1. Trang chủ
  2. » Cao đẳng - Đại học

Tuyen tap DE QUOC GIA 2002 2012

33 8 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 33
Dung lượng 5,81 MB

Nội dung

Viết phương trình đường tròn (C) tiếp xúc với trục hoành tại điểm A và khoảng cách từ tâm của (C) đến điểm B bằng 5.. Tính độ dài đoạn MN.[r]

(1)

bộ giáo dục đào tạo Kỳ thi tuyển sinh đại học, cao ĐẳnG năm 2002 - Mơn thi : tốn

§Ị chÝnh thøc (Thêi gian lµm bµi: 180 phót) _

C©u I (ĐH : 2,5 điểm; CĐ : 3,0 điểm)

Cho hàm số : y=−x3 +3mx2 +3(1−m x2) +m3 −m2 (1) (m tham số) Khảo sát biến thiên vẽ đồ thị hàm số (1) m=1

2 Tìm k để ph−ơng trình: −x3+3x2 +k3 −3k2 =0 có ba nghiệm phân biệt Viết ph−ơng trình đ−ờng thẳng qua hai điểm cực trị đồ thị hàm số (1) Câu II.(ĐH : 1,5 điểm; CĐ: 2,0 điểm)

Cho phơng trình : log23 x+ log32 x+1−2m−1=0 (2) (m lµ tham sè) Giải phơng trình (2) m=2

2 Tỡm m để ph−ơng trình (2) có nghiệm thuộc đoạn [1 ; 3] Câu III (ĐH : 2,0 điểm; CĐ : 2,0 điểm )

1 Tìm nghiệm thuộc khoảng (0 ; 2) phơng trình: cos2 sin sin cos =

sin  +

     + + + x x x x x

2 Tính diện tích hình phẳng giới hạn đờng: y =|x2 4x+3| , y=x+3 Câu IV.( ĐH : 2,0 điểm; CĐ : 3,0 điểm)

1 Cho hình chóp tam giác S.ABC đỉnh S, có độ dài cạnh đáy a Gọi M Nlần l−ợt trung điểm cạnh SB SC Tính theo a diện tích tam giác AMN, biết

)

mặt phẳng (AMN vuông góc với mặt phẳng (SBC)

Trong không gian với hệ toạ độ Đêcac vng góc Oxyzcho hai đ−ờng thẳng: ∆ ∆

   = + − + = − + − 2 : y

1 x z

z y x      + = + = + = t z t y t x 2 :

a) Viết ph−ơng trình mặt phẳng (P)chứa đ−ờng thẳng ∆1 song song với đ−ờng thẳng ∆2 b) Cho điểm M(2;1;4) Tìm toạ độ điểm Hthuộc đ−ờng thẳng ∆2 cho đoạn thẳng MH có độ dài nhỏ

Câu V.( ĐH : 2,0 điểm)

1 Trong mặt phẳng với hệ toạ độ Đêcac vng góc Oxy, xét tam giác ABC vuông A, ph−ơng trình đ−ờng thẳng BC 3xy− 3=0, đỉnh A B thuộc trục hoành bán kính đ−ờng trịn nội tiếp Tìm tọa độ trọng tâm G tam giác ABC

Cho khai triĨn nhÞ thøc: n x n n n x x n n x n x n n x n n x x C C

C  

C 

    +               + +                +       =       + − − − − − − − − − − − 3 1 1 2 2 2 2

2 L

( n số nguyên d−ơng) Biết khai triển Cn3 =5C1n số hạng thứ t− 20n, tìm vàn x

-HÕt -

Ghi chú: 1) Thí sinh thi cao đẳng khơng làm Câu V 2) Cán coi thi khơng giải thích thêm

(2)

bộ giáo dục đào tạo kỳ thi tuyển sinh đại học, cao Đẳng năm 2002 đề thức Mơn thi : tốn, Khối B

(Thêi gian lµm bµi : 180 phót) _ Câu I (ĐH : 2,0 điểm; CĐ : 2,5 điểm)

Cho hàm số : y=mx4 +(m 2 −9)x2 +10 (1) ( m tham số) Khảo sát biến thiên vẽ đồ thị hàm số (1) m =1

2 Tìm m để hàm số (1) có ba điểm cực trị Câu II (ĐH : 3,0 điểm; CĐ : 3,0 điểm)

1 Giải phơng trình: sin23xcos2 4x=sin25xcos26x Giải bất phơng trình: logx(log3(9x 72))1

3 Giải hệ phơng trình:

+ + = +

− = −

y x y x

y x y x C©u III ( §H : 1,0 ®iĨm; C§ : 1,5 ®iĨm)

Tính diện tích hình phẳng giới hạn đờng :

4 x2 y= − vµ

2

2 x

y=

Câu IV.(ĐH : 3,0 điểm ; CĐ : 3,0 ®iĨm)

1 Trong mặt phẳng với hệ tọa độ Đêcac vng góc Oxy cho hình chữ nhật ABCD có tâm 

     ;0

2

I , ph−ơng trình đ−ờng thẳng AB x−2y +2=0 AB=2AD Tìm tọa độ đỉnh B C

A, , ,D biết đỉnh A có honh õm

2 Cho hình lập phơng ABCDA1B 1C1D 1 cã c¹nh b»ng a

a) Tính theo a khoảng cách hai đờng thẳng A1B B1D

b) Gọi M,N,P lần lợt trung điểm cạnh BB1,CD , A1D1 Tính góc hai đờng thẳng MP C1N

Câu V (ĐH : 1,0 ®iÓm)

Cho đa giác A1A2LA 2n (n≥2, n nguyên ) nội tiếp đ−ờng tròn ( )O Biết số tam giác có đỉnh 2n điểm A1,A2,L,A 2n nhiều gấp 20 lần số hình chữ nhật có đỉnh 2n điểm A1,A2,L,A 2n, tìm n

-Hết -Ghi : 1) Thí sinh thi cao đẳng không làm Câu IV b) Câu V 2) Cán coi thi khơng giải thích thêm.

(3)

Bộ giáo dục đào tạo Kỳ thi Tuyển sinh đại học ,cao đẳng năm 2002 Đề thức Mơn thi : Tốn, Khối D

(Thêi gian lµm bµi : 180 phót) _

CâuI ( ĐH : điểm ; CĐ : điểm )

Cho hµm sè : ( ) x

m x m y

2 −

− −

= (1) ( m tham số ) Khảo sát biến thiên vẽ đồ thị (C) hàm số (1) ứng với m = -1

2 Tính diện tích hình phẳng giới hạn đ−ờng cong (C) và hai trục tọa độ. Tìm m để đồ thịcủa hàm số (1) tiếp xúc với ng thng y=x

Câu II ( ĐH : điểm ; CĐ : điểm )

1 Giải bất phơng trình : (x2 3x ) 2x −3x −2 ≥0 Giải hệ phơng trình :

= + +

− =

+ y 2

2

y y

x x x

2 x

Câu III ( ĐH : ®iĨm ; C§ : ®iĨm )

Tìm x thuộc đoạn [ ; 14 ] nghiệm ph−ơng trình : cos x−4 cos2 x+3 cosx −4=0 Câu IV ( ĐH : điểm ; CĐ : điểm )

1 Cho hình tứ diện ABCD có cạnh AD vuông góc với mặt phẳng (ABC); AC = AD = cm ; AB = cm ; BC = cm Tính khoảng cách từ điểm A tới mặt ph¼ng (BCD)

2 Trong khơng gian với hệ tọa độ Đêcac vng góc Oxyz, cho mặt phẳng (P) : x−y +2=0 đ−ờng thẳng d : m ( ( ) () )

  

= + + + +

= − + − + +

0 m z m mx

0 m y m x m

( m lµ tham sè )

Xác định m để đ−ờng thẳng d song song với mặt phẳng (P).m Câu V (ĐH : điểm )

1 T×m số nguyên dơng n cho Cn 0 +2C n +4C n + + nCnn =243

2 Trong mặt phẳng với hệ tọa độ Đêcac vng góc Oxy , cho elip (E) có ph−ơng trình

9 y 16

x2 + =

Xét điểm M chuyển động tia Ox điểm N chuyển động tia Oy cho đ−ờng thẳng MN tiếp xúc với (E) Xác định tọa độ M , N để đoạn MN có độ dài nhỏ Tính giá trị nhỏ

-HÕt -Chó ý :

Thí sinh thi cao đẳng không làm câu V Cán coi thi khơng giải thích thêm.

(4)

Bộ giáo dục đào tạo kỳ thi tuyển sinh đại học, cao đẳng năm 2003 - Mơn thi : tốn khối A

đề thức Thời gian làm : 180 phút

_

Câu (2 điểm) Cho hàm số m

x m x mx

y (1) (

2 −

+ +

= lµ tham sè)

1) Khảo sát biến thiên vẽ đồ thị hàm số (1) m = −1

2) Tìm m để đồ thị hàm số (1) cắt trục hoành hai điểm phân biệt hai điểm có hồnh dng

Câu (2 điểm)

1) Giải phơng trình sin2

1 sin tg

2 cos

cotg x x

x x

x + −

+ =

2) Gi¶i hƯ phơng trình

+ =

− = −

1

3 x y

y y x x

Câu (3 điểm)

' ' ' '

1) Cho hình lập ph−ơng ABCD A B C D Tính số đo góc phẳng nhị diện [B, A'C, D] 2) Trong khơng gian với hệ tọa độ Đêcac vng góc Ox cho hình hộp chữ nhật

có trùng với gốc hệ tọa độ,

yz ; 0; ' ' ' '

ABCD A B C D A B a( ), (0; ; 0), '(0; 0; )D a A b Gäi

( a>0, b >0) M trung điểm cạnh CC' a) Tính thể tích khối tứ diện BDA M' theo a b b) Xác định tỷ số a

b để hai mặt phẳng ( ' A BD) ( MBD) vng góc với Câu ( điểm)

1) T×m hƯ sè số hạng chứa x8 khai triển nhị thức Niut¬n cđa

n x x 

 

+ 

 , biÕt r»ng )

3 (

4 = +

+ − +

+ C n

Cnn nn

( n số nguyên dơng, x > 0, Cnk số tổ hợp chập k n phần tử) 2) TÝnh tÝch ph©n ∫

+ =2

5 x x2 dx

I

C©u (1 ®iĨm)

Cho x, y, z ba số dơng x + y + z ≤ Chøng minh r»ng 82

2 2

2

2 + + + + + ≥

z z y

y x

x

−−−−−−−−−−−−−−−−−−−−−−−−− HÕT −−−−−−−−−−−−−−−−−−−−−−−−− Ghi chó: C¸n bé coi thi không giải thích thêm

(5)

Bộ giáo dục đào tạo kỳ thi tuyển sinh đại học, cao đẳng năm 2003 - Mơn thi : tốn khối B

§Ị chÝnh thøc Thêi gian lµm bµi: 180 phót _

C©u (2 điểm) Cho hàm số y x= −3x2+m (1) (m lµ tham sè)

1) Tìm m để đồ thị hàm số (1) có hai điểm phân biệt đối xứng với qua gốc tọa độ 2) Khảo sát biến thiên vẽ đồ thị hàm số (1) m=2

Câu (2 điểm)

1) Giải phơng trình otg tg 4sin 2 sin

x x x

c

x

− + =

2) Giải hệ phơng tr×nh

2 2

2

2

3

y y

x x x

y

 +

=   

+

 =

 

Câu (3 điểm)

1) Trong mặt phẳng với hệ tọa độ Đêcac vng góc Oxy cho tam giác ABC

n

, 90

AB AC BAC= = BiÕt M(1; 1) trung điểm cạnh BC ;

 

G

  trọng tâm tam giác Tìm tọa độ đỉnh

ABC A B C, ,

2) Cho hình lăng trụ đứng có đáy hình thoi cạnh , góc

' ' ' '

ABCD A B C D ABCD a

n 60 0

BAD= Gäi M trung điểm cạnh trung điểm cạnh ' Chøng minh r»ng ®iĨm

' N

AA CC

', , , B M D N

'

thuộc mặt phẳng Hãy tính độ dài cạnh AA' theo a để tứ giác B MDN hình vng

3) Trong khơng gian với hệ tọa độ Đêcac vng góc Ox cho hai điểm điểm cho Tính khoảng cách từ trung điểm

yz 0) (2; 0; 0), (0; 0; 8)

A B C AC→ =(0; 6;

I BC đến đ−ờng thẳng OA Câu (2 im)

