [198] Hao H, Yao X, Wang M, et al Preparation and optical characteristics of ZnSe nanocrystals doped glass by sol–gel in situ crystallization method Optical Materials, 2007, 29 (5): 573-577 [199] Yang L, Liu L, Xiao D, et al Preparation and characterization of ZnSe nanocrystals by a microemulsion-mediated method Materials Letters, 2012, 72 (4): 113-115 [200] Liu L, Chen F, Yang F et al Photocatalytic degradation of 2,4-dichlorophenol using nanoscale Fe/TiO Chemical Engineering Journal, 2012, 181–182 (0): 189-195 [201] Gawęda S, Kowalik R, Kwolek P, et al Nanoscale digital devices based on the photoelectrochemical photocurrent switching effect: Preparation, properties and applications Israel Journal of Chemistry, 2011, 51 (1): 36-55 [202] Yang S, Liu Y, Sun C, et al Preparation of anatase TiO2 /Ti nanotube-like electrodes and their high photoelectrocatalytic activity for the degradation of PCP in aqueous solution Applied Catalysis A: General, 2006, 301 (2): 284-291 [203] Liu Y, Zhang X, Liu R, et al Fabrication and photocatalytic activity of high-efficiency visible-light-responsive photocatalyst ZnTe/TiO2 nanotube arrays Journal of Solid State Chemistry, 2011, 184 (3): 684-689 [204] Zepp R G, Schlotzhauer P F, Sink R M, et al Photosensitized transformations involving electronic energy transfer in natural waters: Role of humic substances Environmental Science & Technology, 1985, 19 (1): 74-81 [205] Aguer J P, Richard C Reactive species produced on irradiation at 365 nm of aqueous solutions of humic acids Journal of Photochemistry and Photobiology A: Chemistry, 1996, 93 (2): 193-198 79 Application of modified TiO2 nanotube arrays in determination and removal of environmental pollutants [206] Zhan M, Yang X, Xian Q, et al Photosensitized degradation of bisphenol A involving reactive oxygen species in the presence of humic substances Chemosphere, 2006, 63 (3): 378-386 [207] Fukushima M, Tatsumi K Light acceleration of iron (III) reduction by humic acid in the aqueous solution Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1999, 155 (2): 249-258 [208] Jain R, Shrivastava M Photocatalytic removal of hazardous dye cyanosine from industrial waste using titanium dioxide Journal of Hazardous Materials, 2008, 152 (1): 216-220 [209] Daskalaki V M, Frontistis Z, Mantzavinos D, et al Solar light-induced degradation of bisphenol-A with TiO immobilized on Ti Catalysis Today, 2011, 161 (1): 110-114 [210] Matos J, Laine J, Herrmann J M, et al Synergy effect in the photocatalytic degradation of phenol on a suspended mixture of titania and activated carbon Applied Catalysis B: Environmental, 1998, 18 (3): 281-291 [211] Berberidou C, Poulios I, Xekoukoulotakis N, et al Sonolytic, photocatalytic and sonophotocatalytic degradation of malachite green in aqueous solutions Applied Catalysis B: Environmental, 2007, 74 (1): 63-72 [212] Taghizadeh M T, Abdollahi R Sonolytic, sonocatalytic and sonophotocatalytic degradation of chitosan in the presence of TiO2 nanoparticles Ultrasonics Sonochemistry, 2011, 18 (1): 149-157 [213] Joseph C G, Li Puma G, Bono A, et al Sonophotocatalysis in advanced oxidation process: A short review Ultrasonics Sonochemistry, 2009, 16 (5): 583-589 [214] Quan X, Ruan X, Zhao H, et al Photoelectrocatalytic degradation of pentachlorophenol in aqueous solution using a TiO2 nanotube film electrode Environmental Pollution, 2007, 147 (2): 409-414 [215] Tryba B, Piszcz M, Grzmil B, et al Photodecomposition of dyes on Fe-C-TiO photocatalysts under UV radiation supported by photo-Fenton process Journal of Hazardous Materials, 2009, 162 (1): 111-119 [216] Agarwal S, Montgomery K H, Boykin T B et al Design guidelines for true green LEDs and high efficiency photovoltaics using ZnSe/GaAs digital alloys Electrochemical and Solid-State Letters, 2010, 13 (1): H5-H7 [217] Serpone N, Lawless D, Disdier J, et al Spectroscopic, photoconductivity, and photocatalytic studies of TiO2 colloids: naked and with the lattice doped