1. Trang chủ
  2. » Thể loại khác

SHA541 transcripts

26 4 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 26
Dung lượng 3,14 MB

Nội dung

  SHA541:  Price  and  Inventory  Controls   School  of  Hotel  Administration,  Cornell  University    S HA541         Transcripts Transcript: Course Introduction   Welcome  to  Price  and  Inventory  Control  I  am  Chris  Anderson,  I'm  the  author  of  this  course  and   a  professor  at  Cornell  University  School  of  Hotel  Administration  My  teaching  and  research   focus  is  largely  on  revenue  management  and  pricing  with  an  app,  application  specifically  in   service  industries       This  course  focuses  on  one  of  the  core  concepts  of  revenue  management  That  being  marginal   analysis  We're  gonna  look  at  how  firms  can  estimate  the  marginal  value  of  the  last  room  they   sell,  the  seat  on  the  plane  Or  the  last  rental  car  in  the  parking  lot  And  then  they  use  this   marginal  value  then  to  control  inventory,  Or  to  set  prices  going  forward       This  course  serves  as  a  solid  foundation  in  revenue  management  for  those  of  you  who  are   relatively  new  to  the  area  and  as  more  of  a  reinforcement  of  the  core  concepts  for  those  of  you   with  prior  RM  experience  Thanks,  and  welcome  and  I  hope  you  find  the  course  impactful                                           © 2015 eCornell All rights reserved All other copyrights, trademarks, trade names, and logos are the sole property of their respective owners       SHA541:  Price  and  Inventory  Controls   School  of  Hotel  Administration,  Cornell  University       Transcript: Price and Duration Controls Successful  revenue  management  has  effective  control  of  price  and  duration  of  stay—the  two   strategic  revenue  management  levers  Consider  this  matrix  that  plots  firms  along  the  dual  axes   of  duration  and  price,  where  duration  is  controlled  or  uncontrolled  and  price  is  relatively  fixed   or  variable  This  chart  provides  an  introduction  to  the  revenue  management  perspective     Firms  in  industries  traditionally  associated  with  revenue  management  (hotels,  airlines,  rental   car  firms,  and  casinos)  are  able  to  apply  variable  pricing  for  a  service  that  has  a  specified  or   predictable  duration  These  firms  are  in  quadrant  2  To  obtain  the  benefits  associated  with   revenue  management,  industries  should  attempt  to  move  to  quadrant  2  by  implementing  the   appropriate  strategic  levers  Most  hospitality  firms  find  that  the  more  their  firm  operates  in   quadrant  2,  the  higher  their  revenue  per  available  time-­‐based  unit   Not  all  firms  within  quadrant  2  industries  practice  revenue  management  or  practice  revenue   management  well  For  example,  a  luxury  hotel  that  is  not  implementing  strict  length-­‐of-­‐stay   controls  across  its  limited  set  of  prices  effectively  operates  in  quadrant  3  due  to  the  type  of   guests  to  whom  it  caters     © 2015 eCornell All rights reserved All other copyrights, trademarks, trade names, and logos are the sole property of their respective owners       SHA541:  Price  and  Inventory  Controls   School  of  Hotel  Administration,  Cornell  University   Assume  you  want  to  move  your  firm  to  quadrant  2;  what  are  some  of  the  things  you  should   consider?  If  you  have  one  price,  you  can  institute  multiple  prices  A  variable-­‐price  approach   moves  the  firm  from  quadrant  3  (with  few  prices)  to  quadrant  4  (with  many  prices)  In  quadrant   4,  you  have  several  prices  but  uncontrolled  duration  To  add  duration  controls,  you  may  use   advance  reservations  to  forecast  demand,  preferably  by  rate  class  and  by  length  of  stay  Now  if   you  are  able  to  incorporate  length-­‐of-­‐stay  controls  as  well  as  multiple  prices,  the  firm  is  better   positioned  to  move  to  quadrant  2     Transcript: Customer Segmentation and Demand Controls Using  customer  segmentation  and  inventory  controls  to  manage  revenue  is  commonplace  in   many  industries  But  this  wasn’t  always  the  case  The  airline  industry  has  a  strong  influence  in   their  use  Today  you  find  a  lot  of  volatility  in  airfares,  but  this  is  a  relatively  new  phenomenon     In  the  early  years  of  air  travel  U.S  airlines  were  subjected  to  government  regulations  that   consistently  kept  fares  high  and  made  air  travel  a  luxury  item  But  eventually  the  demand  for   more  affordable  air  travel  led  to  the  passing  of  the  Airline  Deregulation  Act  in  1979  The  result   of  this  act  was  complete  elimination  of  fare  restrictions,  leaving  the  airline  industry  in  a  free   market  Almost  immediately,  a  number  of  new  airlines  arose  to  compete  with  the  existing   carriers  and  the  number  of  passengers  dramatically  increased  A  new  way  of  pricing  was   introduced  as  existing  carriers  (serving  guests  willing  to  pay  higher  prices)  now  also  had  to  offer   lower  prices  to  compete  with  new  entrant  airlines     So  how  did  they  price?  