1) Tìm giá trị lớn nhỏ hàm số y x= + −x2

2) TÝnh tÝch ph©n π

4

0

1 2sin sin

x

I dx

x − =

+

C©u (1 điểm). Cho số nguyên dơng Tính tổngn

2

0 1 2

2

n

n

n n n

C C C

n

+

− − −

+ + + +

+

" Cn

(Cnk số tổ hợp chập k phần tö) n

-HÕt - Ghi chú: Cán coi thi không giải thích thêm

(6)

Bộ giáo dục đào tạo kỳ thi tuyển sinh đại học, cao đẳng năm 2003 - Mơn thi: tốn Khối D

§Ị chÝnh thøc Thêi gian lµm bµi: 180 _ C©u (2 ®iĨm)

1) Khảo sát biến thiên vẽ đồ thị hàm số

2 2 4

(1)

x x

y

x

− +

=

2) Tìm m để đ−ờng thẳng dm: y=mx+ −2 2m cắt đồ thị hàm số (1) hai điểm phõn bit

Câu (2 điểm)

1) Giải phơng trình sin tg cos

2

x x

x

 −  − =

 

 

2) Giải phơng trình x2 x22+ x x2 =3 Câu (3 điểm)

1) Trong mt phng với hệ tọa độ Đêcac vng góc Oxy cho đ−ờng tròn )

( 1)

( : )

( C x− + y− = đờng thẳng d: x y =1

Viết ph−ơng trình đ−ờng trịn ( đối xứng với đ−ờng trịn qua đ−ờng thẳng Tìm tọa độ giao điểm

C') (C

( ) C d

) ( ')C

2) Trong không gian với hệ tọa độ Đêcac vuông góc Oxyz cho đ−ờng thẳng

3

:

1 k

x ky z

d

kx y z

0

+ − + =

 − + + =

Tìm để đk −ờng thẳng dk vng góc với mặt phẳng ( ) : P x y− −2 z+ =5 3) Cho hai mặt phẳng( )P và( )Q vng góc với nhau, có giao tuyến đ−ờng thẳng ∆

Trªn ∆ lÊy hai ®iĨm A B, víi AB a= Trong mặt phẳng lấy điểm , mặt phẳng ( lÊy ®iĨm cho ,

( ) P C

)

Q D AC BD vng góc với ∆ Tính bán kính mặt cầu ngoại tiếp tứ diện tính khoảng cách từ đến mặt phẳng

AC BD

A

AB =

= ABCD

( BCD) theo a Câu ( điểm)

1) Tìm giá trị lớn giá trị nhá nhÊt cđa hµm sè

2

1

x y

x

+ =

+ đoạn [1; ] 2) TÝnh tÝch ph©n

2

I = x x d x Câu (1 điểm)

Với n số nguyên d−ơng, gọi a3 3n− hệ số x3 n− khai triển thành đa thức ( x2 +1 ) ( n x+2)n Tìm n để a3 n− =26n

- HÕt - Ghi chú: Cán coi thi không giải thích thêm

(7)

Bộ giáo dục đào tạo đề thi tuyển sinh đại học, cao đẳng năm 2004 - Môn thi : Tốn , Khối A

Đề thức Thời gian làm : 180 phút, không kể thời gian phát đề - Câu I (2 điểm)

Cho hµm sè

2

x 3x y

2(x 1) − + − =

(1) 1) Khảo sát hàm số (1)

2) Tìm m để đ−ờng thẳng y = m cắt đồ thị hàm số (1) hai điểm A, B cho AB = Câu II (2 điểm)

1) Giải bất phơng trình

2(x 16) x

x >

x x

− + − −

− −

2) Giải hệ phơng trình

1

4

2

1

log (y x) log

y

x y 25

⎧ − − =

⎪ ⎨

⎪ + =

Câu III (3 điểm)

1) Trong mặt phẳng với hệ tọa độ Oxy cho hai điểm A 0; 2( ) B(− 3; 1− ) Tìm tọa độ trực tâm tọa độ tâm đ−ờng tròn ngoại tiếp tam giác OAB

2) Trong khơng gian với hệ tọa độ Oxyz cho hình chóp S.ABCD có đáy ABCD hình thoi, AC cắt BD gốc tọa độ O Biết A(2; 0; 0), B(0; 1; 0), S(0; 0; 2) Gọi M trung điểm cạnh SC

a) Tính góc khoảng cách hai đờng thẳng SA, BM

b) Giả sử mặt phẳng (ABM) cắt đờng thẳng SD điểm N Tính thể tích khối chóp S.ABMN Câu IV (2 điểm)

1) TÝnh tÝch ph©n I =

1 x

dx 1+ x 1−

2) Tìm hệ số x8 khai triển thành ®a thøc cña ⎡1 x (1 x)+ − ⎤8

Câu V (1 điểm)

Cho tam giác ABC không tù, thỏa mÃn điều kiện cos2A + 2cosB + 2cosC = TÝnh ba gãc cđa tam gi¸c ABC

- Cán coi thi không giải thích thêm

(8)

Bộ giáo dục đào tạo -

§Ị chÝnh thøc

Đề thi tuyển sinh đại học, cao đẳng năm 2004

Môn: Toán, Khối B

Thi gian lm bi: 180 phút, không kể thời gian phát đề

-Câu I (2 điểm)

Cho hàm số y = x 2x 3x

1 3 2 +

− (1) có đồ thị (C) 1) Khảo sát hàm số (1)

2) Viết phơng trình tiếp tuyến (C) điểm n vµ chøng minh r»ng ∆ lµ tiÕp tun cđa (C) cã hƯ sè gãc nhá nhÊt

C©u II (2 điểm)

1) Giải phơng trình sin x =3 (1 sinx) tg2x 2) Tìm giá trị lớn giá trị nhỏ hàm số

x x

y=ln đoạn [1; e3]

Câu III (3 điểm)

1) Trong mt phẳng với hệ tọa độ Oxy cho hai điểm A(1; 1), B(4; − 3) Tìm điểm C thuộc đ−ờng thẳng x− y−1=0 cho khoảng cách từ C đến đ−ờng thẳng AB

2) Cho hình chóp tứ giác S.ABCD có cạnh đáy a, góc cạnh bên mặt đáy ϕ ( 0o < ϕ < 90 o) Tính tang góc hai mặt phẳng (SAB) (ABCD) theo ϕ Tính thể tích khối chóp S.ABCD theo a ϕ

3) Trong không gian với hệ tọa độ Oxyz cho điểm A ( −4; −2; 4) đ−ờng thẳng d: ⎪ ⎩ ⎪ ⎨ ⎧

+ − =

− =

+ − =

1

t z

t y

t x

Viết phơng trình đờng thẳng qua điểm A, cắt vuông góc với đờng thẳng d

Câu IV (2 điểm)

1) Tính tÝch ph©n I = dx x

x x e

∫ +

1

ln ln

2) Trong môn học, thầy giáo có 30 câu hỏi khác gồm câu hỏi khó, 10 câu hỏi trung bình, 15 câu hỏi dễ Từ 30 câu hỏi lập đ−ợc đề kiểm tra, đề gồm câu hỏi khác nhau, cho đề thiết phải có đủ loại câu hỏi (khó, trung bình, dễ) số câu hỏi dễ khơng ?

Câu V (1 điểm)

Xỏc nh m để ph−ơng trình sau có nghiệm

2

4

2

1

1 2

1 x x x x x

m ⎟ = − + + − −

⎠ ⎞ ⎜

⎛ + − − +

- C¸n bé coi thi không giải thích thêm

(9)

Bộ giáo dục đào tạo Đề thi tuyển sinh đại học, cao đẳng năm 2004

- Môn: Toán, Khối D

Đề thức Thời gian làm bài: 180 phút, không kể thời gian phát đề

- Câu I (2 điểm)

Cho hµm sè y x= − 3mx2+ +9x (1) với m tham số 1) Khảo sát hàm số (1) m =

2) Tìm m để điểm uốn đồ thị hàm số (1) thuộc đ−ờng thẳng y = x + Câu II (2 điểm)

1) Giải ph−ơng trình ( cosx−1 )(2sin x+cosx) =sin2 x−sinx 2) Tìm m để hệ ph−ơng trình sau có nghiệm

⎪⎩ ⎪ ⎨ ⎧

− = +

= +

1

m y

y x x

y x Câu III (3 điểm)

1) Trong mt phẳng với hệ tọa độ Oxy cho tam giác ABC có đỉnh A( −1 ; );B(4; 0); C(0 ;m ) với m≠ Tìm tọa độ trọng tâm G tam giác ABC theo m Xác định m để tam giác GAB vuông G

1

2) Trong không gian với hệ tọa độ Oxyz cho hình lăng trụ đứng ABC A 1B C 1 Biết A(a; 0; 0),

, ; ), ; ( ), ; ; ( ), ; ;

( − a C B1 −a b a> b>

B

a) Tính khoảng cách hai đờng thẳng B1C AC1 theo a, b

b) Cho a,b thay đổi, nh−ng ln thỏa mãn a+ b =4 Tìm a,b để khoảng cách hai đ−ờng thẳng B1C AC1lớn

3) Trong không gian với hệ tọa độ Oxyz cho ba điểm A( 2; 0; 1), B(1 ; ; ), C(1; 1; 1) mặt phẳng (P): x+ y+z −2 =0 Viết ph−ơng trình mặt cầu qua ba điểm A, B, C có tõm thuc mt phng (P)

Câu IV (2 điểm)

1) TÝnh tÝch ph©n I = ∫ −

2

2 ) ln( x x dx

2) Tìm số hạng không chứa x khai triển nhị thức Niutơn

7

3

⎟⎟ ⎠ ⎞ ⎜⎜

⎝ ⎛

+ x

x víi x > C©u V (1 ®iĨm)

Chứng minh ph−ơng trình sau có nghiệm x5 − x 2x1=0

- Cán coi thi không giải thích thêm

(10)

B GIO DỤC VÀ ĐÀO TẠO -

ĐỀ CHÍNH THỨC

ĐỀ THI TUYỂN SINH ĐẠI HỌC, CAO ĐẲNG NĂM 2005 Mơn: TỐN, khối A

Thời gian làm bài: 180 phút, không kể thời gian phát đề -

C©u I (2 điểm)

Gọi (C ) m đồ thị hàm số

1 y m x

x

= + (*) ( m tham số) 1) Khảo sát biến thiên vẽđồ thị hàm số (*) m

4 =

2) Tìm m để hàm số (*) có cực trị khoảng cách từ điểm cực tiểu (C ) m đến tiệm cận xiên (C ) bm ằng

2

C©u II (2 điểm)

1) Giải bất phương trình 5x − − x − > 2x 4.− 2) Giải phương trình cos 3x cos 2x 2 − cos x 2 = Câu III (3 điểm)

1) Trong mt phng với hệ tọa độ Oxy cho hai đường thẳng

d : x y − = d : 2x y 0.2 + − =

Tìm tọa độ đỉnh hình vng ABCD biết đỉnh A thuộc d ,1 đỉnh C thuộc d2 đỉnh B, D thuộc trục hoành

2) Trong không gian với hệ tọa độ Oxyz cho đường thẳng d : x y z

1

− = + = −

− mặt phẳng (P) : 2x y 2z + − + =

a) Tìm tọa độđiểm I thuộc d cho khoảng cách từ I đến mặt phẳng (P)

b)Tìm tọa độ giao điểm A đường thẳng d mặt phẳng (P) Viết phương trình tham số đường thẳng ∆ nằm mặt phẳng (P), biết ∆ qua A vuông góc với d

C©u IV (2 điểm)

1) Tính tích phân

sin 2x sin x

I dx

1 3cos x

π

+ =

+ ∫

2) Tìm số nguyên dương n cho

2 3 2n 2n 2n 2n 2n 2n 2n

C + −2.2C + +3.2 C + −4.2 C + + +L (2n 1).2 C + ++ =2005 ( C skn ố tổ hợp chập k n phần tử)

C©u V (1 điểm)

Cho x, y, z số dương thỏa mãn 1

x y z+ + = Chứng minh

1 1

1 2x y z x 2y z x y 2z+ + + + + + + + ≤

- Hết - Cán coi thi khơng giải thích thêm

(11)

BỘ GIÁO DỤC VÀ ĐÀO TẠO

-

ĐỀ CHÍNH THỨC

ĐỀ THI TUYỂN SINH ĐẠI HỌC, CAO ĐẲNG NĂM 2005

Môn: TOÁN, khối B

Thời gian làm bài: 180 phút, không kể thời gian phát đề -

Câu I (2 điểm)

Gọi (C )m đồ thị hàm số

( )

2

x m x m y

x

+ + + +

=

+ (*) ( m tham số)

1) Khảo sát biến thiên vẽ đồ thị hàm số (*) m 1.=

2) Chứng minh với m bất kỳ, đồ thị (C )m ln ln có điểm cực đại, điểm cực tiểu

và khoảng cách hai điểm 20

Câu II (2 điểm)

1) Giải hệ phương trình

( )2

9

x y 3log 9x log y

⎧ − + − =

⎪ ⎨

− =

⎪⎩

2) Giải phương trình sin x cos x sin 2x cos 2x 0.+ + + + =

Câu III (3 điểm)

1) Trong mặt phẳng với hệ tọa độ Oxy cho hai điểm A(2;0) B(6;4) Viết phương trình đường trịn (C) tiếp xúc với trục hoành điểm A khoảng cách từ tâm (C) đến điểm B

2) Trong khơng gian với hệ tọa độ Oxyz cho hình lăng trụ đứng ABC.A B C với 1 1

1

A(0; 3;0), B(4;0;0), C(0;3;0), B (4;0;4).−

a) Tìm tọa độ đỉnh A , C Viết phương trình mặt cầu có tâm 1 1 A tiếp xúc với mặt phẳng (BCC B ) 1 1

b)Gọi M trung điểm A B Viết phương trình mặt phẳng (P) 1 1 qua hai điểm A, M song song với BC Mặt phẳng (P) cắt 1 đường thẳng A C 1 1 điểm N Tính độ dài đoạn MN

Câu IV (2 điểm)

1) Tính tích phân

0

sin2x cosx

I dx

1 cosx

π =

+

2) Một đội niên tình nguyện có 15 người, gồm 12 nam nữ Hỏi có cách phân cơng đội niên tình nguyện giúp đỡ tỉnh miền núi, cho tỉnh có nam nữ?

