1. Trang chủ
  2. » Luận Văn - Báo Cáo

Luận văn thạc sĩ dự đoán lỗi phần mềm dựa trên độ đo mã nguồn sử dụng kỹ thuật học kết hợp

73 16 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 73
Dung lượng 3,45 MB

Nội dung

Ngày đăng: 18/07/2021, 06:01

Nguồn tham khảo

Tài liệu tham khảo Loại Chi tiết
[1] Taghi M. Khoshgoftaar∗ Kehan Gao Naeem Seliya. (2010). Attribute Selection and Imbalanced Data: Problems in Software Defect Prediction, International Conference on Tools with Artificial Intelligence (22nd) Sách, tạp chí
Tiêu đề: Taghi M. Khoshgoftaar∗ Kehan Gao Naeem Seliya. (2010). Attribute Selection and Imbalanced Data: Problems in
Tác giả: Taghi M. Khoshgoftaar∗ Kehan Gao Naeem Seliya
Năm: 2010
[2] Cagatay Catal. (2011). Review: Software fault prediction: A literature review and current trends. Expert Syst. Appl. 38, 4 (April 2011), 4626-4636.DOI=10.1016/j.eswa.2010.10.024 http://dx.doi.org/10.1016/j.eswa.2010.10.024 Sách, tạp chí
Tiêu đề: Cagatay Catal. (2011). Review: Software fault prediction: A literature review andcurrent trends. Expert Syst. Appl. 38, 4 (April 2011), 4626-4636
Tác giả: Cagatay Catal
Năm: 2011
[14] Dindin Wahyudin, Rudolf Ramler, Stefan Biffl. (2017). A Framework for Defect Prediction in Specific Software Project Contexts, https://hal.inria.fr/hal-01572547.Submitted 2017 Sách, tạp chí
Tiêu đề: Dindin Wahyudin, Rudolf Ramler, Stefan Biffl. (2017). A Framework forDefect Prediction in Specific Software Project Contexts, https://hal.inria.fr/hal-01572547
Tác giả: Dindin Wahyudin, Rudolf Ramler, Stefan Biffl
Năm: 2017
[26] Santa Clara, Introduction to Machine Learning, Alex Smola and S.V.N.Vishwanathan. Departments of Statistics and Computer Science Purdue University and College of Engineering and Computer Science, Australian National University.[27] https://medium.com Sách, tạp chí
Tiêu đề: Santa Clara, Introduction to Machine Learning, Alex Smola and S.V.N."Vishwanathan. Departments of Statistics and Computer Science Purdue University andCollege of Engineering and Computer Science, Australian National University."[27]
[17] Thomas G Dietterich. Ensemble Methods in Machine Learning, Oregon State University Corvallis Oregon USA, home page: http://www.cs.orst.edu.tgd Link
[3] Thomas Zimmermann. (2009). Cross-project Defect Prediction A Large Scale Experiment on Data vs. Domain vs. Process Microsoft Research Khác
[4] Djuradj Babic. (2012). Adaptive Software Fault Prediction Approach Using Object-Oriented Metrics, Florida International University, dbabic@mdc.edu Khác
[5] Golnoush Abaei ã Ali Selamat. 2014. A survey on software fault detection based on different prediction approaches, Vietnam J Comput Sci Khác
[6] Mattias Liljeson Alexander Mohlin. 2014. Software defect prediction using machine learning on test and source code metrics, Faculty of Computing Blekinge Institute of Technology, Karlskrona, Sweden Khác
[7] Asst.Prof./CSE, Bhajarang Engineering College, Tiruvallur, Chennai, TamilNadu & Professor/CSE, Er. Perumal Manimekalai College of Engineering, Hosur, Krishnagiri, Tamil Nadu. (2014). Software Defect Prediction Using Software Metrics, K.PUNITHA1 Dr . S.CHITRA2 Khác
[8] Romi Satria Wahono. 2015. A Systematic Literature Review of Software Defect Prediction: Research Trends, Datasets, Methods and Frameworks, Faculty of Computer Science, Dian Nuswantoro University, Journal of Software Engineering, Vol 1. (April 2015) Khác
[9] Malhotra, R. (2015). A systematic review of machine learning techniques for software fault prediction. Appl. Soft Comput., 27, 504-518 Khác
[10] Maureen Lyndel C. Lauron and Jaderick P. Pabico. (2016). Improved Sampling Techniques for Learning an Imbalanced Data Set, Institute of Computer Science, University of the Philippines Los Baủos, College 4031, Laguna Khác
[11] Xiang Chen†, Yuxiang Shen, Zhanqi Cui, Xiaolin Ju. (2017). Applying Feature Selection to Software Defect Prediction using Multi-objective Optimization, School of Computer Science and Technology, Nantong. University, Nantong, China. IEEE 41st Annual Computer Software and Applications Conference Khác
[12] Binod Kumar Pattanayak. (2016). A survey on machine learning techniques used for software quality prediction, Siksha O Anusandhan University, Article in International Journal of Reasoning-based Intelligent Systems Khác
[13] Barstad, Morten Goodwin, Terje Gjosổter. (2017). Predicting Source Code Quality with Static Analysis and Machine Learning, Vera, Faculty of Engineering and Science, University of Agder, Serviceboks 509, NO-4898 Grimstad, Norway Khác
[15] Statistical and Machine Learning Methods for Software Fault Prediction Using CK Metric, Suite: A Comparative Analysis, Yeresime Suresh, Lov Kumar, and Santanu Ku. Rath, Department of Computer Science and Engineering, National Institute of Technology, Rourkela, Odisha - 769008, India Khác
[16] Aston Zhang, Zack C. Lipton, Mu Li, Alex J. Smola. 2019). Book: Dive into Deep Learning (Release 0.7), May 02, 2019 Khác
[18] Christian Quesada-López. (2015). Software fault prediction: A systematic mapping study, University of Costa Rica. Conference Paper ã April 2015 Khác
[19] N.Kalaivani & Dr.R.Beena. (2018). Overview of Software Defect Prediction using Machine Learning Algorithms, Department of Computer Science, Kongunadu Arts and Science College, Coimbatore – 641029, Tamilnadu. International Journal of Pure and Applied Mathematics, Volume 118 No. 20 2018 Khác

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w