They  began  with  segmenting  customers  If  we  oversimplify  we  could   assume  there  are  only  two  types  of  customers  seeking  to  travel—business  customers  travelling   for  work-­‐related  issues  and  leisure  travelers  The  typical  business  traveler  is  willing  to  pay  a   higher  price  in  exchange  for  flexibility  of  being  able  to  book  a  seat  at  the  last  minute  (or  cancel   his  ticket  if  his  plan  changes)  while  the  vacation  traveler  is  willing  to  give  up  some  flexibility  for   the  sake  of  a  more  inexpensive  seat  The  demand  from  the  price-­‐sensitive  customer  tends  to   come  before  the  demand  from  business  customer  But  with  multiple  price  points  and  demand   for  more  expensive  seats  arriving  after  price-­‐sensitive  demand  the  airlines  had  to  determine   how  many  seats  they  should  sell  to  the  early  price-­‐sensitive  customers  and  how  many  they   should  protect  for  late,  full-­‐fare  customers  If  too  few  seats  are  protected,  the  airline  will  lose   the  full-­‐fare  revenue  If  too  many  are  protected,  flights  will  leave  with  empty  seats     Littlewood  (working  for  British  Airways)  proposed  a  way  to  make  this  determination  He   proposed  that  discount-­‐fare  bookings  should  be  accepted  as  long  as  their  value  exceeds  that  of   anticipated  full-­‐fare  bookings,  assuming  that  customers  can  be  segmented  according  to  when   they  purchase  their  tickets  This  simple,  inventory  control  system  was  the  beginning  of  what   eventually  lead  to  revenue  management     © 2015 eCornell All rights reserved All other copyrights, trademarks, trade names, and logos are the sole property of their respective owners       SHA541:  Price  and  Inventory  Controls   School  of  Hotel  Administration,  Cornell  University     Using  Littlewood’s  approach  we  can  designate  two  fare  classes  as  having  fares  of  R2  and  R1,   where  R2  is  greater  than  R1  The  demand  for  class  R1—the  lower  fare—comes  before  demand   for  class  R2  The  question  now  is  how  much  demand  for  class  R1  should  be  accepted  so  that  the   optimal  mix  of  passengers  is  achieved  and  the  highest  revenue  is  obtained?  Littlewood   suggested  closing  down  class  R1  when  the  certain  revenue  from  selling  another  low  fare  seat  is   less  than  the  expected  revenue  of  selling  that  same  seat  at  the  higher  fare  In  other  words,  as   long  as  the  probability  of  selling  all  remaining  seats  at  the  higher  price  is  greater  than  the  ratio   of  the  lower  price  over  the  higher  price,  we  are  better  off  not  selling  at  the  low  price  and   keeping  it  for  the  high  price  This  is  our  Target  Probability     Let’s  look  at  an  example  Grand  Sky  Airlines  sells  tickets  on  one  of  its  85-­‐passenger  planes  for   €150  (the  discounted  fare)  and  €250  (the  full-­‐fare)  In  general,  their  customers  are  aware  of  the   pricing  and  those  seeking  discounts  tend  to  book  early  Sean,  one  of  the  managers  at  Grand   Sky,  knows  that  he  can  fill  his  entire  plane  at  €50  per  seat  if  he  so  desires,  but  at  some  point  it  is   best  to  stop  selling  discounted  seats  and  reserve  some  inventory  for  later  arriving  higher   yielding  (€250)  passengers  How  does  Sean  calculate  this  target  or  the  point  at  which  to  stop   selling  €150  seats  and  reserve  the  remaining  seats  for  the  €250  customers?     Using  Littlewood’s  rule  (R1  divided  by  R2)  we  can  calculate  Sean’s  target  probability  In  this  case   it  is  .6  or  60%  As  long  as  the  probability  of  selling  all  remaining  seats  (“n”  seats)  at  €250  is   equal  to  or  greater  than  60%  then  Grand  Sky  is  better  off  selling  seats  at  €250   Now  we  need  to  calculate  the  probability  of  selling  “n”  or  more  seats  We  use  historical  data  to   help  calculate  the  probability  of  future  events  The  graph  shows  the  number  of  €250  seats   Grand  Sky  Airlines  sold  each  day  for  the  last  100  days     © 2015 eCornell All rights reserved All other copyrights, trademarks, trade names, and logos are the sole property of their respective owners       SHA541:  Price  and  Inventory  Controls   School  of  Hotel  Administration,  Cornell  University     For  example,  24  €250  seats  were  sold  on  one  of  the  days  and  33  €250  seats  were  sold  on  12  of   the  days   Now  we  can  calculate  the  probability  of  selling  at  least  a  certain  number  of  seats  at  €250  and   compare  that  number  to  our  target  of  60%   To  calculate  this  probability,  divide  the  number  of  days  we  sold  “n”  or  more  seats  by  the  total   observations  We  could  start  the  calculations  at  any  point  (selling  24  or  more  seats,  selling  25  or   more  seats,  etc.)  But  we  can  use  our  graph  to  select  a  reasonable  starting  point     On  the  graph  we  see  that  the  mid-­‐point  is  around  34  seats  This  will  make  a  good  starting  point   for  our  calculations  It  may  be  easier  to  calculate  these  probabilities  if  we  look  at  the  data  in  a   table  format  This  table  displays  the  same  data  that  we  just  saw  in  the  form  of  a  graph  We   want  to  calculate  the  probability  that  there  will  be  future  demand  for  34  or  more  seats  Start  by   finding  the  number  of  days  34  or  more  seats  were  sold  in   the  past  To  do  this,  add  the  frequencies  when  demand  was  34  or  more  seats  We  add  the   frequency  of  demand  at  34,  35,  etc  up  to  41  together  to  arrive  at  56  days  when  demand  was  34   or  more  seats  Now  divide  56  by  the  total  observations  (100)  This  gives  us  the  probability  that   demand  will  be  greater  or  equal  to  34  seats  at  €250  as  .56  or  56%     If  we  do  the  same  calculation  for  the  sale  of  33  or  more  seats  we  arrive  at  a  probability  of  68%   Now  we  can  compare  these  probabilities  to  our  target  probability  Remember,  as  long  as  the   probability  of  selling  all  remaining  seats  at  €250  is  ≥  60%  then  Grand  Sky  is  better  off  selling   seats  at  €250  rather  than  €150  The  probability  of  selling  the  33rd  seat  at  €250  is  68%  thus   greater  than  60%  and  the  probability  of  selling  the  34th  seat  at  €250  is  56%,  less  than  60%     © 2015 eCornell All rights reserved All other copyrights, trademarks, trade names, and logos are the sole property of their respective owners       SHA541:  Price  and  Inventory  Controls   School  of  Hotel  Administration,  Cornell  University     We  can  also  look  at  this  from  a  monetary  viewpoint  The  probability  of  selling  34  or  more  seats   at  €250  is  56%  To  find  the  expected  revenue  of  the  last  seat  we  sell  multiple  .56  by  €250  which   equals  €140  Given  the  expected  revenue  of  the  34th  seat  is  €140,  less  than  the  €150  we  obtain   for  certain  if  sold  as  a  discounted  seat,  34  seats  is  not  our  threshold     Let’s  look  at  selling  33  or  more  seats  This  probability  is  68%,  giving  us  an  expected  revenue   from  selling  the  33rd  seat  at  €250  of  €170  We  can  go  back  to  our  original  question:  What  is  the   point  at  which  to  stop  selling  €150  seats  and  reserve  the  remaining  seats  for  the  €250   customers?  