Câu V (1 điểm)

Chứng minh với x ∈\, ta có:

x x x

x x x

12 15 20

3

5

⎛ ⎞ +⎛ ⎞ +⎛ ⎞ ≥ + +

⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠

Khi đẳng thức xảy ra?

-Hết -

Cán coi thi khơng giải thích thêm

(12)

BỘ GIÁO DỤC VÀ ĐÀO TẠO

-

ĐỀ CHÍNH THỨC

ĐỀ THI TUYỂN SINH ĐẠI HỌC, CAO ĐẲNG NĂM 2005 Mơn: TỐN, khối D

Thời gian làm bài: 180 phút, không kể thời gian phát đề

-

Câu I (2 điểm)

Gọi (C ) m đồ thị hàm số y x 3 m x2

3

= − + (*) ( m tham số) 1) Khảo sát biến thiên vẽđồ thị hàm số (*) m 2.=

2) Gọi M điểm thuộc (C ) có hồnh m độ 1.− Tìm m để tiếp tuyến (C )m

điểm M song song với đường thẳng 5x y − =

Câu II (2 điểm)

Giải phương trình sau:

1) x 2 x + + + − x 4.+ =

2) cos x sin x cos x 4 sin 3x 0.

4

π π

⎛ ⎞ ⎛ ⎞

+ + ⎜ − ⎟ ⎜ − ⎟− =

⎝ ⎠ ⎝ ⎠

Câu III (3 điểm)

1) Trong mặt phẳng với hệ tọa độ Oxy cho điểm C 2;0( ) elíp ( )

2

x y

E :

4 + = Tìm tọa độ điểm A, B thuộc ( )E , biết hai điểm A, B đối xứng với qua trục hoành tam giác ABC tam giác

2) Trong không gian với hệ tọa độ Oxyz cho hai đường thẳng

1

x y z d :

3

− = + = +

x y z d :

x 3y 12

+ − − =

⎨ + − =

a) Chứng minh d 1 d song song v2 ới Viết phương trình mặt phẳng (P) chứa hai đường thẳng d 1 d 2

b) Mặt phẳng tọa độ Oxz cắt hai đường thẳng d , d l1 2 ần lượt điểm A, B Tính diện tích tam giác OAB ( O gốc tọa độ)

Câu IV (2 điểm)

1) Tính tích phân ( )

2 sin x

0

I e cos x cos xdx

π

=∫ +

2) Tính giá trị biểu thức

( ) n n

A 3A

M

n !

+ +

=

+ , biết

2 2

n n n n

C + +2C + +2C + +C + =149 ( n số nguyên dương, k

n

A số chỉnh hợp chập k n phần tử k n

C số tổ hợp chập k n phần tử)

Câu V (1 điểm)

Cho số dương x, y, z thỏa mãn xyz 1.= Chứng minh

3 3 3

1 x y y z z x

3

xy yz zx

+ + + + + + + + ≥

Khi đẳng thức xảy ra?

-Hết - Cán bộ coi thi khơng giải thích thêm.

Họ tên thí sinh Số báo danh

(13)

BỘ GIÁO DỤC VÀ ĐÀO TẠO ĐỀ CHÍNH THỨC

ĐỀ THI TUYỂN SINH ĐẠI HỌC, CAO ĐẲNG NĂM 2006 Mơn thi: TỐN, khối A

Thời gian làm bài: 180 phút, không kể thời gian phát đề PHẦN CHUNG CHO TẤT CẢ CÁC THÍ SINH

Câu I (2 điểm)

1 Khảo sát biến thiên vẽ đồ thị hàm số y 2x 9x 12x 4.= − 2+ − Tìm m để phương trình sau có nghiệm phân biệt: x − 9x 12 x 2+ = m Câu II (2 điểm)

1 Giải phương trình: ( )

6

2 cos x sin x sin x cos x 2sin x

+ −

= −

2 Giải hệ phương trình: x y xy ( x, y )

x y

⎧ + − =

⎪ ∈

+ + + =

⎪⎩ \

( ) ( ) ( ) ( )

Câu III (2 điểm)

Trong không gian với hệ tọa độ Oxyz , cho hình lập phương ABCD.A 'B'C 'D ' với

A 0; 0; , B 1; 0; , D 0; 1; , A ' 0; 0; Gọi M N trung điểm AB CD

1 Tính khoảng cách hai đường thẳng A 'C MN

2 Viết phương trình mặt phẳng chứa A 'C tạo với mặt phẳng Oxy góc α biết cos

6 α = Câu IV (2 điểm)

1 Tính tích phân:

2

0

sin 2x

I dx

cos x 4sin x π

=

+ ∫

2 Cho hai số thực x 0, y ≠ ≠ thay đổi thỏa mãn điều kiện: ( x y xy x + ) = + − y xy Tìm giá trị lớn biểu thức A 3 13

x =

y + PHẦN TỰ CHỌN: Thí sinh chọn câu V.a câu V.b Câu V.a Theo chương trình THPT không phân ban (2 điểm)

1 Trong mặt phẳng với hệ tọa độ Oxy, cho đường thẳng:

1

d : x y 0, d : x y 0, d : x 2y 0.+ + = − − = − =

Tìm tọa độ điểm M nằm đường thẳng d cho khoảng cách từ M đến đường thẳng 3

1

d hai lần khoảng cách từ M đến đường thẳng d 2

2 Tìm hệ số số hạng chứa x khai triển nhị thức Niutơn 26

n

1

x , x

⎛ + ⎞

⎜ ⎟

⎝ ⎠ biết C 2n + + C 2n + + + C 2n 1n + = 20−1

(n nguyên dương, Ckn số tổ hợp chập k n phần tử) Câu V.b Theo chương trình THPT phân ban thí điểm (2 điểm)

1 Giải phương trình: 3.8 x + 4.12 18 x − x − 2.27 x =0

2 Cho hình trụ có đáy hai hình trịn tâm O O ' , bán kính đáy chiều cao a Trên đường tròn đáy tâm O lấy điểm A, đường tròn đáy tâm O ' lấy điểm B

sao cho AB 2a.= Tính thể tích khối tứ diện OO 'AB

-Hết - Cán coi thi không giải thích thêm

(14)

BỘ GIÁO DỤC VÀ ĐÀO TẠO ĐỀ CHÍNH THỨC

ĐỀ THI TUYỂN SINH ĐẠI HỌC, CAO ĐẲNG NĂM 2006 Mơn: TỐN, khối B

Thời gian làm bài: 180 phút, không kể thời gian phát đề

PHẦN CHUNG CHO TẤT CẢ CÁC THÍ SINH Câu I (2 điểm)

Cho hàm số y x x x

+ − =

+

1 Khảo sát biến thiên vẽđồ thị ( )C hàm sốđã cho

2 Viết phương trình tiếp tuyến đồ thị ( )C , biết tiếp tuyến vng góc với tiệm cận xiên ( )C

Câu II (2 điểm)

1 Giải phương trình: cotgx sin x tgxtg x

⎛ ⎞

+ ⎜ + ⎟=

⎝ ⎠

2 Tìm m để phương trình sau có hai nghiệm thực phân biệt: x + mx 2x 1.+ = + Câu III (2 điểm)

Trong không gian với hệ tọa độ Oxyz, cho điểm A(0; 1; 2) hai đường thẳng:

1

x t x y z

d : , d : y 2t

2 1

z t

= + ⎧

− + ⎪

= = ⎨ = − −

− ⎪

= + ⎩

1 Viết phương trình mặt phẳng (P) qua A, đồng thời song song với d1 d2

2 Tìm tọa độ điểm M thuộc d1, N thuộc d2 cho ba điểm A, M, N thẳng hàng Câu IV (2điểm)

1 Tính tích phân:

ln

x x

ln

dx I

e 2e − =

+ −

2 Cho x, y số thực thay đổi Tìm giá trị nhỏ biểu thức: ( ) 2 ( )2

A = x − + + y x + + + −y y

PHẦN TỰ CHỌN: Thí sinh chọn câu V.a câu V.b Câu V.a Theo chương trình THPT khơng phân ban (2 điểm)

1 Trong mặt phẳng với hệ tọa độ Oxy, cho đường tròn ( )C : x + − − + =y 2x 6y điểm ( )

M 3; − Gọi T 1 T ti2 ếp điểm tiếp tuyến kẻ từ M đến ( )C Viết phương trình đường thẳng T T 1 2

2 Cho tập hợp A gồm n phần tử ( n ≥ ) Biết rằng, số tập gồm phần tử A 20 lần số tập gồm phần tử A Tìm k 1, 2, , n ∈{ } cho số tập gồm k phần tử A lớn

Câu V.b Theo chương trình THPT phân ban thí điểm (2 điểm)

1 Giải bất phương trình: log 144 4log log 5 ( x + ) − 5 < + 5( x 2− +1 )

2 Cho hình chóp S.ABCD có đáy ABCD hình chữ nhật với AB a, AD a = = , SA a= SA vng góc với mặt phẳng ( ABCD ) Gọi M N trung điểm AD SC; I giao điểm BM AC Chứng minh mặt phẳng (SAC) vng góc với mặt phẳng (SMB) Tính thể tích khối tứ diện ANIB

- Hết -

Cán coi thi khơng giải thích thêm

(15)

BỘ GIÁO DỤC VÀ ĐÀO TẠO

ĐỀ CHÍNH THỨC

ĐỀ THI TUYỂN SINH ĐẠI HỌC, CAO ĐẲNG NĂM 2006 Mơn: TỐN, khối D

Thời gian làm bài: 180 phút, không kể thời gian phát đề PHẦN CHUNG CHO TẤT CẢ CÁC THÍ SINH

Câu I (2 điểm)

Cho hàm số y x 3x 2= − +

1 Khảo sát biến thiên vẽđồ thị (C) hàm sốđã cho

2 Gọi d đường thẳng qua điểm A(3; 20) có hệ số góc m Tìm m đểđường thẳng d cắt đồ thị (C) điểm phân biệt

Câu II (2 điểm)

1 Giải phương trình: cos3x cos2x cosx + − − =

2 Giải phương trình: 2x x − + − + = 3x ( x ∈\) Câu III (2 điểm)

Trong không gian với hệ tọa độ Oxyz, cho điểm A(1; 2;3) hai đường thẳng:

1

x y z x y z

d : , d :

2 1

− = + = − − = − = +

− −

1 Tìm tọa độđiểm A' đối xứng với điểm A qua đường thẳng d1

2 Viết phương trình đường thẳng Δ qua A, vng góc với d1 cắt d2 Câu IV (2 điểm)

1 Tính tích phân: ( )

1

2x

I = ∫ x e dx −

2 Chứng minh với a 0> , hệ phương trình sau có nghiệm nhất:

x y

e e ln(1 x) ln(1 y) y x a

⎧ − = + − + ⎪

− = ⎪⎩

PHẦN TỰ CHỌN: Thí sinh chọn câu V.a câu V.b Câu V.a Theo chương trình THPT không phân ban (2 điểm)