with Cr3+, Fe3+, and V5+ cations Langmuir, 1994, 10 (3): 643-652 80 Doctoral thesis [218] Walling C, Goosen A Mechanism of the ferric ion catalyzed decomposition of hydrogen peroxide Effect of organic substrates Journal of The American Chemical Society, 1973, 95 (9): 2987-2991 [219] Terzian R, Serpone N Heterogeneous photocatalyzed oxidation of creosote components: mineralization of xylenols by illuminated TiO in oxygenated aqueous media Journal of Photochemistry and Photobiology A: Chemistry, 1995, 89 (2): 163-175 [220] Lu M C, Roam G D, Chen J N, et al Factors affecting the photocatalytic degradation of dichlorvos over titanium dioxide supported on glass Journal of Photochemistry and Photobiology A: Chemistry, 1993, 76 (1): 103-110 [221] Kowalik R, Szaciłowski K, Żabiński P et al Photoelectrochemical study of ZnSe electrodeposition on Cu electrode Journal of Electroanalytical Chemistry, 2012, 674 (1): 108–112 [222] Lehmler H J Synthesis of environmentally relevant fluorinated surfactants - a review Chemosphere, 2005, 58 (11): 1471-1496 [223] Benford D, De Boer J, Carere A, et al Opinion of the Scientific Panel on Contaminants in the Food chain on perfluorooctane sulfonate (PFOS), perfluorooctanoic acid (PFOA) and their salts EFSA Journal, 2008, 65 (3): 1-131 [224] Lehmler H J, Xie W, Bothun G, et al Mixing of perfluorooctanesulfonic acid (PFOS) potassium salt with dipalmitoyl phosphatidylcholine (DPPC) Colloids and Surfaces B: Biointerfaces, 2006, 51 (1): 25-29 [225] Saito K, Uemura E, Ishizaki A, et al Determination of perfluorooctanoic acid and perfluorooctane sulfonate by automated in-tube solid-phase microextraction coupled with liquid chromatography-mass spectrometry Analytica Chimica Acta, 2010, 658 (2): 141-146 [226] Poothong S, Boontanon S K, Boontanon N, et al Determination of perfluorooctane sulfonate and perfluorooctanoic acid in food packaging using liquid chromatography coupled with tandem mass spectrometry Journal Hazard Mater, 2012, 205-206 (2):139-43 [227] Holm A, Wilson S R, Molander P, et al Determination of perfluorooctane sulfonate and perfluorooctanoic acid in human plasma by large volume injection capillary column switching liquid chromatography coupled to electrospray ionization mass spectrometry Journal of Separation Science, 2004, 27 (13): 1071-1079 81 Application of modified TiO2 nanotube arrays in determination and removal of environmental pollutants [228] Liu M, Zhao G, Tang Y, et al A simple, stable and picomole level lead sensor fabricated on DNA-based carbon hybridized TiO2 nanotube arrays Environmental Science & Technology, 2010, 44 (11): 4241-4246 [229] Ochoa-Herrera V, Sierra-Alvarez R, Somogyi A et al Reductive defluorination of perfluorooctane sulfonate, Environmental Science & Technology, 2008, 42 (9): 3260-3264 [230] Wen D, Guo S, Wang Y, et al Bifunctional nanocatalyst of bimetallic nanoparticle/tio with enhanced performance in electrochemical and photoelectrochemical applications Langmuir, 2010, 26 (13): 11401-11406 [231] Jia S, Zhu B Z, Guo L H, et al Detection and mechanistic investigation of halogenated benzoquinone induced DNA damage by photoelectrochemical DNA sensor Analytical and bioanalytical chemistry, 2010, 397 (6): 2395-2400 [232] Tu W, Dong Y, Lei J, et al Low-potential photoelectrochemical biosensing using porphyrin-functionalized TiO2 nanoparticles Analytical Chemistry, 2010, 82 (20): 8711-8716 [233] Xie C, Gao S, Guo Q, et al., Electrochemical sensor for 2, 4-dichlorophenoxy acetic acid using molecularly imprinted polypyrrole membrane as recognition element Microchimica Acta, 2010, 169 (1-2): 145-152 [234] Özcan L, Şahin Y Determination of paracetamol based on electropolymerized-molecularly imprinted polypyrrole modified pencil graphite electrode Sensors and Actuators B: Chemical, 2007, 127 (2): 362-369 [235] Zhang Z, Yuan Y, Liang L et al Preparation and photoelectrochemical properties of a hybrid electrode composed of polypyrrole encapsulated