Assume  that  on  our  85  seat  plane  the  85th  seat  is  sold  first  and  the  1st  seat  is  sold   last  Thus  the  airline  is  better  off  selling  up  to  52  seats  (85  total  minus  33)  at  €150  and  reserving   the  remaining  33  seats  for  the  €250  paying  customers  In  essence  we  are  calculating  the   expected  marginal  revenue  of  keeping  a  seat  (or  room)  for  later  arriving  higher  yielding  guests   We  should  continue  to  sell  at  lower  discounted  rates  as  long  as  these  rates  exceed  the  expected   marginal  revenue  of  selling  at  higher  rates     Littlewood,  K  (1972)  Forecasting  and  control  of  passenger  bookings  Proceedings  from  the   Twelfth  Annual  AGIFORS  Symposium,  Nathanya,  Israel     Transcript: Class Protection We’re  going  to  continue  our  discussion  on  using  Littlewood’s  rule  Now  our  focus  is  going  to   change  from  controlling  rates  to  actually  controlling  segments  We’ll  have  a  quick  recap  of   Littlewood’s  rule  and  then  we  will  move  to  how  we  use  that  technique  to  control  segments   Remember,  Littlewood’s  rule  is  about  allocating  inventory  to  certain  price  classes  Now  we’re   going  to  think  about  allocating  inventory  to  certain  types  of  business,  whether  that’s  a  transient   late-­‐arriving  customer  or  a  group  traveler  who's  making  that  request  one  or  two  years  in   advance  of  check-­‐in   As  a  quick  sort  of  review,  suppose  we  have  two  prices,  €200  and  €250  And  just  for  argument's   sake  let’s  say  today  is  Wednesday  the  20th  and  we’re  looking  at  controlling  inventory  for  next   Wednesday   As  of  today  we  have  15  rooms  available  for  next  Wednesday  The  decisions  we  need  to  make   today  are  about  those  15  rooms:  Should  we  continue  to  sell  some  of  those  at  €200  or  should   we  keep  them  all  for  €250-­‐paying  customers?  Euro  paying  customers  Right,  so  what  stage  is  a   function,  of  how  many  rooms  we  have  left  as  well  as  days  before  arrival  When  do  we  want  to   stop  selling  at  200?     © 2015 eCornell All rights reserved All other copyrights, trademarks, trade names, and logos are the sole property of their respective owners       SHA541:  Price  and  Inventory  Controls   School  of  Hotel  Administration,  Cornell  University     We’ve  collected  some  data  to  help  us  assess  those  potential  outcomes  Basically,  this  data   would  be  the  number  of  requests  for  €250-­‐paying  customers  in  this  last  week  prior  to  arrival   We’re  focused  on  demand  for  the  higher-­‐yielding  class  versus  demand  for  the  lower-­‐yielding   class   Let’s  assume  we’ve  collected  data  for  over  say  the  last  100  Wednesdays  and  during  those  100   Wednesdays,  in  that  last  week  before  arrival,  the  average  demand  is  15  That  demand  has  a   standard  deviation  of  5  to  represent  its  uncertainty  Remembering  back  to  Littlewood’s  rule,  we   want  to  keep  selling  at  €200  as  long  as  that  200  exceeds  the  potential  revenue  from  selling  at   €250  And  the  potential  revenue  from  selling  at  €250  is  the  probability  that  we  would  sell  all   those  remaining  rooms  at  250  times  250   So  given  that  demand  has  a  mean  of  15  and  a  standard  deviation  of  5,  let’s  assume  some   distributional  form  for  that  demand  For  ease,  let’s  assume  that  it  follows  a  normal   distribution,  so  a  nice  sort  of  symmetric-­‐about-­‐the-­‐mean,  sort  of  bell-­‐shaped  distribution   We  can  use  some  built-­‐in  functionality  in  Excel  to  help  us  estimate  how  many  rooms  to  keep  for   the  €250-­‐paying  customers   Excel  always  calculates  probabilities  from  the  left  hand  side  Basically  the  probability  that   demand  is  less  than  or  equal  to  some  critical  level,  we  want  probability  the  demand  is  greater   than  or  equal  to  our  critical  level  being  €200  over  €250     © 2015 eCornell All rights reserved All other copyrights, trademarks, trade names, and logos are the sole property of their respective owners       SHA541:  Price  and  Inventory  Controls   School  of  Hotel  Administration,  Cornell  University     Excel  has  a  function  called  NormInv  and  what  NormInv  does,  or  Norm  Inverse  for  the  full   version  of  that  formula-­‐-­‐we  provide  a  probability  and  some  description  of  that  demand,  in  our   case  the  mean  of  15  and  the  standard  deviation  of  5,  and  it  tells  us  the  number  that   corresponds  to  that  probability   So  in  Excel  we  would  simply  use  Norm  Inverse  of  1  minus  200  over  250,  15,  and  5,  and  that   would  return  to  us  10.8  That  basically  means  that  the  probability  of  us  selling  10.8  or  more   rooms  is  200  over  250  So  if  we  kept  exactly  10.8  rooms  for  the  €250-­‐paying  customers,  we   would  be  indifferent  between  that  10.8th  room  as  a  €250  room  versus  it  as  a  €200  room     © 2015 eCornell All rights reserved All other copyrights, trademarks, trade names, and logos are the sole property of their respective owners       SHA541:  Price  and  Inventory  Controls   School  of  Hotel  Administration,  Cornell  University     Given  we  can’t  sell  partial  rooms,  and  then  we’re  going  to  keep  10  rooms  So  