1 Trong mặt phẳng với hệ tọa độ Oxy, cho đường tròn (C): x + − − + =y 2x 2y

− + = Tìm tọa độđiểm M nằm d cho đường trịn tâm M, có đường thẳng d: x y

bán kính gấp đơi bán kính đường trịn (C), tiếp xúc ngồi với đường tròn (C)

2 Đội niên xung kích trường phổ thơng có 12 học sinh, gồm học sinh lớp A, học sinh lớp B học sinh lớp C Cần chọn học sinh làm nhiệm vụ, cho học sinh thuộc không lớp Hỏi có cách chọn vậy? Câu V.b Theo chương trình THPT phân ban thí điểm (2 điểm)

1 Giải phương trình: x x + − 4.2 x x 2− − 2x + =4

2 Cho hình chóp tam giác S.ABC có đáy ABC tam giác cạnh a, SA = 2a SA vng góc với mặt phẳng (ABC) Gọi M N hình chiếu vng góc A đường thẳng SB SC Tính thể tích khối chóp A.BCNM

- Hết - Cán coi thi khơng giải thích thêm

(16)

BỘ GIÁO DỤC VÀ ĐÀO TẠO

ĐỀ CHÍNH THỨC

ĐỀ THI TUYỂN SINH ĐẠI HỌC, CAO ĐẲNG NĂM 2007

Mơn thi: TỐN, khối A

Thời gian làm bài: 180 phút, không kể thời gian phát đề

PHẦN CHUNG CHO TẤT CẢ CÁC THÍ SINH

Câu I (2 điểm) Cho hàm số

2

x 2(m 1)x m 4m

y (1),

x + + + + =

+ m tham số Khảo sát biến thiên vẽđồ thị hàm số (1) m = −

2 Tìm m để hàm số (1) có cực đại cực tiểu, đồng thời điểm cực trị đồ thị với gốc tọa độ O tạo thành tam giác vuông O

Câu II (2 điểm)

1 Giải phương trình: ( 1 sin x cos x cos x sin x sin 2x.+ ) + + ( ) = + Tìm m để phương trình sau có nghiệm thực: x m x x 1.− + + = 2−

1

x y z Câu III (2 điểm)

Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d :

2 1 − + = =

x 2t d : y t

z

= − + ⎧

⎪ = + ⎨

⎪ =

⎩ Chứng minh d 1 d chéo 2

2 Viết phương trình đường thẳng d vng góc với mặt phẳng ( )P : 7x y 4z 0+ − = cắt hai đường thẳng d , 1 d 2

Câu IV (2 điểm)

1 Tính diện tích hình phẳng giới hạn đường: y = +( )e x, y e x.= +( )x

2 Cho x, y, z số thực dương thay đổi thỏa mãn điều kiện xyz 1.= Tìm giá trị nhỏ biểu thức:

2 2

x (y z) y (z x) z (x y) P

y y 2z z z z 2x x x x 2y y

+ + +

= + + ⋅

+ + +

PHẦN TỰ CHỌN: Thí sinh chỉđược chọn làm câu V.a câu V.b Câu V.a Theo chương trình THPT không phân ban (2 điểm)

1 Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABC có A(0; 2), B(−2; −2) C(4; −2) Gọi H chân đường cao kẻ từ B; M N trung điểm cạnh AB BC Viết phương trình đường trịn qua điểm H, M, N

2 Chứng minh rằng:

2n 2n 2n 2n 2n 2n

1 1

C C C C

2 2n 2n

− −

+ + + + = + ( n số nguyên dương, Ckn số tổ hợp chập k n phần tử) Câu V.b Theo chương trình THPT phân ban thí điểm (2 điểm)

1 Giải bất phương trình: 3 1

2 log (4x 3) log (2x 3) − + + ≤

2 Cho hình chóp S.ABCD có đáy hình vuông cạnh a, mặt bên SAD tam giác nằm mặt phẳng vng góc với đáy Gọi M, N, P trung điểm cạnh SB, BC, CD Chứng minh AM vng góc với BP tính thể tích khối tứ diện CMNP

-Hết - Cán coi thi không giải thích thêm

(17)

BỘ GIÁO DỤC VÀ ĐÀO TẠO

ĐỀ CHÍNH THỨC

ĐỀ THI TUYỂN SINH ĐẠI HỌC, CAO ĐẲNG NĂM 2007 Mơn thi: TỐN, khối B

Thời gian làm bài: 180 phút, không kể thời gian phát đề PHẦN CHUNG CHO TẤT CẢ THÍ SINH

Câu I (2 điểm)

Cho hàm số: y = − +x 3x 3(m 1)x 3m 13 + − − − (1), m tham số Khảo sát biến thiên vẽ đồ thị hàm số (1) m =

2 Tìm m để hàm số (1) có cực đại, cực tiểu điểm cực trị đồ thị hàm số (1) cách gốc tọa độ O

Câu II (2 điểm)

1 Giải phương trình: 2sin 2x sin 7x sin x 2 + − =

2 Chứng minh với giá trị dương tham số m, phương trình sau có hai nghiệm thực phân biệt:

( )

x +2x − = m x −

Câu III (2 điểm)

Trong không gian với hệ tọa độ Oxyz, cho mặt cầu ( )S : x 2 +y z 2x 4y 2z 02 + −2 + + − = mặt phẳng ( )P : 2x y 2z 14 0.− + − =

1 Viết phương trình mặt phẳng ( )Q chứa trục Ox cắt ( )S theo đường trịn có bán kính

2 Tìm tọa độ điểm M thuộc mặt cầu ( )S cho khoảng cách từ M đến mặt phẳng ( )P lớn Câu IV. (2 điểm)

1 Cho hình phẳng H giới hạn đường: y x ln x, y 0, x e = = = Tính thể tích khối trịn xoay tạo thành quay hình H quanh trục Ox

2 Cho x, y, z ba số thực dương thay đổi Tìm giá trị nhỏ biểu thức:

x y z

P x y z

2 yz zx xy

⎛ ⎞ ⎛ ⎞ ⎛ ⎞

= ⎜ + ⎟+ ⎜ + ⎟+ ⎜ + ⎟

⎝ ⎠

⎝ ⎠ ⎝ ⎠

PHẦN TỰ CHỌN (Thí sinh chỉđược chọn làm hai câu: V.a V.b) Câu V.a Theo chương trình THPT khơng phân ban (2 điểm)

1 Tìm hệ số số hạng chứa x khai triển nhị thức Niutơn 10 (2 x) , + n biết: ( )n

n n 1 n 2 n 3 n

n n n n n

3 C C C C − − + − − − + + −1 C =2048 (n số nguyên dương, k

n

C số tổ hợp chập k n phần tử)

2 Trong mặt phẳng với hệ tọa độ Oxy, cho điểm A 2; 2( ) đường thẳng: d1: x + y – = 0, d2: x + y – =

Tìm tọa độ điểm B C thuộc d1 d2 cho tam giác ABC vuông cân A Câu V.b Theo chương trình THPT phân ban thí điểm (2 điểm)

1 Giải phương trình: ( − ) (x + + )x −2 0.=

2 Cho hình chóp tứ giác S.ABCD có đáy hình vng cạnh a Gọi E điểm đối xứng D qua trung điểm SA, M trung điểm AE, N trung điểm BC Chứng minh MN vng góc với BD tính (theo a) khoảng cách hai đường thẳng MN AC

-Hết - Cán coi thi không giải thích thêm

(18)

BỘ GIÁO DỤC VÀ ĐÀO TẠO ĐỀ CHÍNH THỨC

ĐỀ THI TUYỂN SINH ĐẠI HỌC, CAO ĐẲNG NĂM 2007 Mơn thi: TỐN, khối D

Thời gian làm bài: 180 phút, không kể thời gian phát đề PHẦN CHUNG CHO TẤT CẢ THÍ SINH

Câu I (2 điểm)

Cho hàm số y = 2x x 1+

1 Khảo sát biến thiên vẽđồ thị ( )C hàm sốđã cho

2 Tìm tọa độđiểm M thuộc (C), biết tiếp tuyến (C) M cắt hai trục Ox, Oy A, B tam giác OAB có diện tích

4

Câu II (2 điểm)

1 Giải phương trình:

2

x x

sin cos cos x

2

⎛ + ⎞ + =

⎜ ⎟

⎝ ⎠

2 Tìm giá trị tham số m để hệ phương trình sau có nghiệm thực:

3

3

1

x y

x y

1

x y 15m 10

x y

⎧ + + + = ⎪⎪

⎪ + + + = −

⎪⎩ Câu III (2 điểm)

Trong không gian với hệ tọa độ Oxyz, cho hai điểm A 1; 4; , B 1; 2; ( ) ( − ) đường thẳng x y z

:

1

− +

Δ = =

1 Viết phương trình đường thẳng d qua trọng tâm G tam giác OAB vng góc với mặt phẳng ( OAB )

2 Tìm tọa độđiểm M thuộc đường thẳng Δ cho MA +MB nhỏ

Câu IV. (2 điểm) Tính tích phân:

e

I = ∫x ln xdx Cho a b ≥ > Chứng minh rằng:

b a

a b

a b

1

2

2

⎛ + ⎞ ≤ ⎛ + ⎞

⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

PHẦN TỰ CHỌN (Thí sinh chỉđược chọn làm hai câu: V.a V.b) Câu V.a Theo chương trình THPT khơng phân ban (2 điểm)

1 Tìm hệ số x khai tri5 ển thành đa thức của: x 2x ( − ) 5 + x 3x 2( + )10

2 Trong mặt phẳng với hệ tọa độ Oxy, cho đường tròn ( ) ( ) ( C : x − + + y )2 =9 đường thẳng d : 3x 4y m − + =

Tìm m để d có điểm P mà từ kẻđược hai tiếp tuyến PA, PB tới ( )C

(A, B tiếp điểm) cho tam giác PAB

Câu V.b Theo chương trình THPT phân ban thí điểm (2 điểm) Giải phương trình: log 15.2 2 ( x x 27 2log ) 2 1x

4.2

+ + + =

2 Cho hình chóp S.ABCD có đáy hình thang, ABC BAD 90 , n= n= BA = BC = a, AD = 2a Cạnh

bên SA vuông góc với đáy SA = a Gọi H hình chiếu vng góc A SB Chứng minh tam giác SCD vng tính (theo a) khoảng cách từ H đến mặt phẳng ( SCD )

-Hết -

Cán coi thi không giải thích thêm

(19)

BỘ GIÁO DỤC VÀ ĐÀO TẠO ĐỀ THI TUYỂN SINH ĐẠI HỌC, CAO ĐẲNG NĂM 2008 Môn thi: TOÁN, khối A

Thời gian làm 180 phút, không kể thời gian phát đề

PHẦN CHUNG CHO TẤT CẢ THÍ SINH

Câu I (2 điểm) Cho hàm số

2

mx (3m 2)x

y (1),

x 3m

+ − −

=

+ với m tham số thực Khảo sát biến thiên vẽđồ thị hàm số (1) m 1=

2 Tìm giá trị m để góc hai đường tiệm cận đồ thị hàm số (1) 45 o

Câu II (2 điểm)

1 Giải phương trình 1 4s in 7π x 3π

sinx sin x

2

⎛ ⎞

+ ⎛ ⎞ = ⎜⎝ − ⎟⎠ −

⎜ ⎟

⎝ ⎠

2 Giải hệ phương trình ( )

2

4

5 x y x y xy xy

4 x, y .

x y xy(1 2x)

+ + + + = − ⎪⎪⎪

∈ ⎨

⎪ + + + = − ⎪⎩

\ Câu III (2 điểm)

Trong không gian với hệ tọa độ Oxyz, cho điểm A 2;5;3 ( ) đường thẳng

d : x y z

2

− = = −

1 Tìm tọa độ hình chiếu vng góc điểm A đường thẳng d

2 Viết phương trình mặt phẳng (α) chứa d cho khoảng cách từ A đến (α) lớn

Câu IV (2 điểm)

Tính tích phân

π

0

tg x I

cos 2xdx = ∫

Tìm giá trị tham số m để phương trình sau có hai nghiệm thực phân biệt :

4 2x + 2x x x m+ − + − = (m ∈\)

PHẦN RIÊNG Thí sinh chỉđược làm câu: V.a hoặc V.b

Câu V.a Theo chương trình KHƠNG phân ban (2 điểm)

