1. Trang chủ
  2. » Văn Hóa - Nghệ Thuật

de thi thu dh va dap an toan khoi D lan 2 2012 chuyen ng Hue HN

5 3 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 5
Dung lượng 159,58 KB

Nội dung

Tính thể tích khối lăng trụ và diện tích mặt cầu ngoại tiếp lăng trụ.[r]

(1)

TRƯỜNG THPT CHUYÊN NGUYỄN HUỆ

KỲ THI THỬ ĐẠI HỌC LẦN THỨ HAI NĂM HỌC 2011 – 2012

ĐỀ THI MƠN: TỐN KHỐI D Thời gian làm bài: 180 phút

Câu 1: (2 điểm)

Cho hàm số y=x4 −6x2+5 có đồ thị (C) Khảo sát biến thiên vẽ đồ thị hàm số

Tìm m để đường thẳng y = mx – m tiếp xúc với đồ thị (C) Câu 2: (2 điểm)

1 Giải phương trình

x x

x sin4

2

sin cos

1 + =

2 Giải hệ phương trình

3

2

5 3

x y x y

x y

+ = −

 

− =

Câu 3: (1 điểm)

Cho hình lăng trụ đứng ABC.A’B’C’ có đáy ABC tam giác vng B, AB = a Đường thẳng A’C lập với mặt phẳng chứa đáy góc 300 lập với mặt phẳng (ABB’A’) góc 300 Tính thể tích khối lăng trụ diện tích mặt cầu ngoại tiếp lăng trụ

Câu 4: (2 điểm)

1.Trong mặt phẳng với hệ tọa độ Oxy, cho đường tròn (C):x2+ y2 −2x−4y=0 điểm M(6;2) Viết phương trình đường thẳng ∆ qua M cắt (C) điểm phân biệt A, B cho MA2 + MB2 = 50

2.Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P):7x+ y−4z=0 đường thẳng

(d1):

1

2 1

x yz+

= =

− ; (d2):

1 2 1 3

x t

y t

z

= − + 

= + 

 = 

Viết phương trình đường thẳng ∆ cắt hai đường thẳng (d1);(d2) ∆ vng góc với mặt phẳng (P) Câu 5: (2 điểm)

1.Tính tích phân

1

( 1) ln ln 1

e

dx

x x

x x

− +

2. Tìm m để phương trình sau có nghiệm phân biệt: x+ =3 m x2 +3 Câu 6: (1 điểm)

Cho ba số x, y, z dương thỏa mãn xy+ yz+zx=3 Tìm giá trị nhỏ biểu thức sau:

1 1

x y y z z x

P

yz zx xy

+ + +

= + +

+ + +

-HẾT -

Chú ý: Cán coi thi khơng giải thích thêm

(2)

TRƯỜNG THPT CHUYÊN

NGUYỄN HUỆ

KỲ THI THỬ ĐẠI HỌC LẦN THỨ HAI NĂM HỌC 2011 – 2012

ĐÁP ÁN VÀ BIỂU ĐIỂM MƠN: TỐN

Câu ý Nội dung Điểm

1 (2điểm)

1

6 5

y=xx +

TXĐ: R

3

' 12

y = xx

0 ' 0

3 x

y

x

=  = ⇔ 

= ± 

0,25

Giới hạn: lim ; lim

x x

y y

→+∞ →−∞

= +∞ = +∞

bảng biến thiên

X -∞ − 3 3 +∞ y’ – + – +

Y

0,25

Hàm số đồng biến khoảng (− 3;0);( 3;+∞) Hàm số nghịch biến khoảng (−∞ −; 3);(0; 3) Điểm cực đại (0;5); điểm cực tiểu (− 3; 4);( 3; 4)− −

0,25

Đồ thị

đồ thị hàm số có điểm uốn ( 1;0);(1;0)−

6

4

2

-2

-4

-5

Nhận xét: đồ thị nhận trục oy trục đối xứng

0,25

2 Đường thẳng y = mx – m tiếp xúc với đồ thị hàm số

4

3

6 5

4 12

x x mx m

x x m

− + = −

 ⇔ 

− =

 có nghiệm

0,25

3

3 1

5 5 4 12

x

x x x m

x x m

=  

⇔ + − − =

 − =

3

1 8

5 5

( ) 4 12

x m

x x x m

I

x x m

= ⇒ = −

 