basically  the   probability  of  selling  10  rooms  is  a  little  more  than  200  over  250,  but  keep  in  mind  that  if  we   were  to  keep  11,  the  probability  would  be  less  than  200  over  250  So  our  logic  here  is  to  keep   10  rooms  and  allow  us  to  keep  selling  up  to  5  more  rooms  at  €200   Now  that  we  can  have  a  solid  idea  of  how  we  might  use  Littlewood’s  rule  to  calculate  how   many  rooms  to  keep,  we  can  extend  that  now  to  segments  Keep  in  mind  that  group  requests   typically  are  made  one,  two,  even  three  years  prior  to  check-­‐in  These  are  large  conferences   looking  for  large  blocks  of  rooms,  typically  at  very  big  discounts   And  so  one  of  the  questions  that  you  have  to  face  is  what  part  of  my  hotel  or  what  segment  of   my  rooms  do  I  want  to  keep  for  these  low-­‐yielding,  early-­‐arriving  customers  Obviously,  they’re   very  valuable  customers,  but  you  don’t  want  to  sell  all  your  rooms  to  these  customers  because   you  have  later-­‐arriving,  higher-­‐yielding  customers   Right,  so  we  could  use  the  same  Littlewood  logic  to  look  at  this  I'm  going  to  sell  X  rooms  to   groups,  given  the  probability  of  selling  capacity  minus  X  to  higher-­‐yielding  people  as  the  same   rate  as  that  group  class   Obviously,  we’d  like  to  keep  all  our  rooms  for  these  people  if  we  could  stock  out  We  estimate   that  probability  of  stock  out  using  our  Norm  Inverse  function,  given  the  ADR  for  the  transients     © 2015 eCornell All rights reserved All other copyrights, trademarks, trade names, and logos are the sole property of their respective owners       SHA541:  Price  and  Inventory  Controls   School  of  Hotel  Administration,  Cornell  University   versus  the  ADR  for  the  corporate  and  government  versus  the  ADR  for  the  group  This  way  we’re   calculating  those  allocations  across  those  segments,  and  in  essence  determining  what  our  mix  is   for  our  property     Transcript: Ideal Car Rental—Types of Cars Peter  Carter,  at  Ideal  Car,  has  100  days  of  data  showing  daily  rentals  We  can  use  this   information  to  help  Peter  determine  how  many  cars  he  should  stock,  striking  a  reasonable   balance  between  utilization  rates  and  the  possibility  of  running  out  of  cars  with  the  subsequent   loss  of  revenue     The  chart  shows  the  monthly  revenue  and  costs  for  the  three  types  of  cars  in  Ideal’s  fleet     The  first  step  in  solving  our  problem  is  to  find  how  many  times  a  car  must  rent  to  cover  its  fixed   costs  We’ll  demonstrate  with  the  economy  class  car  The  economy  cars  have  monthly  fixed   costs  of  €336  (€256  in  lease  plus  €80  in  insurance)  Given  that  each  economy  car  nets  €24  per   rental  (€26  rental  rate  minus  €2  in  variable  cleaning  costs)  that  means  a  car  needs  to  rent  at   least  14  times  per  month  to  cover  its  fixed  costs  (i.e  needs  to  rent  14  times  to  break  even)  as   €336  divided  by  €24  equals  14  We’ll  assume  that  each  month  has  30  days  That  means  on  any   given  day  for  a  car  to  be  profitable  it  needs  to  have  a  probability  of  renting  of  14/30  or  46%     Now  instead  of  30  days,  let’s  look  at  100  days  of  data  for  economy  cars  The  chart  shows  the   frequency  of  the  number  of  cars  rented  during  the  last  100  days  On  2  of  the  100  days  only  10   economy  cars  were  rented  There  is  also  two  days  when  11  cars  were  rented  On  7  days  12  cars   were  rented  and  so  on  If  Ideal  had  stocked  10  cars  then  they  would  have  rented  all  10  cars  on   10   © 2015 eCornell All rights reserved All other copyrights, trademarks, trade names, and logos are the sole property of their respective owners       SHA541:  Price  and  Inventory  Controls   School  of  Hotel  Administration,  Cornell  University       Transcript: Ask The Expert: Upgrading/Upselling Opportunities When  are  upgrades  and  upsells  useful?   Upgrades  are  especially  useful  when  there  is  a  mismatch  between  supply  and  demand  There   are  several  reasons  why  capacity  mismatches  may  occur  in  practice,  including  forecast  errors   and  strategic  supply  limits  that  aim  to  skim  revenues  from  customers  with  high  willingness  to   pay  Upgrades  become  a  key  managerial  lever  in  the  case  of  travel  and  service  industries  in   general  when  capacity  is  relatively  fixed  and  difficult  to  change  in  the  short  run  as  demand   fluctuates  over  time   How  are  upgrades  useful?   Upgrades  help  balance  demand  and  supply  by  shifting  excess  capacity  of  high-­‐grade  products  to   low-­‐grade  products  with  excess  demand  Upgrading  allows  firms  to  get  consumers  to  commit  to   purchases  at  lower  prices  and  then  extract  additional  revenues  with  the  upgrade/upsell   What  are  some  of  the  main  concerns  with  upgrading?   In  addition  to  potentially  not  having  enough  high-­‐valued  inventories  available,  upgrading  can   create  strategic  consumer  issues  especially  for  those  receiving  free  upgrades  Consumers  tend   to  expect  upgrades  and  may  become  dissatisfied  if  usual  upgrades  become  unavailable   What  type  of  data  do  you  need  to  determine  if  and  when  you  should  upgrade?   The  key  to  proper  management  of  upgrades  is  a  solid  understanding  of  total  demand  for   higher-­‐valued  inventory  and  when  this  demand  materializes  Essentially  you  must  be  able  to   estimate  the  likelihood  that  you  won't  need  that  high-­‐valued  room  once  you've  upgraded  it  and   made  it  available  to  a  lower-­‐valued  customer     Transcript: Simultaneous Decision Making Up  until  this  stage,  we’ve  been  focusing  on  a  single  constraining  resource  Right,  how  many   rooms  should  I  allocate  to  which  different  prices,  how  should  I  manage  the  seats  on  my   particular  flight?  