1 Trong mặt phẳng với hệ tọa độ Oxy, viết phương trình tắc elíp (E) biết (E) có tâm sai

3 hình chữ nhật sở (E) có chu vi 20 Cho khai triển ( )n n

0 n

1 2x + = + a a x a x ,+ + *

n ∈` hệ số a ,a , ,a 0 1 n thỏa mãn hệ thức n

0 n

a a

a 4096

2

+ + + 2 = Tìm số lớn số a ,a , ,a 0 1 n

Câu V.b Theo chương trình phân ban (2 điểm)

1 Giải phương trình 2

2x x

log − (2x + − + x 1) log (2x 1) + − =4

2 Cho lăng trụ ABC.A 'B'C' có độ dài cạnh bên 2a, đáy ABC tam giác vuông A, AB = a, AC = a hình chiếu vng góc đỉnh A' mặt phẳng (ABC) trung điểm cạnh BC Tính theo a thể tích khối chóp A'.ABC tính cosin góc hai đường thẳng AA', B'C'

Hết

Thí sinh khơng sử dụng tài liệu Cán coi thi khơng giải thích thêm

Họ tên thí sinh: Số báo danh:

(20)

BỘ GIÁO DỤC VÀ ĐÀO TẠO ĐỀ THI TUYỂN SINH ĐẠI HỌC, CAO ĐẲNG NĂM 2008 Mơn thi: TỐN, khối B

Thời gian làm 180 phút, không kể thời gian phát đề

PHẦN CHUNG CHO TẤT CẢ THÍ SINH Câu I (2 điểm)

Cho hàm số y 4x 6x 13

= − + (1)

1 Khảo sát biến thiên vẽđồ thị hàm số (1)

2 Viết phương trình tiếp tuyến đồ thị hàm số (1), biết tiếp tuyến qua

điểm M 1; ( − − )

Câu II (2 điểm)

1 Giải phương trình sin x 3 − 3cos x sinxcos x 3 = − 3sin xcosx.2

2 Giải hệ phương trình

4 2

2

x 2x y x y 2x x 2xy 6x

⎧ + + = +

⎪ ⎨

+ = +

⎪⎩ ( x, y ∈\) Câu III (2 điểm)

Trong không gian với hệ tọa độ Oxyz, cho ba điểm A 0;1; , B 2; 2;1 ,C 2;0;1 ( ) ( − ) ( − ) Viết phương trình mặt phẳng qua ba điểm A, B,C

2 Tìm tọa độ điểm M thuộc mặt phẳng 2x 2y z + + − = cho MA MB MC = =

Câu IV (2 điểm)

Tính tích phân

0

sin x dx

I

sin 2x 2(1 sin x cos x)

π ⎛ π⎞

⎜ ⎟

⎝ ⎠

=

+ + + ∫

2 Cho hai số thực x, y thay đổi thỏa mãn hệ thức x 2 + =y 2 Tìm giá trị lớn nhất giá

trị nhỏ biểu thức

2

2

2(x 6xy)

P

1 2xy 2y

+ =

+ +

PHẦN RIÊNG Thí sinh chỉđược làm câu: V.a V.b Câu V.a Theo chương trình KHƠNG phân ban (2 điểm)

1 Chứng minh k k k

n n n

n 1 1 n C C + C

+ +

⎛ ⎞

+ + =

⎜ ⎟

+ ⎝ ⎠ (n, k số nguyên dương, k n,≤

k n

C số tổ hợp chập k n phần tử)

2 Trong mặt phẳng với hệ tọa độ Oxy, xác định tọa độ đỉnh C tam giác ABC biết hình chiếu vng góc C đường thẳng AB điểm H( 1; 1),− − đường phân giác góc A có phương trình x y 0− + = đường cao kẻ từ B có phương trình

4x 3y 0.+ − =

Câu V.b Theo chương trình phân ban (2 điểm) Giải bất phương trình

2 0,7

x x

log log

x

⎛ + <⎞

⎜ ⎟

+

⎝ ⎠

2 Cho hình chóp S.ABCD có đáy ABCD hình vng cạnh 2a, SA a,= SB a = mặt phẳng (SAB) vuông góc với mặt phẳng đáy Gọi M, N trung điểm cạnh AB, BC Tính theo a thể tích khối chóp S.BMDN tính cosin góc hai

đường thẳng SM, DN

Hết

Thí sinh khơng sử dụng tài liệu Cán coi thi khơng giải thích thêm

Họ tên thí sinh: Số báo danh:

(21)

BỘ GIÁO DỤC VÀ ĐÀO TẠO ĐỀ THI TUYỂN SINH ĐẠI HỌC, CAO ĐẲNG NĂM 2008 Môn thi: TOÁN, khối D

Thời gian làm 180 phút, không kể thời gian phát đề

PHẦN CHUNG CHO TẤT CẢ THÍ SINH Câu I (2 điểm)

Cho hàm số y x 3x 3 4 (1).

= − +

1 Khảo sát biến thiên vẽđồ thị hàm số (1)

2 Chứng minh đường thẳng qua điểm I(1; 2) với hệ số góc k ( k > − 3 ) cắt đồ

thị hàm số (1) ba điểm phân biệt I, A, B đồng thời I trung điểm đoạn thẳng AB

Câu II (2 điểm)

1 Giải phương trình 2sinx (1 cos2x) sin2x 2cosx + + = + Giải hệ phương trình

2

xy x y x 2y x 2y y x 2x 2y

⎧ + + = − ⎪

− − = −

⎪⎩ (x, y ∈\) Câu III (2 điểm)

Trong không gian với hệ tọa độ Oxyz, cho bốn điểm A(3;3;0), B(3;0;3),C(0;3;3), D(3;3;3) Viết phương trình mặt cầu qua bốn điểm A, B, C, D

2 Tìm tọa độ tâm đường trịn ngoại tiếp tam giác ABC

Câu IV (2 điểm)

1 Tính tích phân

2

lnx

I dx

x

= ∫

2 Cho x, y hai số thực không âm thay đổi Tìm giá trị lớn giá trị nhỏ biểu thức P (x y)(1 xy) 2 2

(1 x) (1 y)

− −

=

+ +

PHẦN RIÊNG Thí sinh chỉđược làm câu: V.a V.b Câu V.a Theo chương trình KHƠNG phân ban (2 điểm)

1 Tìm số nguyên dương n thỏa mãn hệ thức C 2n + C 2n + + C 2n2n 1− =2048 ( C skn ố tổ hợp chập k n phần tử)

2 Trong mặt phẳng với hệ tọa độ Oxy, cho parabol (P) : y 16x 2= điểm A(1; 4) Hai điểm

phân biệt B, C (B C khác A) di động (P) cho góc BAC 90 n o

= Chứng minh

đường thẳng BC qua điểm cốđịnh

Câu V.b Theo chương trình phân ban (2 điểm) Giải bất phương trình

2

x 3x

log

x

− + ≥

2 Cho lăng trụ đứng ABC.A'B'C' có đáy ABC tam giác vng, AB = BC = a, cạnh bên AA' a 2.= Gọi M trung điểm cạnh BC Tính theo a thể tích khối lăng trụ

ABC.A'B'C' khoảng cách hai đường thẳng AM, B'C

Hết

Thí sinh khơng sử dụng tài liệu Cán coi thi khơng giải thích thêm

Họ tên thí sinh: Số báo danh:

(22)

BỘ GIÁO DỤC VÀ ĐÀO TẠO

ĐỀ CHÍNH THỨC

ĐỀ THI TUYỂN SINH ĐẠI HỌC NĂM 2009 Mơn thi: TỐN; Khối: A

Thời gian làm bài: 180 phút, không kể thời gian phát đề PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7,0 điểm):

Câu I (2,0 điểm)

Cho hàm số

2

x y

x

+ =

+ (1)

1 Khảo sát biến thiên vẽđồ thị hàm số (1)

2 Viết phương trình tiếp tuyến đồ thị hàm số (1), biết tiếp tuyến cắt trục hồnh, trục tung hai điểm phân biệt A, B tam giác OAB cân gốc toạđộ O

Câu II (2,0 điểm)

1 Giải phương trình ( )

( )( )

1 2sin cos

3 2sin sin

x x

x x

=

+ −

2 Giải phương trình 2 3 x − +2 − x − =8 (x∈\)

Câu III (1,0 điểm)

Tính tích phân 2( )

0

cos cos

I x

π

=∫ − x dx Câu IV (1,0 điểm)

Cho hình chóp S ABCD có đáy ABCD hình thang vuông A ;D AB AD = =2a , CD a= ; góc hai mặt phẳng (SBC ) (ABCD) 60 D Gọi trung I điểm cạnh AD Biết hai mặt phẳng (SBI) (SCI) vng góc với mặt phẳng (ABCD ), tính thể tích khối chóp S ABCD theo a

Câu V (1,0 điểm)

Chứng minh với số thực dương , ,x y z thoả mãn x x y z ( + + )=3 ,yz ta có: (x y + ) (3 + x z + )3 +3 (x y x z y z + )( + )( + ) ≤5(y z + )3

PHẦN RIÊNG (3,0 điểm): Thí sinh chỉđược làm hai phần (phần A B) A Theo chương trình Chuẩn

Câu VI.a (2,0 điểm)

1 Trong mặt phẳng với hệ toạđộ Oxy, cho hình chữ nhật ABCD có điểm giao điểm hai đường chéo

(6;2) I

AC BD Điểm M( )1;5 thuộc đường thẳng AB trung điểm E cạnh thuộc đường thẳng Viết phương trình đường thẳng

CD : x y

Δ + − = AB

2 Trong không gian với hệ toạ độ Oxyz, cho mặt phẳng ( )P : x −2 y z− − =4 mặt cầu ( )S x : +y 2 +z 2−2 x −4 y −6 11 0.z− = Chứng minh rằng mặt phẳng ( )P cắt mặt cầu ( )S theo một

đường tròn Xác định toạđộ tâm tính bán kính đường trịn Câu VII.a (1,0 điểm)

Gọi hai nghiz 1 z2 ệm phức phương trình z 2 +2 10 z + =0 Tính giá trị của biểu thức A 2 z z

= +

B Theo chương trình Nâng cao Câu VI.b (2,0 điểm)

1 Trong mặt phẳng với hệ toạ độ Oxy, cho đường tròn ( )C x : +y 2+4 x +4 y + =6 0 đường thẳng với m tham số thực Gọi tâm đường trịn ( Tìm để

x my m

:

Δ + − + =0, I C ) m Δ cắt ( )C

tại hai điểm phân biệt A B cho diện tích tam giác IAB lớn

2 Trong không gian với hệ toạ độ Oxyz, cho mặt phẳng ( )P x : −2 y +2 z − =0 hai đường thẳng

1

:

1

+ +

x y z

Δ = = , 2 :

2

1 xy z +

Δ = =

− Xác định toạđộđiểm M thuộc đường thẳng Δ1 cho khoảng cách từ M đến đường thẳng Δ2 khoảng cách từ M đến mặt phẳng ( )P

Câu VII.b (1,0 điểm)

Giải hệ phương trình ( ) ( ) ( )

2

2

2

log log

,

3 x xy y 81

x y xy

x y

− +

⎧ + = +

⎪ ∈

=

⎪⎩ \

- Hết -

(23)

BỘ GIÁO DỤC VÀ ĐÀO TẠO

ĐỀ CHÍNH THỨC

ĐỀ THI TUYỂN SINH ĐẠI HỌC NĂM 2009 Mơn: TỐN; Khối: B

Thời gian làm bài: 180 phút, không kể thời gian phát đề

PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7,0 đim)

Câu I (2,0 đim)

Cho hàm số y =2 x 4−4 x2 (1)

1 Khảo sát biến thiên vẽđồ thị hàm số (1)

2 Với giá trị m, phương trình x x 2 | 2−2 |=m có đúng nghiệm thực phân biệt ?

Câu II (2,0 đim)

1 Giải phương trình sin x+cos sin x x + 3 cos3 x =2(cos x +sin ).3x

2 Giải hệ phương trình 2 2 ( , ) 13

xy x y

x y

x y xy y

+ + = ⎧

⎨ + + =

⎩ \

Câu III (1,0 đim) Tính tích phân

3

3 ln ( 1)

x

I d

x + =

+

x

Câu IV (1,0 đim)

Cho hình lăng trụ tam giác ABC A B C ' ' ' có BB a' = , góc đường thẳng BB' mặt phẳng tam giác