in highly ordered titanium dioxide nanotube array Thin Solid Films, 2008, 516 (23): 8663-8667 [236] Zhao X, Liu X, Ding C, et al In vitro bioactivity of plasma-sprayed TiO2 coating after sodium hydroxide treatment Surface and Coatings Technology, 2006, 200 (18): 5487-5492 [237] Gao D, Zhang Z, Wu M, et al A surface functional monomer-directing strategy for highly dense imprinting of TNT at surface of silica nanoparticles Journal of The American Chemical Society, 2007, 129 (25): 7859-7866 [238] Deng S, Shuai D, Yu Q, et al Selective sorption of perfluorooctane sulfonate on molecularly imprinted polymer adsorbents Frontiers of Environmental Science & Engineering in China, 2009, (2): 171-177 [239] Xie C, Zhang Z, Wang D, et al., Surface molecular self-assembly strategy for TNT imprinting of polymer nanowire/nanotube arrays Analytical Chemistry, 82 Doctoral thesis 2006, 78 (24): 8339-8346 [240] Lu N, Chen S, Wang H, et al Synthesis of molecular imprinted polymer modified TiO2 nanotube array electrode and their photoelectrocatalytic activity Journal of Solid State Chemistry, 2008, 181 (10): 2852-2858 [241] Chen K, Liu M, Zhao G, et al Fabrication of a novel and simple microcystin-LR Photoelectrochemical sensor with high sensitivity and selectivity Environmental Science & Technology, 2012, 46 (21): 11955-11961 [242] Shi H, Zhao G, Liu M, et al A novel photoelectrochemical sensor based on molecularly imprinted polymer modified TiO nanotubes and its highly selective detection of 2, 4-dichlorophenoxyacetic acid Electrochemistry Communications, 2011, 13 (12): 1404-1407 [243] Liu B, Lian H T, Yin J F, et al Dopamine molecularly imprinted electrochemical sensor based on graphene-chitosan composite Electrochimica Acta, 2012, 75 (7): 108-114 [244] Han D, Jia W, Liang H, et al Selective removal of 2, 4-dichlorophenoxyacetic acid from water by molecularly-imprinted amino-functionalized silica gel sorbent Journal of Environmental Sciences, 2010, 22 (2): 237-241 [245] Yang Z P, Yan J L, Zhang C J, et al Enhanced removal of bilirubin on molecularly imprinted titania film Colloids and Surfaces B: Biointerfaces, 2011, 87 (1): 187-191 [246] Simonescu C M Application of FTIR spectroscopy in environmental studies Creative Commons Attribution License, 2012 [247] Stuart B H Infrared spectroscopy: Fundamentals and applications Wiley, 2004 [248] Li Y, Li X, Dong C, et al Selective recognition and removal of chlorophenols from aqueous solution using molecularly imprinted polymer prepared by reversible addition-fragmentation chain transfer polymerization Biosensors and Bioelectronics, 2009, 25 (2): 306-312 [249] Tan F, Sun D, Gao J, et al Preparation of molecularly imprinted polymer nanoparticles for selective removal of fluoroquinolone antibiotics in aqueous solution Journal of Hazardous Materials, 2013, (244-245): 750 – 757 [250] Joseph J, Jemmis E D Red-, blue-, or no-shift in hydrogen bonds: A unified explanation Journal of The American Chemical Society, 2007, 129 (15): 4620-4632 [251] Levi L, Raim V, Srebnik S, et al A brief review of coarse-grained and other computational studies of molecularly imprinted polymers Journal of Molecular 83 Application of modified TiO2 nanotube arrays in determination and removal of environmental pollutants Recognition, 2011, 24 (6): 883-891 [252] Harvey S D Molecularly imprinted polymers for selective analysis of chemical warfare surrogate and nuclear signature compounds in complex matrices Journal of Separation Science, 2005, 28 (11): 1221-1230 [253] Sergeyeva T, Brovko O, Piletska E, et al Porous molecularly imprinted polymer membranes and polymeric particles Analytica Chimica Acta, 2007, 582 (2): 311-319 [254] Patel A, Sharma P, Prasad B, et al Electrochemical sensor for uric acid based on a molecularly imprinted polymer brush grafted to tetraethoxysilane derived sol-gel thin film graphite electrode Materials Science and Engineering: C, 2009, 29 (5): 1545-1553 84 Doctoral thesis APPENDIX: PUBLICATIONS ThanhThuy Tran.T, Pengtao Sheng, Chen’an Huang, Jiezhen Li, Lan Chen, Lijuan Yuan, Craig.A Grimes, Qingyun Cai, Synthesis and photocatalytic application of ternary Cu–Zn–S nanoparticle-sensitized TiO2 nanotube arrays, Chemical Engineering Journal, 210 (2012) 425-431 ThanhThuy Tran T, Hui Feng, Qingyun Cai, Photocatalytic degradation of pentachlorophenol on ZnSe/TiO supported by photo-Fenton system, Chemical Engineering Journal, 223 (2013), 379-387 Hui Feng, ThanhThuy Tran.T, Lan Chen, Lijuan Yuan, Qingyun Cai, Visible light-induced efficiently oxidative decomposition of p-Nitrophenol by CdTe/TiO nanotube arrays, Chemical Engineering Journal, 215–216 (2013) 591-599 Lan Chen, ThanhThuy Tran.T, Chen’an Huang, Jiezhen Li, Lijuan Yuan, Qingyun Cai, Synthesis and photocatalytic application of Au/Ag nanoparticle-sensitized ZnO films, Applied Surface Science, 273 (2013), 82-88 Jiezhen Li, Niya Wang, ThanhThuy Tran.T, Chen’an Huang, Lan Chen, Lijuan Yuan, Liping Zhou, Rui Shen, Qingyun Cai, Electrogenerated chemiluminescence detection of trace level pentachlorophenol using carbon quantum dots, Analyst, 138 (2013), 2038-2043 ThanhThuy Tran.T, Jiezhen Li, Jin Cai, Lijuan Yuan, Niya Wang, Qingyun Cai, Molecularly Imprinted Polymer Modified TiO2 Nanotube Arrays for Photoelectrochemical Determination of Perfluorooctane sulfonate (PFOS), Sensors & Actuators: B Chemical, Under Review 85 Application of modified TiO2 nanotube arrays in determination and removal of environmental pollutants ACKNOWLEDGMENT I first would like to thank my Supervisor, Professor Qingyun Cai, for his conscientious guidance in duration of this course He instructed, encouraged, and assisted as well as gave me important advices during experiments with a sincere heart of a Teacher By scholarly knowledge and enthusiasm, he has read and corrected meticulously all my papers as well as my draft dissertation He enlightened me to scientific research Besides that he has given me a great deal of care and help in life, so let I feel the deep feelings of teachers and students, which keep forever in my mind One again, I wish to express my deep gratitude to Prof Cai I would like to thank Professor Craig.A Grimes for his guidance, correction and help on my papers I wish to thank Doctor Qing Kang It is difficult to complete this course whithout her enthusiastic help and friendly on the first days I wish to thank all of my colleagues and fellow students for their suggestions and involvement in different parts of this dissertation Special thanks to Hui Feng, Pengtao Sheng, Lan Chen, Lijuan Yuan, Chen’an Huang, Jiezhen Li, Liping Zhou, Cai Jin, Niya Wang Without their help, none of this research would have been possible I’m not forgetting to thank Ministry and all members of the State Key Laboratory of Chemo/Biosensing and Chemometrics, Department of Chemistry, Hunan University, for their precious assistance throughout my years at China I must of course thank Administrators of Industrial University of Ho Chi Minh Cit y, Viet Nam and Dean with all members of the Department of Chemistry have given me the opportunity to study abroad in China In the important final, I would also like to take this opportunity to acknowledge the encouragement and moral support of my parents and my family during the time of away from home ThanhThuy Tran.T April, 2013 86 ... current environmental cleanup 15 Application of modified TiO2 nanotube arrays in determination and removal of environmental pollutants CHAPTER PREPARATION AND PROPERTIES OF TiO NANOTUBE ARRAYS 2.1 Introduction... These oxide Application of modified TiO2 nanotube arrays in determination and removal of environmental pollutants nanoparticles inject charges to the conduction band of TiO result in enhancing significant... modified TiO2 nanotube arrays in determination and removal of environmental pollutants semiconductor, ZnSe has a direct band gap of ~ 2.7 eV with a conduction band of ~ eV and a valence band of ~