Going  forward,  going  to  add  some  complexity  basically,  so  we’re  going  to  focus   on  not  just  one  resource  but  multiple  resources,  so  you  can  think  of  this  as  guests  staying   multiple  nights  at  your  property  or  individuals  flying  with  your  airline  but  stopping  at   interconnected  cities  and  moving  on  to  subsequent  cities  Under  this  context  of  guests  staying   12   © 2015 eCornell All rights reserved All other copyrights, trademarks, trade names, and logos are the sole property of their respective owners       SHA541:  Price  and  Inventory  Controls   School  of  Hotel  Administration,  Cornell  University   more  than  one  night  or  flyers  having  interconnecting  traffic,  it  results  in  consumers  purchasing   different  products  using  the  same  resource   So  I  might  have  a  guest  who  checks  in  today  for  a  one-­‐night  stay  I  might  have  another  guest   who  checks  in  today  for  a  two-­‐night  stay  Both  of  those  guests  are  staying  tonight,  but  they   each  bought  a  different  product  One  bought  a  one-­‐night  stay,  one  bought  a  two-­‐night  stay,  but   they’re  both  using  rooms  tonight  So  when  I  decide  how  many  rooms  to  allocate  to  each  of   those  two  different  product  classes,  I  need  to  realize  that  they’re  both  using  inventory  tonight     So  going  forward,  we’re  going  to  think  about  how  to  incorporate  that  complexity  in  my   allocation  decisions  This  might  be  clarified  with  a  simple  example  So  let’s  look  at  our  property   for  the  upcoming  week  We  have  a  very  simple  structure  here  We  have  two  prices,  150  and   200  Euros,  and  guests  stay  one  or  two  nights     13   © 2015 eCornell All rights reserved All other copyrights, trademarks, trade names, and logos are the sole property of their respective owners       SHA541:  Price  and  Inventory  Controls   School  of  Hotel  Administration,  Cornell  University   In  this  particular  example,  we  forecasted  demand  for  the  upcoming  week,  and  it  turns  out  that   only  Wednesday  is  booming  with  us  and  on  Wednesday  we  have  demand  in  excess  of  capacity   So  managing  inventory  on  Wednesday  is  relatively  straightforward  We  want  to  make  sure  we   accept  requests  that  bring  in  as  much  revenue  as  possible  and  reject  those  requests  that  bring   in  less  revenue  So  in  this  context  we’d  accept  two-­‐night  stays  at  200,  we’d  accept  two-­‐night   stays  at  150,  but  we  may  reject  some  one-­‐night  stays  at  150  given  their  lower  revenue     Now  we  extend  this  example  to  not  just  Wednesday  having  demand  in  excess  of  capacity  but   also  Thursday  So  now  we  have  two  constraining  resources  and  while  it  seems  still   straightforward,  if  we  were  to  maximize  revenue  on  Wednesday  by  accepting  two-­‐night  stays   and  rejecting  some  one-­‐night  stays,  and  then  move  on  to  Thursday  and  maximize  revenue  on   Thursday  by  accepting  some  two-­‐night  stays  and  rejecting  some  one-­‐night  stays,  we  quickly   realize  that  the  decisions  I  made  on  Wednesday,  i.e  the  two-­‐night  stays  I  accepted  on   Wednesday,  well,  those  people  are  now  staying  on  my  property  on  Thursday,  and  those   14   © 2015 eCornell All rights reserved All other copyrights, trademarks, trade names, and logos are the sole property of their respective owners       SHA541:  Price  and  Inventory  Controls   School  of  Hotel  Administration,  Cornell  University   decisions  I  made  on  Wednesday  impact  the  decisions  I  can  make  on  Thursday       So  I  can’t  just  make  my  Wednesday  decisions  first  and  then  my  Thursday  decisions,  I  really  need   to  make  my  Wednesday  and  Thursday  decision  simultaneously  and  not  just  Wednesday  and   Thursday,  but  because  the  guests  who  stayed  two  nights  on  Tuesday  are  going  to  be  on  my   property  on  Wednesday  and  impact  my  Wednesday  decisions  and  then  impact  my  Thursday   decisions,  I  really  need  to  make  my  decisions  for  that  whole  week  simultaneously  versus  one  at   a  time  This  moves  us  to  this  framework  of  simultaneous  decision-­‐making     One  of  the  common  aspects  of  this  simultaneous  decision-­‐making  framework  is  that  most  of   these  settings  have  some  sort  of  limited  resource  This  limited  resource  might  be,  as  in  our   earlier  example,  how  many  rooms  we  have  available  on  Wednesday  and  Thursday  or  it  might   15   © 2015 eCornell All rights reserved All other copyrights, trademarks, trade names, and logos are the sole property of their respective owners       SHA541:  Price  and  Inventory  Controls   School  of  Hotel  Administration,  Cornell  University   be  how  much  cash  you  have  on  hand  to  purchase  items  or  it  might  be  how  many  items  you   have  in  stock  which  you  can  use  to  manufacture  goods  and  sell  to  consumers  The  thing  that’s   common  across  this  framework  is  this  constrained  or  limited  resource     Our  goal  is  to  mathematically  model  these  and  as  a  function  of  that  we  need  to  be  able  to   evaluate  performance  And  the  easiest  way  to  evaluate  performance  is  to  have  some  sort  of   single  unifying  objective  So  from  our  context  we’re  going  to  maximize  revenue  or  maximize   profit,  but  in  other  contexts  you  might  want  to  minimize  cost,  right?  We  have  to  be  able  to  map   this  performance  metric,  revenue,  to  our  decisions,  how  many  rooms  to  accept  across  each  of   the  rate  classes  and  lengths  of  stays       In  addition  to  having  both  this  sort  of  unifying  objective,  which  is  a  function  of  these  decision   variables,  we’re  also  going  to  have  these  constraints,  right?  