(ABC) 60 ;D ABC vng C nBAC= 60 D Hình chiếu vng góc điểm 'B lên mặt phẳng ( ABC) trùng với trọng tâm tam giác ABC Tính thể tích khối tứ diện 'A ABC theo a

Câu V (1,0 đim)

Cho số thực ,x y thay đổi thoả mãn (x y + )3 +4 xy ≥2. Tìm giá trị nhỏ nhất của biểu thức 4 2 2

A =3( x +y +x y ) 2( − x +y ) + PHẦN RIÊNG (3,0 đim)

Thí sinh chđược làm mt hai phn (phn A hoc B)

A Theo chương trình Chuẩn Câu VI.a (2,0 đim)

1 Trong mặt phẳng với hệ toạđộ Oxy, cho đường tròn ( ) : ( 2)2

5

C x− +y = hai đường thẳng Δ1 : x y − =0 , Xác định toạ độ tâm

2 : x y

Δ − = K tính bán kính đường tròn ( biết đường tròn tiếp xúc với đường thẳng tâm

1);

C ( ) C1

1 ,

Δ Δ K thuộc đường trịn ( ).C

2 Trong khơng gian với hệ toạ độ Oxyz, cho tứ diện ABCD có đỉnh Viết phương trình mặt phẳng qua cho khoảng cách từ đến khoảng cách từ đến (

(1;2;1), ( 2;1;3), (2; 1;1)

A B C

(0;3;1)

D ( )P A B , C ( )P

D P)

Câu VII.a (1,0 đim)

Tìm số phức thoz ả mãn: z − + =(2 ) i 10 z z =25 B Theo chương trình Nâng cao

Câu VI.b (2,0 đim)

1 Trong mặt phẳng với hệ toạđộ Oxy, cho tam giác ABC cân A có đỉnh A ( 1;4)− đỉnh B C, thuộc

đường thẳng Δ: x y − − =4 Xác định toạđộ điểm B C, biết diện tích tam giác ABC 18 Trong không gian với hệ toạ độ Oxyz , cho mặt phẳng ( ) : P x −2 y +2 z− =5 hai điểm ( 3;0;1), A

Trong đường thẳng qua (1; 1;3)

B A song song với viết phương trình đường thẳng mà

khoảng cách từ

( ), P B đến đường thẳng nhỏ

Câu VII.b (1,0 đim)

Tìm giá trị tham số m đểđường thẳng y = − +x m cắt đồ thị hàm số

2 1 x y

x

= hai điểm phân biệt

cho

,

A B AB =4

- Hết -

(24)

BỘ GIÁO DỤC VÀ ĐÀO TẠO

ĐỀ CHÍNH THỨC

ĐỀ THI TUYỂN SINH ĐẠI HỌC NĂM 2009 Mơn: TỐN; Khối: D

Thời gian làm bài: 180 phút, không kể thời gian phát đề PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7,0 đim)

Câu I (2,0 đim)

Cho hàm số y x = −(3 m +2) x 2+3m

m

C m

( ),

có đồ thị tham số Khảo sát biến thiên vẽđồ thị hàm sốđã cho m=0

2 Tìm m để đường thẳng y = −1 cắt đồ thị ( C m) điểm phân biệt có hồnh độ nhỏ

Câu II (2,0 đim)

1 Giải phương trình cos5 x −2sin cos x x −sin x=0 Giải hệ phương trình 2

2 ( 1)

( , )

( )

x x y

x y x y

x

+ + − = ⎧

⎪ ∈

+ − + =

⎪⎩ \

Câu III (1,0 đim)

Tính tích phân

1 x

dx I

e

= −

Câu IV (1,0 đim)

Cho hình lăng trụđứng ABC A B C ' ' ' có đáy ABC tam giác vuông B AB a AA , = , ' , ' = a A C =3 a Gọi M

là trung điểm đoạn thẳng ' ',A C I giao điểm Tính theo thể tích khối tứ diện khoảng cách từđiểm đến mặt phẳng (

AM A C ' a IABC

A IBC)

Câu V (1,0 đim)

Cho số thực không âm ,x y thay đổi thoả mãn x y+ =1 Tìm giá trị lớn giá trị nhỏ biểu thức S =(4 x2 +3 )(4 y y2+3 ) 25 x + xy

PHẦN RIÊNG (3,0 đim)

Thí sinh chđược làm mt hai phn (phn A hoc B)

A Theo chương trình Chuẩn Câu VI.a (2,0 đim)

Ox cho tam giác có trung điểm cạnh Đường trung Trong mặt phẳng với hệ toạđộ ,

tuyến đường cao qua đỉnh có phương trình

y ABC M (2;0) AB

A x −2 y− =3 Viết phương

trình đường thẳng

6 x y− − =4

AC

2 Trong không gian với hệ toạ độ , cho điểm mặt phẳng Xác định toạđộđiểm

Oxyz A (2;1;0), (1;2;2), (1;1;0) B C

( ) : P x y z + + −20 0.= D thuộc đường thẳng cho đường thẳng CD song song với mặt phẳng (

AB

)

P Câu VII.a (1,0 đim)

Trong mặt phẳng toạđộOxy , tìm tập hợp điểm biểu diễn số phức thoz ả mãn điều kiện |z − −(3 ) | i =

B Theo chương trình Nâng cao Câu VI.b (2,0 đim)

1 Trong mặt phẳng với hệ toạđộ Oxy, cho đường tròn ( ) : ( 1) C x − +y2=1. Gọi tâm của Xác định toạđộđiểm

I ( ).C

M thuộc ( )C cho nIMO=30 D

2 Trong không gian với hệ toạ độ Oxyz , cho đường thẳng : 2

1 1

x+ y

Δ = =

z

m

mặt phẳng Viết phương trình đường thẳng nằm ( cho d cắt vng góc với đường thẳng

( ) : P x +2 y −3 z + =4 d P)

Δ

Câu VII.b (1,0 đim)

Tìm giá trị tham số m đểđường thẳng y= − +2x cắt đồ thị hàm số

2 1

x x

y x

+ −

= hai điểm phân biệt A B , cho trung điểm đoạn thẳngAB thuộc trục tung

- Hết -

Thí sinh khơng sử dụng tài liệu Cán coi thi khơng giải thích thêm

(25)

BỘ GIÁO DỤC VÀ ĐÀO TẠO ĐỀ CHÍNH THỨC

ĐỀ THI TUYỂN SINH ĐẠI HỌC NĂM 2010

Mơn: TỐN; Khối: A

Thời gian làm bài: 180 phút, không kể thời gian phát đề

I PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7,0 đim)

Câu I (2,0 đim)

Cho hàm số y=x3− 2x2+ (1 −m)x+m (1), m tham số thực Khảo sát biến thiên vẽđồ thị hàm số m=

2 Tìm mđểđồ thị hàm số (1) cắt trục hồnh điểm phân biệt có hồnh độx1, x2, x3 thoả mãn điều kiện 2

1

x + x + x <

Câu II (2,0 đim)

1 Giải phương trình

(1 sin cos )sin

1

cos

1 tan

x x x

x x

π

⎛ ⎞

+ + ⎜ + ⎟

⎝ ⎠ =

+

2 Giải bất phương trình

2 2(

x x x x

− − + ) ≥

Câu III (1,0 đim)Tính tích phân I=

1 2

0

2 d

x x

x x e x e

x e

+ + +

Câu IV (1,0 đim) Cho hình chóp S.ABCD có đáy ABCD hình vng cạnh a Gọi M N

trung điểm cạnh AB AD; H giao điểm CN với DM Biết SH vng góc với mặt phẳng (ABCD) SH=a Tính thể tích khối chóp S.CDNM tính khoảng cách hai đường thẳng DM SC theo a

Câu V (1,0 đim)Giải hệ phương trình

2

2

(4 1) ( 3) 4

x x y y

x y x

⎧ + + − − =

⎪ ⎨

+ + − =

⎪⎩ (x, y∈R)

II PHẦN RIÊNG (3,0 đim)

Thí sinh chđược làm mt hai phn (phn A hoc B)

A Theo chương trình Chuẩn

Câu VI.a (2,0 đim)

1 Trong mặt phẳng tọa độ Oxy, cho hai đường thẳng d1: x y+ =0 d2: x y − = Gọi (T) đường tròn tiếp xúc với d1 A, cắt d2 hai điểm B C cho tam giác ABC vng B Viết phương trình (T), biết tam giác ABC có diện tích

2 điểm A có hồnh độ dương Trong khơng gian toạđộOxyz, cho đường thẳng ∆:

2 1 x − = = y z

+ mặt phẳng (P): x− 2y+z= Gọi C giao điểm ∆ với (P), M điểm thuộc ∆ Tính khoảng cách từMđến (P), biết MC= Câu VII.a (1,0 đim)Tìm phần ảo số phức z, biết z = ( + i) (1 2 − 2 )i

B Theo chương trình Nâng cao

Câu VI.b (2,0 đim)

1 Trong mặt phẳng toạ độ Oxy, cho tam giác ABC cân A có đỉnh A(6; 6); đường thẳng qua trung điểm cạnh AB AC có phương trình x+y− = Tìm toạđộ đỉnh B C, biết điểm E(1; −3) nằm đường cao qua đỉnh C tam giác cho

2 Trong không gian toạ độ Oxyz, cho điểm A(0; 0; −2) đường thẳng ∆: 2

2

3 x+ y z +

= = Tính khoảng cách từAđến ∆ Viết phương trình mặt cầu tâm A, cắt ∆ hai điểm B C cho BC=

Câu VII.b (1,0 đim)Cho số phức z thỏa mãn z = (1 )3

1 i i

− Tìm mơđun số phức z + i z

- Hết -

Thí sinh khơng được s dng tài liu Cán b coi thi không gii thích thêm

(26)

BỘ GIÁO DỤC VÀ ĐÀO TẠO

ĐỀ CHÍNH THỨC

ĐỀ THI TUYỂN SINH ĐẠI HỌC NĂM 2010 Mơn: TỐN; Khối: B

Thời gian làm bài: 180 phút, không kể thời gian phát đề PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7,0 đim)

Câu I (2,0 đim) Cho hàm số

1

x y

x

+ =

+

1 Khảo sát biến thiên vẽđồ thị (C) hàm sốđã cho

2 Tìm mđểđường thẳng y=−2x+m cắt đồ thị (C) hai điểm phân biệt A, B cho tam giác OAB

có diện tích (O gốc tọa độ)

Câu II (2,0 đim)

1 Giải phương trình (sin x +cos ) cos x x + 2cos x −sin x =

2 Giải phương trình x + − − +x x 2−14 x −8 = (x∈ R)

Câu III (1,0 đim) Tính tích phân

( )2

1

ln

d ln

e

x

I = x

x + x

' '

Câu IV (1,0 đim) Cho hình lăng trụ tam giác ABC A B C' có AB =a, góc hai mặt phẳng

( ' A BC) ( ABC) Gọi G trọng tâm tam giác Tính thể tích khối lăng trụđã cho

và tính bán kính mặt cầu ngoại tiếp tứ diện GABC theo a

60o A BC'

Câu V (1,0 đim) Cho số thực không âm a, b, c thỏa mãn: a +b+c = Tìm giá trị nhỏ biểu thức M = 3( a b 2 +b c 2 + c a 2 ) 3( + ab bc ca + + ) 2+ a 2 + b 2 + c 2

PHẦN RIÊNG (3,0 đim)

Thí sinh chđược làm mt hai phn (phn A hoc B) A Theo chương trình Chuẩn

Câu VI.a (2,0 đim)

1 Trong mặt phẳng toạđộOxy, cho tam giác ABC vuông A, có đỉnh C(− 4; 1), phân giác góc A

phương trình x+y− = Viết phương trình đường thẳng BC, biết diện tích tam giác ABC 24

đỉnh A có hồnh độ dương

2 Trong không gian toạđộ Oxyz, cho điểm A(1; 0; 0), B(0; b; 0), C(0; 0; c), b, c dương

và mặt phẳng (P): yz+ = Xác định b c, biết mặt phẳng (ABC) vng góc với mặt phẳng

(P) khoảng cách từđiểm Ođến mặt phẳng (ABC)

3

Câu VII.a (1,0 đim) Trong mặt phẳng tọa độOxy, tìm tập hợp điểm biểu diễn số phức z thỏa mãn: (1 )

z i − = +i z

B Theo chương trình Nâng cao Câu VI.b (2,0 đim)

1 Trong mặt phẳng toạđộOxy, cho điểm A(2; ) elip (E):

2

1

3

x + y =

Gọi F1 F2

tiêu điểm (E) (F1 có hồnh độ âm); M giao điểm có tung độ dương đường thẳng AF1 với