⇔  + − − =

 − =

0,25 +∞

+∞

-4 4

5

y

(3)

Giải hệ (I):

3

3

5 5 4 12

x x x m

x x m

+ − − =

 

− =

Ta có:

3 3

5 5 4 12 3 7 5 0

1 8

5 40

3 27

x x x x x x x x

x m

x m

+ − − = − ⇔ − − + =

= ⇒ = −

  ⇔

 = − ⇒ =

Vậy m= -8 ; m =40 27

0,25

0,25

2 (2điểm)

1

Điều kiện :

cosx 0

sin2x 0 sin 4 0

4 sin4x 0

k

x x π

≠ 

≠ ⇔ ≠ ⇔ ≠

 ≠

0,25

pt

x x x

x x x

2 cos sin

1 cos

2 sin

cos

sin + =

⇔ ⇔ (sin2x + cosx)cos2x = cosx ⇔ sin2x.cos2x = cosx(1 – cos2x) ⇔ sin2xcos2x = 2cosxsin2x

0,25 ⇔ sin2xcos2x −sin2xsinx =

⇔ cos2x − sinx = (vì sin2x ≠ 0) ⇔ 2sin2x + sinx − =

2 ( )

s inx=

2

6 s inx=

2 5

2

x k loai

x k

x k

π π π

π π

π

= − +

− 

 

⇔ ⇔ = +

 

 

 = +



0,25

Vậy nghiệm phương trình : ( )

6

2

Z k k x

k x

∈ 

    

+ =

+ =

π π

π π

0,25

2

Với x= ta có

3

3

y y

y

= −  

− =

 hệ vô nghiệm

Với x≠0 đặt y = tx Ta có hệ :

3 3

2 2 2

5 (1 ) 5

3 (1 ) 3

x t x x tx t x t

x t x t x

+ = − + = −

 

 

− = − =

 

0,5

Suy : 3(1+t3)=(5−t)(1−t2)⇔2t3+5t2 + − =t 2 0 1

1; 2; 2

t t t

⇔ = − = − = 0,25

Với t = − ⇒1 0.x2 =3 pt vô nghiệm

Với t= − ⇒ −2 3x2 = ⇒3 x2 = −1 pt vô nghiệm

Với 1 4 2 1

2 1

2

x y

t x

x y

= ⇒ = 

= ⇒ = ⇒ 

= − ⇒ = −

(4)

I

A

B

C B'

C' A'

3 (1điểm)

Vì A hình chiếu A’ lên (ABC)

( ' ,( )) ( ' ; ) ' 30

A C ABC A C AC A CA

⇒ =

= =

Vì BC ⊥BA BC⊥BB' Suy BC⊥(ABB A' ')

( ' ,( ' ')) ( ' ; ' ) ' 30

A C ABB A A C A B BA C

⇒ =

= =

0,25

Đặt BC = x

Trong tam giác vng BCA’ ta có : A’C = BC/sin300 = 2x Trong tam giác vng ABC ta có : AC2 = AB2 +BC2 = a2 + x2 Trong tam giác vng AA’C ta có : AC= A’C.cos300

2 2

3 2

' 3

2 2

a

AC A C a x x x

⇒ = ⇔ + = ⇔ =

0 2

' ' sin 30

2 a AA A C

⇒ = =

Vậy

3 ' ' ' ABC

1

AA'.S '. .