I  only  have  100  rooms  available  on   Wednesday  and  100  rooms  available  on  Thursday  We’re  going  to  add  some  other  sort  of   logical  constraints;  those  logical  constraints  are  things  like,  I  can’t  accept  negative  reservations,   right?  So  that’s  pretty  easy  for  you  to  think  logically,  but  again  we’re  going  to  do  this   computationally  so  we  have  to  define  those  things  as  well     Transcript: Optimization at Snap Électrique Excel  Solver  is  a  tool  that  we  can  use  in  our  simultaneous  decision  making  process  To  use   Solver,  we  must  build  a  model  that  specifies:   • The  decisions  we  need  to  make;  we  refer  to  these  as  decision  variables     16   © 2015 eCornell All rights reserved All other copyrights, trademarks, trade names, and logos are the sole property of their respective owners       SHA541:  Price  and  Inventory  Controls   School  of  Hotel  Administration,  Cornell  University   • • The  measure  to  optimize,  called  the  objective—for  example,  maximize  profit  or   minimize  costs     Limitations  on  how  we  make  decisions,  called  constraints—for  example,  limited   resources   Solver  will  find  values  for  the  decision  variables  that  satisfy  the  constraints  while  optimizing   (maximizing  or  minimizing)  the  objective  We  will  use  Snap  Électrique  to  help  describe  how  to   use  Solver   We  begin  with  the  decision  variables  They  usually  measure  the  amounts  of  resources  to  be   allocated  to  some  purpose,  or  the  level  of  some  activity,  such  as  the  number  of  products  to  be   manufactured  For  Snap  Électrique,  we  need  to  decide  how  many  of  each  of  the  four  products   to  make   Once  we  define  the  decision  variables,  the  next  step  is  to  define  the  objective,  which  is   normally  some  function  that  depends  on  the  decision  variables  For  Snap,  the  objective  is  to   maximize  profit     We  know  that  each  LCD  touch  screen  yields  a  profit  of  €29,  each  integrated  audio  system  €32,   each  voice  and  audio  processor  €72,  and  each  custom  kiosk  €54  Then  our  objective  function   might  be:   (€29  times  the  number  of  LCDs)  +  (€32  times  the  number  of  integrated  audio  systems)  +  (€72   times  the  number  of  voice  and  audio  processors)  +  (€54  times  the  number  of  custom  kiosks)   We’d  be  finished  at  this  point,  if  the  model  did  not  require  any  constraints  In  most  models   constraints  play  a  key  role  in  determining  what  values  can  be  assumed  by  the  decision  variables   and  what  sort  of  objective  value  can  be  attained  It  is  the  constraints  that  require  us  to  use   optimization  models  like  Solver   17   © 2015 eCornell All rights reserved All other copyrights, trademarks, trade names, and logos are the sole property of their respective owners       SHA541:  Price  and  Inventory  Controls   School  of  Hotel  Administration,  Cornell  University   Constraints  reflect  real-­‐world  limits  on  production  capacity,  market  demand,  available  funds,   and  so  on  To  define  a  constraint,  you  first  compute  a  value  based  on  the  decision  variables   Then  you  place  a  limit  (≤,  =,  or  ≥)  on  this  computed  value   Many  constraints  are  determined  by  the  physical  nature  of  the  problem  For  example,  if  our   decision  variables  measure  the  number  of  products  of  different  types  that  we  plan  to   manufacture,  producing  a  negative  number  of  products  would  make  no  sense  This  type  of  non-­‐ negativity  constraint  is  very  common   Often  we  have  constraints  that  require  decision  variables  to  assume  only  integer  (whole   number)  values  at  the  solution  Integer  constraints  normally  can  be  applied  only  to  decision   variables,  not  to  the  quantities  calculated  from  them   For  Snap,  we  cannot  allocate  more  resources  to  production  than  we  have  in  inventory  Also  we   cannot  produce  negative  or  partial  products   Now  let’s  look  at  the  model  we  created  for  Snap  Électrique   In  the  worksheet,  we  have  reserved  cells  B4  though  E4  to  represent  our  decision  variables—the   optimal  mix  of  products  to  produce  Solver  will  determine  the  optimal  values  for  these  cells   The  profits  for  each  product  (€29,  €32,  €72,  and  €54)  are  entered  in  cells  B5,  C5,  D5,  and  E5   This  allows  us  to  compute  the  objective  in  cell  F5  Remember,  our  objective  is  the  sum  of  the   number  of  products  made  times  the  profit  margin   In  cells  B8:E10,  we've  entered  the  amount  of  resources  needed  to  produce  each  type  of   product  With  these  values,  we  can  enter  a  formula  in  cells  F8  to  F11  that  computes  the  total   amount  of  resource  used  for  any  number  of  products  produced   Now  open  Solver  This  may  be  under  the  Tools  menu  or  the  Data  menu  depending  on  what   version  of  Excel  you  are  using   18   © 2015 eCornell All rights reserved All other copyrights, trademarks, trade names, and logos are the sole property of their respective owners       SHA541:  Price  and  Inventory  Controls   School  of  Hotel  Administration,  Cornell  University     We  must  let  Solver  know  which  cells  on  the  worksheet  represent  the  decision  variables,   constraints,  and  objective  function   In  the  Set  Objective  box,  type  or  click  on  cell  F5,  the  objective  function   In  the  By  Changing  Variable  Cells  edit  box,  type  B4:E4  or  select  these  cells  with  the  mouse   To  add  the  constraints,  click  the  Add  button  and  select  cells  F8:F10  in  the  Cell  Reference  edit   box  (this  will  show  the  number  of  units  or  hours  needed),  and  select  cells  G8:G10  in  the   Constraint  edit  box  (the  number  of  units  or  hours  available)  We  can  only  use  equal  to  or  less   than  the  amount  of  units  or  hours  we  have  in  stock  The  constraint  is  set  to  ≤   Define  the  non-­‐negativity  constraint  on  the  decision  variables  