(E); N điểm đối xứng F2 qua M Viết phương trình đường tròn ngoại tiếp tam giác ANF2

2 Trong không gian toạ độOxyz, cho đường thẳng Δ:

2

x y z

= = Xác định tọa độ điểm M

trục hoành cho khoảng cách từMđến Δ OM

Câu VII.b (1,0 đim) Giải hệ phương trình log (3 1)2 2

4 x x

y x

y

− = ⎧⎪

+ =

⎪⎩ (x, y∈ R)

- Hết -

Thí sinh không sử dụng tài liệu Cán coi thi khơng giải thích thêm

(27)

BỘ GIÁO DỤC VÀ ĐÀO TẠO ĐỀ CHÍNH THỨC

ĐỀ THI TUYỂN SINH ĐẠI HỌC NĂM 2010 Mơn: TỐN; Khối: D

Thời gian làm bài: 180 phút, không kể thời gian phát đề

PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7,0 đim)

Câu I (2,0 đim) Cho hàm số y = −x 4 − x2 +

1 Khảo sát biến thiên vẽ đồ thị (C) hàm số cho

2 Viết phương trình tiếp tuyến đồ thị (C), biết tiếp tuyến vng góc với đường thẳng 1

y = x

Câu II (2,0 đim)

1 Giải phương trình sin x −cos x +3sin x −cos x − =1

2 Giải phương trình 42x+ x +2 + x 3 = + x +2 + x 3+4x −4 (x∈R) Câu III (1,0 đim) Tính tích phân

1

3

e

2 ln d

I x x

x

⎛ ⎞

= ⎜ − ⎟

⎝ ⎠

x

Câu IV (1,0 đim) Cho hình chóp S.ABCD có đáy ABCD hình vng cạnh a, cạnh bên SA = a; hình chiếu vng góc đỉnh S mặt phẳng (ABCD) điểm H thuộc đoạn AC, AH=

4

AC

Gọi CM đường cao tam giác SAC Chứng minh M trung điểm SA tính thể tích khối tứ diện SMBC theo a Câu V (1,0 đim) Tìm giá trị nhỏ hàm số y = − +x 2 x + 21 − − +x 2 x+1 PHẦN RIÊNG (3,0 đim)

Thí sinh chđược làm mt hai phn (phn A hoc B) A Theo chương trình Chuẩn

Câu VI.a (2,0 đim)

1 Trong mặt phẳng toạ độ Oxy, cho tam giác ABC có đỉnh A(3; −7), trực tâm H(3; −1), tâm đường tròn ngoại tiếp I(−2; 0) Xác định tọa độ đỉnh C, biết C có hồnh độ dương

2 Trong không gian toạ độ Oxyz, cho hai mặt phẳng (P): x+y+z− = (Q): xy+z− = Viết phương trình mặt phẳng (R) vng góc với (P) (Q) cho khoảng cách từ O đến (R) Câu VII.a (1,0 đim) Tìm số phức z thỏa mãn: | z | = z2 số ảo

B Theo chương trình Nâng cao Câu VI.b (2,0 đim)

1 Trong mặt phẳng tọa độ Oxy, cho điểm A(0; 2) Δ đường thẳng qua O Gọi H hình chiếu vng góc A Δ Viết phương trình đường thẳng Δ, biết khoảng cách từ H đến trục hồnh bằng AH

2 Trong khơng gian toạ độ Oxyz, cho hai đường thẳng Δ1:

3 x t y t z t

= + ⎧ ⎪ = ⎨ ⎪ = ⎩

và Δ2:

2

x− = y− = z

Xác định tọa độ điểm M thuộc Δ1 cho khoảng cách từ M đến Δ2

Câu VII.b (1,0 đim) Giải hệ phương trình

2

2 2

4

2log ( 2) log

x x y

x

⎧ − + + =

⎪ ⎨

y

− − =

⎪⎩ (x, y∈R)

- Hết -

(28)

BỘ GIÁO DỤC VÀ ĐÀO TẠO

ĐỀ CHÍNH THỨC

ĐỀ THI TUYỂN SINH ĐẠI HỌC NĂM 2011 Mơn: TỐN; Khối: A

Thời gian làm bài: 180 phút, không kể thời gian phát đề

PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7,0đim) Câu I (2,0đim) Cho hàm số

2

x y

x

− + =

1 Khảo sát biến thiên vẽđồ thị (C) hàm sốđã cho

2 Chứng minh với mđường thẳng y=x+m cắt đồ thị (C) hai điểm phân biệt A B Gọi k1, k2 hệ số góc tiếp tuyến với (C) A B Tìm mđể tổng đạt

giá trị lớn

1

k k+ 2

Câu II (2,0đim)

1 Giải phương trình sin 2cos 2 sin sin cot

x x

x x

x

+ + =

+ Giải hệ phương trình

2

2 2

5 2( )

( , )

( ) ( )

x y xy y x y

x y

xy x y x y

⎧ − + − + =

+ + = +

⎪⎩ \

Câu III (1,0đim) Tính tích phân

0

sin ( 1) cos d sin cos

x x x x

I x

x x x

π

+ + =

+ ∫

Câu IV (1,0 đim) Cho hình chóp S.ABC có đáy ABC tam giác vng cân B, AB = BC= 2a; hai mặt phẳng (SAB) (SAC) vng góc với mặt phẳng (ABC) Gọi M trung điểm AB; mặt phẳng qua SM song song với BC, cắt AC N Biết góc hai mặt phẳng (SBC) (ABC) 60o Tính thể tích khối chóp S.BCNM khoảng cách hai đường thẳng AB SN theo a

Câu V (1,0đim) Cho x y z , , ba số thực thuộc đoạn [1; 4] xy, xz Tìm giá trị nhỏ

biểu thức =

2 + + + + +

x y z

P

x y y z z x

PHẦN RIÊNG (3,0đim): Thí sinh chđược làm mt hai phn (phn A hoc B) A Theo chương trình Chuẩn

Câu VI.a (2,0đim)

1 Trong mặt phẳng toạ độ Oxy, cho đường thẳng : x + y + = đường tròn Gọi I tâm (C), M điểm thuộc Qua M kẻ tiếp tuyến MA MBđến (C) (A B tiếp điểm) Tìm tọa độđiểm M, biết tứ giác MAIB có diện tích 10

2

( ) : C x + − y x − 2 y =0

2 Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(2; 0; 1), B(0; –2; 3) mặt phẳng ( ) : P x y z− − + =4 Tìm tọa độđiểm M thuộc (P) cho MA=MB=

Câu VII.a (1,0đim) Tìm tất số phức z, biết: 2

z = z + z B Theo chương trình Nâng cao

Câu VI.b (2,0đim)

1 Trong mặt phẳng tọa độ Oxy, cho elip

2

( ):

4

x y

E + = Tìm tọa độ điểm A B thuộc (E), có hồnh độ dương cho tam giác OAB cân O có diện tích lớn

2 Trong khơng gian với hệ tọa độOxyz, cho mặt cầu điểm

Viết phương trình mặt phẳng (OAB), biết điểm B thuộc (S) tam giác OABđều

2 2

( ) : S x y z + + − − − =4 x y z A(4; 4; 0)

Câu VII.b (1,0đim) Tính mơđun số phức z, biết: (2 z − 1)(1 + + + i ) ( z 1)(1 − = −i ) 2i

- Hết -

Thí sinh khơng được s dng tài liu Cán b coi thi khơng gii thích thêm

(29)

BỘ GIÁO DỤC VÀ ĐÀO TẠO

ĐỀ CHÍNH THỨC

ĐỀ THI TUYỂN SINH ĐẠI HỌC NĂM 2011 Mơn: TỐN; Khối: B

Thời gian làm bài: 180 phút, không kể thời gian phát đề

PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7,0đim)

Câu I (2,0đim) Cho hàm số y= − x 4 2( m + 1)x 2+ m (1), m tham số

1 Khảo sát biến thiên vẽđồ thị hàm số (1) m=

2 Tìm mđểđồ thị hàm số (1) có ba điểm cực trịA, B, C cho OA=BC; O gốc tọa độ, A điểm cực trị thuộc trục tung, B C hai điểm cực trị lại

Câu II (2,0đim)

1 Giải phương trình sin2xcosx+ sinxcosx= cos2x+ sinx+ cosx Giải phương trình 3 2+ − x 6 − + x 4 − = − x 2 10 x x( ∈\).

Câu III (1,0đim) Tính tích phân

3

1 sin d cos

x x

I x

x π

+ = ∫

Câu IV (1,0 đim) Cho lăng trụ ABCD.A1BB1C1D1 có đáy ABCD hình chữ nhật, AB = a,

AD a= Hình chiếu vng góc điểm A1 mặt phẳng (ABCD) trùng với giao điểm

của AC BD Góc hai mặt phẳng (ADD1A1) (ABCD) 60 Tính thể tích khối

lăng trụđã cho khoảng cách từđiểm B1

o

B đến mặt phẳng (A1BD) theo a

Câu V (1,0đim) Cho a b số thực dương thỏa mãn 2(a2+b2) +ab= (a+b)(ab+ 2) Tìm giá trị nhỏ biểu thức

3 2

3 2

a b a b

4

P

b a b a

⎛ ⎞ ⎛

= ⎜ + ⎟− ⎜ +

⎝ ⎠ ⎝

⎞ ⋅ ⎟ ⎠

PHẦN RIÊNG (3,0đim): Thí sinh chđược làm mt hai phn (phn A hoc B) A Theo chương trình Chuẩn

Câu VI.a (2,0đim)

1 Trong mặt phẳng tọa độ Oxy, cho hai đường thẳng ∆: xy – = d: 2xy – = Tìm tọa độ điểm N thuộc đường thẳng d cho đường thẳng ON cắt đường thẳng

điểm M thỏa mãn OM.ON=

2 Trong không gian với hệ tọa độ Oxyz, cho đường thẳng : 1 xy+

Δ = =

− −

z

mặt phẳng (P): x+y+z – = Gọi I giao điểm (P) Tìm tọa độđiểm M thuộc (P) cho MI vng góc với MI =4 14

i

Câu VII.a (1,0đim) Tìm số phức z, biết: z z

+

− − =

B Theo chương trình Nâng cao Câu VI.b (2,0đim)

1 Trong mặt phẳng tọa độ Oxy, cho tam giác ABC có đỉnh ;

⎟ Đường tròn nội tiếp B⎛⎜

⎝ ⎠

tam giác ABC tiếp xúc với cạnh BC, CA, AB tương ứng điểm D, E, F Cho đường thẳng EF có phương trình y – = Tìm tọa độđỉnh A, biết A có tung

độ dương

(3; 1) D

2 Trong không gian với hệ toạ độOxyz, cho đường thẳng :

1

+ − +

x y z

= =

5

2 hai

điểm A(– 2; 1; 1), B(– 3; – 1; 2) Tìm toạ độ điểm M thuộc đường thẳng cho tam giác MAB có diện tích

Câu VII.b (1,0đim) Tìm phần thực phần ảo số phức

3

1

i z

i

⎛ + ⎞

= ⎜⎜ ⎟⎟

+

⎝ ⎠

- Hết

(30)

BỘ GIÁO DỤC VÀ ĐÀO TẠO

ĐỀ CHÍNH THỨC

ĐỀ THI TUYỂN SINH ĐẠI HỌC NĂM 2011 Mơn: TỐN; Khối: D

Thời gian làm bài: 180 phút, không kể thời gian phát đề

PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7,0 đim) Câu I (2,0 đim) Cho hàm số

1

x y

x

+

= ⋅

+

1 Khảo sát biến thiên vẽđồ thị (C) hàm sốđã cho

2 Tìm k đểđường thẳng y=kx + 2k+ cắt đồ thị (C) hai điểm phân biệt A, B cho khoảng cách từA Bđến trục hoành

Câu II (2,0 đim)

1 Giải phương trình sin 2cos sin tan

x x x

x

+ − − =

+

2 Giải phương trình ( ) ( )

2

2

x x x

log − + log + + − − = ( x∈ \)

Câu III (1,0 đim) Tính tích phân

4

0

4 d 2

x

I x

x

− =

+ +

Câu IV (1,0 đim) Cho hình chóp S.ABC có đáy ABC tam giác vng B, BA= 3a, BC= 4a; mặt phẳng (SBC) vuông góc với mặt phẳng (ABC) Biết SB = 3a Tính thể tích khối chóp S.ABC khoảng cách từđiểm Bđến mặt phẳng (SAC) theo a

n 30

SBC = D

Câu V (1,0 đim) Tìm mđể hệ phương trình sau có nghiệm:

3

2

2 ( 2)

( , )

x y x xy m x y

x x y m

⎧ − + + =

⎪ ∈

+ − = −

⎪⎩ \

PHẦN RIÊNG (3,0 đim): Thí sinh chđược làm mt hai phn (phn A hoc B) A Theo chương trình Chuẩn

Câu VI.a (2,0 đim)

1 Trong mặt phẳng tọa độOxy, cho tam giác ABC có đỉnh B(– 4; 1), trọng tâm G(1; 1) đường thẳng chứa phân giác góc A có phương trình xy – = Tìm tọa độ đỉnh A C Trong không gian với hệ toạ độOxyz, cho điểm A(1; 2; 3) đường thẳng d:

2

+ −

x y z

= = − ⋅ Viết phương trình đường thẳng ∆ qua điểm A, vng góc với đường thẳng d cắt trục Ox Câu VII.a (1,0 đim) Tìm số phức z, biết: z – (2 + 3i)z = – 9i

B Theo chương trình Nâng cao Câu VI.b (2,0 đim)

1 Trong mặt phẳng toạđộOxy, cho điểm A(1; 0) đường tròn (C): x2+y2 – 2x+ 4y – = Viết phương trình đường thẳng ∆ cắt (C) hai điểm M N cho tam giác AMN vuông cân A Trong không gian với hệ tọa độ Oxyz, cho đường thẳng :

2

xy

Δ = = z mặt phẳng Viết phương trình mặt cầu có tâm thuộc đường thẳng ∆, bán kính tiếp xúc với mặt phẳng (P)

( ) : P x y − + =2 z

Câu VII.b (1,0 đim) Tìm giá trị nhỏ giá trị lớn hàm số

2

2

x x y

x

+ + =

+

đoạn [0; 2]

- Hết -

Thí sinh khơng được s dng tài liu Cán b coi thi khơng gii thích thêm

(31)

BỘ GIÁO DỤC VÀ ĐÀO TẠO

ĐỀ CHÍNH THỨC

ĐỀ THI TUYỂN SINH ĐẠI HỌC NĂM 2012

Môn: TOÁN; Khối A khối A1

Thời gian làm bài: 180 phút, không kể thời gian phát đề

I PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7,0 đim)

Câu (2,0 đim). Cho hàm số y x = −2( m +1) x 2 +m2 (1), với m tham số thực

a) Khảo sát biến thiên vẽđồ thị hàm số (1) m=0

b)Tìm mđểđồ thị hàm số (1) có ba điểm cực trị tạo thành ba đỉnh tam giác vuông

Câu (1,0 đim) Giải phương trình sin x +cos x =2cos x−1

Câu (1,0 đim) Giải hệ phương trình

3

2

3 22

( , )

1

x x x y y y

x y x y x y

⎧ − − + = + −

⎪ ∈

+ − + =

⎪⎩ \

Câu (1,0 đim) Tính tích phân

3

2

1 ln( 1) d x

I x

x

+ +

=∫

Câu (1,0 đim) Cho hình chóp có đáy tam giác cạnh a Hình chiếu vng góc

trên mặt phẳng (ABC) điểm H thuộc cạnh AB sao cho

S ABC S

2

HA = HB Góc đường thẳng SC và mặt phẳng (ABC) Tính thể tích khối chóp S.ABC và tính khoảng cách hai đường thẳng SA BC theo a

o

60

Câu (1,0 đim) Cho số thực x y z, , thỏa mãn điều kiệnx+y z + =0 Tìm giá trị nhỏ biểu thức

| | | | | | 2

3 x y y z z x 6

P = − + − + − − x + y + z

ND

II PHẦN RIÊNG (3,0 đim): Thí sinh chđược làm mt hai phn riêng (phn A hoc phn B)

A Theo chương trình Chuẩn

Câu 7.a (1,0 đim) Trong mặt phẳng với hệ tọa độOxy, cho hình vng ABCD. Gọi M trung điểm

của cạnh BC, N điểm cạnh CD cho CN =2 Giả sử M ( )11 1;

2 đường thẳng AN có phương trình x y − − =3 Tìm tọa độđiểm A

Câu 8.a (1,0 đim) Trong không gian với hệ tọa độ Oxyz, cho đường thẳng :

1

x y z

d + = = −

điểm Viết phương trình mặt cầu (S) có tâm I cắt d hai điểm A, B cho tam giác IAB vuông I

I(0;0;3)

Câu 9.a (1,0 đim) Cho n số nguyên dương thỏa mãn C nn−1=Cn3 Tìm số hạng chứa x5 khai

triển nhị thức Niu-tơn ( ) 1

,

14

n nx

x x

− ≠

B Theo chương trình Nâng cao

Câu 7.b (1,0 đim) Trong mặt phẳng với hệ tọa độOxy, cho đường tròn Viết phương

trình tắc elip (E), biết (E) có độ dài trục lớn (E) cắt (C) bốn điểm tạo thành bốn đỉnh hình vuông

2

( ): C x +y =8

Câu 8.b (1,0 đim) Trong không gian với hệ tọa độ Oxyz, cho đường thẳng : ,

2 1

x y z

d + = = − mặt

phẳng ( ): P x y + −2 z + =5 điểm A(1; 1; 2) − Viết phương trình đường thẳng ∆ cắt d (P)

tại M N cho A trung điểm đoạn thẳng MN

Câu 9.b (1,0 đim) Cho số phức z thỏa mãn 5( )

1 z i

i

z

+ = −

+ Tính mơđun số phức

2

1

w = + +z z

- HẾT -

Thí sinh khơng được s dng tài liu Cán b coi thi khơng gii thích thêm

(32)

BỘ GIÁO DỤC VÀ ĐÀO TẠO

ĐỀ CHÍNH THỨC

ĐỀ THI TUYỂN SINH ĐẠI HỌC NĂM 2012 Mơn: TỐN; Khối B

Thời gian làm bài: 180 phút, không kể thời gian phát đề

I PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7,0đim)

Câu (2,0đim). Cho hàm số y x = −3 mx 2 +3 m3 (1), m tham số thực a) Khảo sát biến thiên vẽđồ thị hàm số (1) m=1

b)Tìm mđểđồ thị hàm số (1) có hai điểm cực trịA B cho tam giác OAB có diện tích 48 Câu (1,0đim) Giải phương trình 2(cos x + sin ) cos x x =cos x − sin x+1

Câu (1,0đim) Giải bất phương trình x+ +1 x 2−4 x + ≥ x

Câu (1,0đim) Tính tích phân

1

4

0

d

x

I = x

x + x +

Câu (1,0 đim). Cho hình chóp tam giác S.ABC với SA =2 , a AB a= Gọi H hình chiếu vng góc A cạnh SC Chứng minh SC vng góc với mặt phẳng (ABH) Tính thể tích khối chóp S.ABH theo a

Câu (1,0 đim) Cho số thực x, y, z thỏa mãn điều kiện x y z+ + =0 Tìm giá trị lớn biểu thức

2 2 1

x +y +z =

5 5

P x = +y +z

II PHẦN RIÊNG (3,0 đim): Thí sinh chđược làm mt hai phn riêng (phn A hoc phn B) A Theo chương trình Chuẩn

Câu 7.a (1,0 đim) Trong mặt phẳng với hệ tọa độ Oxy, cho đường tròn ( ): C 1 x 2 +y2=4, đường thẳng

2 2

( ): C x +y −12 18 0x + = d x y : − − =4 Viết phương trình đường trịn có tâm thuộc ( )C 2 , tiếp xúc với d cắt ( ) C1 hai điểm phân biệt A B cho AB vng góc với d

Câu 8.a (1,0đim). Trong không gian với hệ tọa độOxyz, cho đường thẳng :

2

x y z

d − = =

− hai

điểmA (2;1;0), B ( 2;3; 2).− Viết phương trình mặt cầu qua A, B có tâm thuộc đường thẳng d Câu 9.a (1,0đim) Trong lớp học gồm có 15 học sinh nam 10 học sinh nữ Giáo viên gọi ngẫu nhiên học sinh lên bảng giải tập Tính xác suất để học sinh gọi có nam nữ B Theo chương trình Nâng cao

Câu 7.b (1,0 đim) Trong mặt phẳng với hệ tọa độ Oxy, cho hình thoi ABCD

đường trịn tiếp xúc với cạnh hình thoi có phương trình

2 AC = BD

2 4

x +y = Viết phương trình tắc elip (E) qua đỉnh A, B, C, D của hình thoi Biết A thuộc Ox

Câu 8.b (1,0đim). Trong không gian với hệ tọa độOxyz, cho Viết phương trình mặt phẳng (P) qua A cắt trục Ox, Oy B, C cho tam giác ABC có trọng tâm thuộc đường thẳng AM

A (0;0;3), (1; 2;0) M

Câu 9.b (1,0đim) Gọi z1 z2 hai nghiệm phức phương trình z 2 −2 i z− =4 Viết dạng lượng giác z1 z2

- HẾT -

Thí sinh không được s dng tài liu Cán b coi thi khơng gii thích thêm

(33)

BỘ GIÁO DỤC VÀ ĐÀO TẠO

ĐỀ CHÍNH THỨC

ĐỀ THI TUYỂN SINH ĐẠI HỌC NĂM 2012 Mơn: TỐN; Khối D

Thời gian làm bài: 180 phút, không kể thời gian phát đề

I PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7,0đim)

Câu (2,0đim). Cho hàm số y 2(3 1) (1),

3

= x mx m x+ m tham số thực

a) Khảo sát biến thiên vẽđồ thị hàm số (1) m=1

b) Tìm mđể hàm số (1) có hai điểm cực trị x1 x2 cho x x1 2+2( x x 1 + 2) 1.=

Câu (1,0đim) Giải phương trình sin x+cos3 sin x x +cos x = cos x

Câu (1,0đim) Giải hệ phương trình 3 2 2 2 2 ( , )

2

xy x

x y

x x y x y xy y

+ − =

⎧⎪ ∈

− + + − − =

⎪⎩ \

Câu (1,0đim) Tính tích phân

π

4

(1 sin )d I =∫x + x x

')

Câu (1,0 đim) Cho hình hộp đứng có đáy hình vng, tam giác vng cân, Tính thể tích khối tứ diện khoảng cách từđiểm Ađến mặt phẳng(

' ' ' '

ABCD A B C D A AC' '

AC a= ABB C' ' BCD theo a

Câu (1,0đim) Cho số thực x y, thỏa mãn Tìm giá trị nhỏ biểu thức

2

( x −4) +( y −4) +2 xy≤32

3 3( 1)( 2)

A x = +y + xy x y+ −

II PHẦN RIÊNG (3,0 đim): Thí sinh chđược làm mt hai phn riêng (phn A hoc phn B) A Theo chương trình Chuẩn

Câu 7.a (1,0đim) Trong mặt phẳng với hệ tọa độOxy, cho hình chữ nhật ABCD Các đường thẳng AC AD có phương trình x +3y =0 x y− + =4 0; đường thẳng BD qua điểm ( )1;1

3

M

Tìm tọa độ đỉnh hình chữ nhật ABCD

Câu 8.a (1,0 đim) Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng

điểm Viết phương trình mặt cầu tâm I cắt (P) theo đường tròn có bán kính ( ): P x y + −2 10 0z + = I(2;1;3)

Câu 9.a (1,0đim) Cho số phức z thỏa mãn (2 ) 2(1 )

i

i z i

i +

+ + =

+ + Tìm mơđun số phức w z = + +1 i

B Theo chương trình Nâng cao

Câu 7.b (1,0 đim) Trong mặt phẳng với hệ tọa độOxy, cho đường thẳng Viết phương trình đường trịn có tâm thuộc d, cắt trục Ox A B, cắt trục Oy C D cho

:

d x y− + =

2 AB CD= =

Câu 8.b (1,0đim) Trong không gian với hệ tọa độ Oxyz, cho đường thẳng : 1 1

x = y =

d − +

z

hai

điểm A (1; 1; 2),− B (2; 1;0).− Xác định tọa độđiểm M thuộc d cho tam giác AMB vuông M

Câu 9.b (1,0đim) Giải phương trình z2 +3(1 ) 0+i z i + = tập hợp số phức

- HẾT -

Thí sinh khơng được s dng tài liu Cán b coi thi khơng gii thích thêm

Ngày đăng: 26/05/2021, 14:47

TỪ KHÓA LIÊN QUAN

w