2 4

ABC A B C

a

V = = AA AB BC=

0,5

Gọi I =A C' ∩AC' suy IA = IC = IC’ =IA’ =IB = IB’ = R Ta có R = A’C/2 = 2

2 a

Vậy Smc =4πR2 =2πa2

0,25

4 (2điểm)

1 đường trịn (C) có tâm I(1;2) , bk R = 5

Ta có :

2

2

( )

2

AB MB MA

MB MA MBMA

= −

= + −

2

. 20

MA MB=MIR =

Suy AB2 =10

2 2 10

2 IH IA AH

⇒ = − =

0,5

Đường thẳng ∆ qua M(6;2) có dạng : a(x – 6) + b(y – 2) = ( với a2 +b2≠0)

Ta có 2

2

(1 6) (2 2) 10

( , ) 9

2

a b

d I IH a b

a b

− + −

∆ = ⇔ = ⇔ =

+ 0,25

a=0 ⇒b= vô lý Cho a =1 ⇒ = ±b 3

Vậy có đường thẳng thỏa mãn đầu : x+3y – 12 = x – 3y =

0,25 Gọi A, B giao điểm ∆ với đường thẳng (d1) (d2)

Suy A(2a;1-a;-2+a)∈(d1) ; B(-1+2b;1+b;3) ∈(d2) (2 2 1; ;5 )

AB baa+ba

;nP(7;1; 4)−

0,25

H I

B A

M

I

(5)

Vì ∆ ⊥( )PAB⊥( )PAB n// P

9 5 1 1

2 2 1 5

3 4 5 2

7 1 4

a b a

b a a b a

a b b

+ = − =

 

− − + −

= = ⇔ ⇔

+ = − = −

−  

0,5 Suy A(2;0;-1) ; B(-5;-1;3)

Vậy phương trình đường thẳng ∆ là: 1

7 4

xy z+

= =

− 0,25

5 (2điểm)

1

1 1

( 1) ln ln 1 ln 1 ln 1

1

ln 1 ln 1 ln 1

e e e

dx dx dx

x x x x x x

I e

x x x x x x

− + − − +

= = = − −

+ + +

∫ ∫ ∫ 0,25

Đặt t =xlnx+ ⇒1 dt=(lnx+1)dx

Đổi cận : x=1 ⇒t =1 ; x = e ⇒ t = e+1

1

1

1

1 ln 1

ln ln( 1) ln 1

e e

e

dx dt

t

x

t e

x x

+

+

+

= = = +

+

∫ ∫

0,5

Vậy I = e – – ln(e+1) 0,25

2

2

2 3

3 3 (1)

3 x

x m x m

x

+

+ = + ⇔ =

+ 0,25

Xét

2 3

( ) ;

3 x

f x x R

x

+

= ∈

+ ;

3 3 '( )

( 3) x f x

x

− =

+

f’(x) = x =1

2 3

lim 1

3

x

x x

→+∞

+ =

+ ;

3

lim 1

3

x

x x

→−∞

+

= − +

0,25

Bảng biến thiên

x -∞ +∞ f’(x) + –

f(x)

Vậy phương trình ban đầu có hai nghiệm phân biệt ⇔pt (1) có nghiệm phân biệt ⇔ 1< m <

0,5

6

(1điểm) Ta có: 33 ( ) ( ) ( )

1 1 (1 ) (1 ) (1 )

x y y z z x x y y z z x

P

yz zx xy yz zx xy

+ + + + + +

= + + ≥

+ + + + + +

Mà 3(1 )(1 )(1 ) (1 ) (1 ) (1 ) 2

yz zx xy

yz zx xy + + + + +

+ + + ≤ =

Ta lại có

(x+y y)( +z z)( +x)=(x+ +y z xy)( +yz+zx)−xyz =3(x+ +y z)−xyz

Mà (x+ +y z)2≥3(xy+yz+zx)= ⇒ + + ≥9 x y z

2 2

3

xy+yz+zxx y zxyz

Suy (x+y y)( +z z)( +x)≥8 3 ( ) ( ) ( )

3 3

2 (1 ) (1 ) (1 )

x y y z z x

P

yz zx xy

+ + +

≥ ≥ =

+ + +

Vậy P =3 Dấu “= “ xảy x= y =z =1

0,25 0,25

0,25

0,25

Chú ý: Thí sinh làm theo cách khác đáp án cho điểm tối đa

-1

Ngày đăng: 25/05/2021, 10:26

w