Depending  on  the  version  of   Excel,  we  do  this  by  making  sure  the  Make  Unconstrained  Variables  Non-­‐Negative  box  is   checked  or  click  Options  then  Assume  Non-­‐Negative   19   © 2015 eCornell All rights reserved All other copyrights, trademarks, trade names, and logos are the sole property of their respective owners       SHA541:  Price  and  Inventory  Controls   School  of  Hotel  Administration,  Cornell  University   Also  click  on  Assume  Linear  Model  or  use  Simplex  LP,  depending  on  your  version  of  Solver   To  find  the  optimal  solution  click  Solve  When  the  next  window  appears  click  OK   After  a  moment,  the  Solver  returns  the  optimal  solution  in  cells  B4  through  E4  and  a  new   window  appears  Here  are  the  results     This  shows  that  we  should  build  zero  LCD  Touch  Screens     Transcript: Marginal Value of Last Room Sold What  happens  when  I  accept  a  reservation?  When  I  accept  a  reservation,  assuming  the  guest   shows,  I  receive  the  revenue  from  that  individual  I  also  decrease  my  capacity  to  sell  to   subsequent  consumers  by  that  reservation  The  act  of  accepting  a  reservation  really  decreases   the  available  capacity  to  your  hotel  Thinking  about  this  from  a  marginal  value  standpoint,  I   don’t  want  to  accept  a  reservation  unless  it's  at  least  as  high  as  the  marginal  value  of  that  room   Here  we  determine  how  many  reservations  to  accept  across  our  two  rate  classes  of  €350  and   €250  where  guests  can  stay  one,  two,  or  three  nights   20   © 2015 eCornell All rights reserved All other copyrights, trademarks, trade names, and logos are the sole property of their respective owners       SHA541:  Price  and  Inventory  Controls   School  of  Hotel  Administration,  Cornell  University     We  decided  which  reservations  to  accept  with  the  goal  of  maximizing  revenue  In  that  context   we  made  almost  €515,000  (€514,850)  Now  let’s  step  back  and  say  Well,  what  if  I  had  one  more   room  on  the  14th?  On  the  very  first  day,  if  I  had  179  rooms,  what  if  I  had  180  rooms?  We’ll  just   simply  change  the  rooms  that  we  have  available  from  179  to  180  and  rerun  our  optimization   mode  If  we  rerun  our  optimization  model,  it  turns  out  that  our  revenue  now  is  €515,000   So  by  having  one  more  room  we  can  make  €515,000  versus  earlier  we  were  making  €514,850   So,  in  essence,  that  one  incremental  room  generated  €150  incremental  Euros   Our  goal  now  is  to  take  that  idea  from  179  to  180  and  sort  of  automate  that  It  turns  out,  given   we’re  doing  things  computationally,  that’s  relatively  easy  When  our  results  come  back,  we   simply  click  on  the  sensitivity  report  on  the  right  side,  and  by  doing  that  we  generate  what  is   referred  to  as  the  shadow  prices  What  we  see  here  in  the  very  first  row  of  that  shadow  price   table  is  €150  So,  corresponding  to  cell  H4,  was  the  rooms  that  were  available  on  December   14th,  we  have  a  shadow  price  of  €150,  which  before  we  calculated  manually   21   © 2015 eCornell All rights reserved All other copyrights, trademarks, trade names, and logos are the sole property of their respective owners       SHA541:  Price  and  Inventory  Controls   School  of  Hotel  Administration,  Cornell  University     So  if  you  think  about  things  on  the  14th,  if  I  had  180  rooms  versus  179  rooms  I  would  have   made  €150  more  If  I  had  178  rooms  versus  179  rooms,  I  would  lose  €150   If  we  go  back  and  compare  the  solutions  to  having  179  versus  180  rooms,  we  see  some  very   interesting  results  When  we  had  179  rooms  available  on  the  14th,  we  accepted  44  reservations   for  three-­‐night  stays  at  €250  When  we  had  180  rooms  on  the  14th,  we  actually  accepted  45  of   those  three-­‐night-­‐stay  €250  requests  Because  those  are  three-­‐night  requests,  those  individuals   are  now  going  to  stay  into  the  15th  and  into  the  16th  Because  of  that,  if  I  accept  that  three-­‐ night  stay  on  the  14th,  I  have  to  accept  less  stays  on  subsequent  days  It  turns  out  on  the  15th  I   accept  one  less  €350  one-­‐night  stay  If  you  look  at  the  16th,  on  the  16th  before  I  accepted  one   three-­‐night  stay  at  €250,  now  I  accept  no  three-­‐night  stays  at  €250.On  the  17th  before  I   accepted  19  two-­‐night  stays  at  €250;  now  on  the  17th  I’ve  accepted  20  of  those  two-­‐night  stays   at  €250   22   © 2015 eCornell All rights reserved All other copyrights, trademarks, trade names, and logos are the sole property of their respective owners       SHA541:  Price  and  Inventory  Controls   School  of  Hotel  Administration,  Cornell  University     You  see,  the  simple  act  of  having  one  more  room  available  on  the  14th  has  this  massive  chain   reaction  on  subsequent  stay  days  It’s  this  chain  reaction  that  creates  this  odd  marginal  value   We  see,  then,  that  we  can  generate  those  shadow  prices  for  all  subsequent  days  It  turns  out   for  the  subsequent  days  the  shadow  prices  are  much  more  straightforward,  either  €350  or   €250   The  next  part  is  how  we  use  these  shadow  prices  Just  like  having  one  more  room  on  the  14th   we  generate  €150  Having  one  less  room  would  decrement  us  by  €150  The  same  thing  on  the   15th-­‐If  I  had  one  more  room  I  could  increase  my  revenue  by  €350  If  I  had  one  less  room  I   would  lose  €350   My  focus  is  now  is  back  to  our  marginal  analysis,  thinking  about  accepting  our  reservation  If  I   accept  a  reservation  for  the  14th  that  means  instead  of  having  179  rooms  I  have  178  rooms  If  I   only  have  178  rooms,  I’m  going  to  lose  €150  Logically,  I  would  not  accept  any  reservation   unless  it  brought  in  at  least  €150   23   © 2015 eCornell All rights reserved All other copyrights, trademarks, trade names, and logos are the sole property of their respective owners       SHA541:  Price  and  Inventory  Controls   School  of  Hotel  Administration,  Cornell  University   That’s  fairly  straightforward  for  us—it  means  we’re  going  to  accept  reservations  at  €250  and   €350  If  you  look  at  the  15th,  now  it  says  if  we  had  one  less  room  on  the  15th,  our  revenue   would  go  down  by  €350  That  tells  us  is  we’re  going  to  close  the  15th  to  €250  reservations,   specific  to  €250  one-­‐night  stays  The  marginal  value  on  the  15th  is  €350,  whereas  a  one-­‐night   request  for  a  €250  only  brings  in  €250   If  we  go  back  to  the  14th,  if  a  guest  was  going  to  stay  two  nights  on  the  14th,  so  he  is  going  to   consume  one  room  on  the  14th  and  one  room  on  the  15th,  so  logically  he  has  to  bring  in   revenue  in  access  of  those  two  marginal  values—that  is,  the  €150  plus  the  €350,  which  is  a  total   of  €500  That  means  while  everything  is  open  on  the  14th  and  I  have  closed  the  €250  one-­‐night   stays  on  the  15th,  I’m  actually  going  to  sell  some  multi-­‐night  €250s  on  the  14th,  i.e  I  would   allow  reservations  to  be  made  to  the  €250  rate  for  a  two-­‐night  stay  on  the  14th  because  that   would  bring  in  €500  worth  of  revenue  Keep  in  mind  the  marginal  value  here  is  the  €150  plus   the  €350  for  a  total  of  €500     Transcript: Using Rate And Availability Controls In  this  lesson  we  examine  rate  and  availability  controls  at  the  Hotel  Ithaca  You  will  have  an   opportunity  to  practice  in  the  following  lesson  We’ll  use  the  Hotel  Ithaca  spreadsheet  and   Solver  to  do  allocations,  generate  shadow  prices,  and  use  the  shadow  prices  to  determine   availability   The  information  on  this  tab  is  divided  into  five  parts   Part  1  stores  the  decision  variables   Part  2  stores  the  total  number  of  rooms  sold  on  each  day  This  includes  both  arrivals  on  that   stay  date  as  well  as  stay-­‐overs—that  is,  guests  who  checked  in  yesterday  or  the  day  before  and   stayed  two  or  three  nights   Part  3  contains  the  rooms  available—that  is,  hotel  capacity  minus  any  reservations  (and  stay-­‐ overs)  already  accepted  for  those  dates   Part  4  stores  the  total  revenue  for  all  rooms  and  days  listed   Part  5  displays  the  forecasted  demand  for  the  stay  dates  in  question   We  have  already  built  the  model  Now  we  need  to  run  Solver   24   © 2015 eCornell All rights reserved All other copyrights, trademarks, trade names, and logos are the sole property of their respective owners       SHA541:  Price  and  Inventory  Controls   School  of  Hotel  Administration,  Cornell  University   Our  objective  is  to  maximize  revenue  by  determining  the  number  of  reservations  we  will  accept   for  each  day,  rate  class,  and  length  of  stay  We  have  two  constraints  The  first  constraint  is  that   the  number  of  reservations  we  are  able  to  accept  must  be  less  than  or  equal  to  our  forecasted   demand  The  second  constraint  is  that  the  number  of  reservations  we  accept  must  be  less  than   or  equal  to  the  rooms  available   We  also  need  to  require  that  the  result  be  non-­‐negative  and  use  “Simplex  LP”  for  a  solution   method  Click  Solve  Once  the  solution  comes  back,  click  Sensitivity  Click  OK   In  Excel,  we  navigate  to  the  Sensitivity  report  tab  and  copy  the  shadow  prices   Navigate  to  the  Restrictions  tab  We  have  already  created  a  table  to  use  in  calculating  our   demand   Paste  the  copied  shadow  prices  into  the  shadow  price  column  Now  we  can  determine  our   minimum  available  rates  by  using  the  shadow  prices  The  bid  prices,  the  average  of  the   appropriate  shadow  prices,  become  our  minimum  daily  rates    For  a  one-­‐night  stay,  the  bid  price  is  equal  to  the  minimum  daily  rate   The  bid  price  for  a  two-­‐night  stay  is  the  average  of  the  first  two  nights’  shadow  prices   The  bid  price  for  a  three-­‐night  stay  is  the  average  of  the  shadow  prices  for  all  three  nights  of  the   stay  Copy  these  three  formulas  down  to  fill  columns  C,  D,  and  E  Now  we  want  to  check  to  see   if  our  rate  (€195,  €250,  or  €350)  is  greater  than  these  bid  prices  If  our  rate  is  greater  than  the   bid  price,  then  the  rate  is  available  If  the  rate  is  less  than  the  bid  price  our  rate  is  not  available   In  F3,  G3,  and  H3  we  enter  these  formulas  The  formula  will  place  an  X  in  the  cell  if  the  rate  is   closed  and  leave  the  cell  blank  if  the  rate  is  open  Copy  the  columns  and  paste  into  the   remaining  cells  for  the  €250  and  €350  rates  We  can  take  this  one  step  further  and  use  Excel’s   conditional  formatting  to  color-­‐code  the  cells  and  make  it  easier  to  read  The  green  cells   indicate  the  rate  is  available  The  red  cells  indicate  the  rate  is  closed  For  example,  on  Oct  20th   we  will  accept  a  one-­‐  or  two-­‐night  reservation  at  €195,  but  a  three-­‐night  reservation  is  closed  at   the  €195  rate  The  lowest  rate  we  can  offer  for  a  three-­‐night  reservation  is  €250  as  the  bid  price   is  €233         25   © 2015 eCornell All rights reserved All other copyrights, trademarks, trade names, and logos are the sole property of their respective owners       SHA541:  Price  and  Inventory  Controls   School  of  Hotel  Administration,  Cornell  University       26   © 2015 eCornell All rights reserved All other copyrights, trademarks, trade names, and logos are the sole property of their respective owners    

Ngày đăng: 13/06/2021, 20:05

TÀI LIỆU CÙNG NGƯỜI DÙNG

  • Đang cập nhật ...

TÀI LIỆU LIÊN QUAN

w