1. Trang chủ
  2. » Luận Văn - Báo Cáo

Weak laws of large numbers in banach spaces

33 10 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 33
Dung lượng 378 KB

Nội dung

THE UNIVERSITY OF DANANG UNIVERSITY OF EDUCATION FACULTY OF MATHEMATICS DUONG PHUOC LUAN WEAK LAWS OF LARGE NUMBERS IN BANACH SPACES UNDERGRADUATE THESIS April, 2016 THE UNIVERSITY OF DANANG UNIVERSITY OF EDUCATION FACULTY OF MATHEMATICS DUONG PHUOC LUAN WEAK LAWS OF LARGE NUMBERS IN BANACH SPACES UNDERGRADUATE THESIS Supervisor: Dr Cao Van Nuoi April, 2016 ❆❈❑◆❖❲▲❊❉●❊▼❊◆❚❙ ❋✐rst ♦❢ ❛❧❧✱ ■ ✇♦✉❧❞ ❧✐❦❡ t♦ ❡①♣r❡ss ♠② ❞❡❡♣❡st ❣r❛t✐t✉❞❡ t♦ ♠② s✉♣❡r✈✐s♦r✱ ❉r✳ ❈❛♦ ❱❛♥ ◆✉♦✐✱ ❢♦r ❤✐s ❡①❝❡❧❧❡♥t ❣✉✐❞❛♥❝❡✱ ❝❛r✐♥❣✱ ♣❛t✐❡♥❝❡✱ ❛♥❞ ♣r♦✈✐❞✐♥❣ ♠❡ ✇✐t❤ ❛♥ ❡①❝❡❧❧❡♥t ❛t♠♦s♣❤❡r❡ ❢♦r ✇r✐t✐♥❣ t❤✐s t❤❡s✐s✳ ■ ❤❛✈❡ ❧❡❛r♥❡❞ ❛ ❧♦t ❢r♦♠ ❤✐♠ ♥♦t ♦♥❧② ✐♥ s❝✐❡♥t✐✜❝ ❡♥✈✐r♦♥♠❡♥t ❜✉t ❛❧s♦ ✐♥ ❡✈❡r②❞❛② ❧✐❢❡✳ ■ ✇♦✉❧❞ ❧✐❦❡ t♦ t❤❛♥❦ ❛❧❧ t❤❡ t❡❛❝❤❡rs ✇❤♦ ❤❛✈❡ t❛✉❣❤t ♠❡ ❢r♦♠ t❤❡ ✜rst ❞❛② ♦❢ ♠② ✉♥✐✈❡rs✐t② ❧✐❢❡ t✐❧❧ ♥♦✇✳ ■ ❛♠ ❛❧s♦ ❣r❛t❡❢✉❧ t♦ t❤❡ ❧❡❛❞❡r ❜♦❛r❞s ♦❢ ❋❛❝✉❧t② ♦❢ ▼❛t❤❡♠❛t✐❝s✱ ❯♥✐✈❡rs✐t② ♦❢ ❊❞✉❝❛t✐♦♥ ✲ ❉❛♥❛♥❣ ❯♥✐✈❡rs✐t② ❢♦r ♣❡r♠✐tt✐♥❣ ♠❡ t♦ ✇r✐t❡ t❤✐s t❤❡s✐s ✐♥ ❊♥❣❧✐s❤✳ ▲❛st ❜✉t ♥♦t ❧❡❛st✱ ■ ❛❧s♦ t❤❛♥❦ ♠② ❝❧♦s❡ ❢r✐❡♥❞s ✇❤♦ ❤❛✈❡ s✉♣♣♦rt❡❞ ♠❡ t♦ ♦✈❡r❝♦♠❡ t♦✉❣❤ t✐♠❡s✳ ■ ❣r❡❛t❧② ✈❛❧✉❡ t❤❡✐r ❢r✐❡♥❞s❤✐♣ ❛♥❞ ■ ❞❡❡♣❧② ❛♣♣r❡❝✐❛t❡ t❤❡✐r ❜❡❧✐❡❢ ✐♥ ♠❡✳ ❉❛♥❛♥❣✱ ✷✺ ❆♣r✐❧ ✷✵✶✻ ❉✉♦♥❣ P❤✉♦❝ ▲✉❛♥ ✐ ❈❖◆❚❊◆❚❙ ❈♦♥t❡♥ts ✐✐ ■♥tr♦❞✉❝t✐♦♥ ✶ ✶ Pr❡❧✐♠✐♥❛r✐❡s ✷ ✶✳✶ ❇❛♥❛❝❤ s♣❛❝❡s ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✶✳✷ ❇❛♥❛❝❤ s♣❛❝❡✲✈❛❧✉❡❞ r❛♥❞♦♠ ❡❧❡♠❡♥ts ✶✳✸ ❊①♣❡❝t❛t✐♦♥ ✶✳✹ ❈♦♥❞✐t✐♦♥❛❧ ♣r♦❜❛❜✐❧✐t②✱ ❝♦♥❞✐t✐♦♥❛❧ ❡①♣❡❝t❛t✐♦♥s ❛♥❞ ♠❛rt✐♥❣❛❧❡s ✷ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✹ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✻ ✼ ✷ ❲❡❛❦ ❧❛✇s ♦❢ ❧❛r❣❡ ♥✉♠❜❡rs ❢♦r ❇❛♥❛❝❤ s♣❛❝❡✲✈❛❧✉❡❞ r❛♥❞♦♠ ❡❧❡♠❡♥ts ✶✵ ✷✳✶ ❉❡✜♥✐t✐♦♥ ❛♥❞ s♦♠❡ ✇❡❧❧✲❦♥♦✇♥ ❝❧❛ss✐❝❛❧ r❡s✉❧ts ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✶✵ ✷✳✷ ❲❡❛❦ ❧❛✇s ♦❢ ❧❛r❣❡ ♥✉♠❜❡rs ✐♥ ❇❛♥❛❝❤ s♣❛❝❡s ✇✐t❤ ❙❝❤❛✉❞❡r ❜❛s✐s ✶✸ ✷✳✸ ❲❡❛❦ ❧❛✇s ♦❢ ❧❛r❣❡ ♥✉♠❜❡rs ✐♥ ❘❛❞❡♠❛❝❤❡r t②♣❡ p ❇❛♥❛❝❤ s♣❛❝❡s ✷✵ ✸ ❲❡❛❦ ❧❛✇s ♦❢ ❧❛r❣❡ ♥✉♠❜❡rs ❢♦r ❇❛♥❛❝❤ s♣❛❝❡✲✈❛❧✉❡❞ ♠❛rt✐♥✲ ❣❛❧❡s ✷✹ ✸✳✶ ❙♦♠❡ ♣r♦♣❡rt✐❡s ♦❢ ❇❛♥❛❝❤ s♣❛❝❡ ✈❛❧✉❡❞ ♠❛rt✐♥❣❛❧❡s ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✷✹ ✸✳✷ ❲❡❛❦ ❧❛✇s ♦❢ ❧❛r❣❡ ♥✉♠❜❡rs ❢♦r ❇❛♥❛❝❤ s♣❛❝❡✲✈❛❧✉❡❞ ♠❛rt✐♥❣❛❧❡s ✳ ✷✼ ❇✐❜❧✐♦❣r❛♣❤② ✷✾ ✐✐ ■◆❚❘❖❉❯❈❚■❖◆ ■♥ ♣r♦❜❛❜✐❧✐t②✱ t❤❡ ❧✐♠✐t t❤❡♦r❡♠s ✐♥ ❣❡♥❡r❛❧ ❛♥❞ t❤❡ ❧❛✇s ♦❢ ❧❛r❣❡ ♥✉♠❜❡rs ✐♥ ♣❛rt✐❝✉❧❛r ❤❛✈❡ ❜❡❡♥ st✉❞②✐♥❣ ❜② ♠❛♥② ♠❛t❤❡♠❛t✐❝✐❛♥s✳ ❚❤❡ ❧❛✇s ♦❢ ❧❛r❣❡ ♥✉♠❜❡rs ❤❛✈❡ ♠❛♥② ❛♣♣❧✐❝❛t✐♦♥s ✐♥ st❛t✐st✐❝s✱ ❡❝♦♥♦♠✐❝s✱ ♠❡❞✐❝✐♥❡ ❛♥❞ ♦t❤❡r ❡♠♣✐r✐❝❛❧ s❝✐❡♥❝❡s✳ ❚❤❡r❡❢♦r❡✱ t❤❡ st✉❞② ♦❢ ✐t ❤❛s ♥♦t ♦♥❧② t❤❡ t❤❡♦r❡t✐❝❛❧ ♠❡❛♥✲ ✐♥❣s ❜✉t ❛❧s♦ t❤❡ ❡♠♣✐r✐❝❛❧ ♠❡❛♥✐♥❣s✳ ❚❤❡ ❝❧❛ss✐❝❛❧ ❧❛✇s ♦❢ ❧❛r❣❡ ♥✉♠❜❡rs ❛r❡ ♠❛✐♥❧② ❢♦r r❛♥❞♦♠ ✈❛r✐❛❜❧❡s t❛❦✐♥❣ r❡❛❧ ✈❛❧✉❡s✳ ❚❤❡ ❣r❡❛t ❛♠♦✉♥t ♦❢ ✐♥t❡r❡st ♦✈❡r t❤❡ ❧❛st ✻✵ ②❡❛rs ✐♥ r❡♣r❡s❡♥t✐♥❣ st♦❝❤❛st✐❝ ♣r♦❝❡ss❡s ❛s r❛♥❞♦♠ ❡❧❡♠❡♥ts ✐♥ ❛ ❇❛♥❛❝❤ s♣❛❝❡ ❤❛s ✐♥s♣✐r❡❞ t❤❡ st✉❞② ♦❢ t❤❡ ❧❛✇s ♦❢ ❧❛r❣❡ ♥✉♠❜❡rs ❢♦r r❛♥❞♦♠ ❡❧❡♠❡♥ts t❛❦✐♥❣ t❤❡✐r ✈❛❧✉❡s ✐♥ ❛ ❇❛♥❛❝❤ s♣❛❝❡✳ ❚❤❡ r❡s✉❧ts ♦❜t❛✐♥❡❞ ✐♥ t❤✐s st✉❞② ❤❛✈❡ t❤❡ r✐❣✐❞ r❡❧❛t✐♦♥s❤✐♣ ✇✐t❤ t❤❡ ❣❡♦♠❡tr② ♦❢ ❇❛♥❛❝❤ s♣❛❝❡s ❛♥❞ ❢♦r♠ t❤❡ ✐♥t❡r❢❡r❡♥❝❡ ❜❡t✇❡❡♥ ♣r♦❜❛❜✐❧✐t② t❤❡♦r② ❛♥❞ ❢✉♥❝t✐♦♥❛❧ ❛♥❛❧②s✐s✳ ❚❤✐s t❤❡s✐s ♣r❡s❡♥ts s♦♠❡ r❡s✉❧ts ❛❜♦✉t t❤❡ ✇❡❛❦s ❧❛✇s ♦❢ ❧❛r❣❡ ♥✉♠❜❡rs ✐♥ ❇❛♥❛❝❤ s♣❛❝❡s✳ ❚❤❡ t❤❡s✐s ✐s ♦r❣❛♥✐s❡❞ ❛s ❢♦❧❧♦✇✿ ❈❤❛♣t❡r ✶ ♣r❡s❡♥ts t❤❡ ❜❛s✐❝ ❦♥♦✇❧❡❞❣❡ ❛❜♦✉t ❢✉♥❝t✐♦♥❛❧ ❛♥❛❧②s✐s ❛♥❞ ♣r♦❜❛❜✐❧✐t② ♦♥ ❇❛♥❛❝❤ s♣❛❝❡s✳ ❈❤❛♣t❡r ✷ ♣r❡s❡♥ts t❤❡ ✇❡❛❦ ❧❛✇s ♦❢ ❧❛r❣❡ ♥✉♠❜❡rs ❢♦r r❛♥❞♦♠ ❡❧❡♠❡♥ts t❛❦✐♥❣ t❤❡✐r ✈❛❧✉❡s ✐♥ ❛ ❇❛♥❛❝❤ s♣❛❝❡✳ ❋✐rst❧②✱ ✇❡ ♣r❡s❡♥t t❤❡ ❞❡✜♥✐t✐♦♥ ♦❢ t❤❡ ✇❡❛❦ ❧❛✇ ♦❢ ❧❛r❣❡ ♥✉♠❜❡rs ❛♥❞ s♦♠❡ ✇❡❧❧✲❦♥♦✇♥ r❡s✉❧ts ✐♥ t❤❡ r❡❛❧ ❝❛s❡✳ ❙❡❝♦♥❞❧②✱ ✇❡ ♠❡♥t✐♦♥ t❤❡ ✇❡❛❦s ❧❛✇s ♦❢ ❧❛r❣❡ ♥✉♠❜❡rs ✐♥ ❇❛♥❛❝❤ s♣❛❝❡s ✇✐t❤ ❙❝❤❛✉❞❡r ❜❛s✐s ❛♥❞ t❤❡ ❡①t❡♥s✐♦♥ ♦❢ t❤♦s❡ r❡s✉❧ts ❢♦r ❛r❜✐tr❛r② r❡❛❧ s❡♣❛r❛❜❧❡ ❇❛♥❛❝❤ s♣❛❝❡ ❜② ❡♠❜❡❞❞✐♥❣ ❡❛❝❤ s♣❛❝❡ ✐s♦♠♦r♣❤✐❝❛❧❧② ✐♥ t❤❡ ❇❛♥❛❝❤ s♣❛❝❡ C [0; 1]✳ ❚❤✐r❞❧②✱ ✇❡ ♠❡♥t✐♦♥ ❛ ✇❡❛❦ ❧❛✇ ♦❢ ❧❛r❣❡ ♥✉♠❜❡rs ❢♦r r❛♥❞♦♠ ❡❧❡♠❡♥ts t❛❦✐♥❣ t❤❡✐r ✈❛❧✉❡s ✐♥ ❛ ❘❛❞❡♠❛❝❤❡r t②♣❡ p ❇❛♥❛❝❤ s♣❛❝❡ ✭1 ≤ p ≤ 2✮✳ ❈❤❛♣t❡r ✸ ♣r❡s❡♥ts ❛ ✇❡❛❦ ❧❛✇ ♦❢ ❧❛r❣❡ ♥✉♠❜❡rs ❢♦r ♠❛rt✐♥❣❛❧❡s ✐♥ ❛ ❇❛♥❛❝❤ s♣❛❝❡✳ ❙♦♠❡ ♣r♦♣❡rt✐❡s ♦❢ ♠❛rt✐♥❣❛❧❡s ✐♥ ❇❛♥❛❝❤ s♣❛❝❡ ❛r❡ ❛❧s♦ ❡①❛♠✐♥❡❞✳ ✶ ❈❍❆P❚❊❘ ✶ P❘❊▲■▼■◆❆❘■❊❙ ✶✳✶ ❇❛♥❛❝❤ s♣❛❝❡s ❉❡✜♥✐t✐♦♥ ✶✳✶✳✶✳ ▲❡t E ❜❡ ❛ ✈❡❝t♦r s♣❛❝❡✳ E ♦♥ ✐♥ E x ≥ 0✱ ❚❤❡ ♣❛✐r s♣❛❝❡✳ ■❢ E (E, ✐❢ ❛♥❞ ♦♥❧② ✐❢ d y x = 0E ❀ ✭tr✐❛♥❣❧❡ ✐♥❡q✉❛❧✐t②✮✳ ) ✐s ❝❛❧❧❡❞ ❛ ♥♦r♠❡❞ s♣❛❝❡ ✐s ❛ r❡❛❧ ✈❡❝t♦r s♣❛❝❡✱ t❤❡♥ ▲❡t ❛♥❞ ❀ x+y ≤ x + y ✭✐✐✐✮ x α✿ x =0 ❛♥❞ αx = |α| x ✭✐✐✮ ♥♦r♠ ♦♥ E ✐s ❛ r❡❛❧ ✈❛❧✉❡❞ ❢✉♥❝t✐♦♥ s✉❝❤ t❤❛t t❤❡ ❢♦❧❧♦✇✐♥❣ ❝♦♥❞✐t✐♦♥s ❛r❡ s❛t✐s✜❡❞ ❜② ❛❧❧ ❡❧❡♠❡♥t ❛♥❞ ❡❛❝❤ s❝❛❧❛r ✭✐✮ ❆ ❜❡ ❛ ❢✉♥❝t✐♦♥ ❢r♦♠ E2 E ♦r ♥♦r♠❡❞ ✈❡❝t♦r s♣❛❝❡ ♦r ♥♦r♠❡❞ ❧✐♥❡❛r ✐s ❝❛❧❧❡❞ ❛ ✐♥t♦ R r❡❛❧ ♥♦r♠❡❞ s♣❛❝❡✳ ❞❡✜♥❡❞ ❜② d(x, y ) = x − y ❢♦r ❛❧❧ x, y ∈ E ✳ ❜② t❤❡ ♥♦r♠ ♦❢ ❚❤❡♥ (E, d) ✐s ❛ ♠❡tr✐❝ s♣❛❝❡ ❛♥❞ d ✐s ❝❛❧❧❡❞ t❤❡ ♠❡tr✐❝ ✐♥❞✉❝❡❞ E✳ ❉❡✜♥✐t✐♦♥ ✶✳✶✳✷✳ ❆ ♥♦r♠❡❞ s♣❛❝❡ (E, ) ✐s ❝❛❧❧❡❞ ❛ ❇❛♥❛❝❤ s♣❛❝❡ ✐❢ ✐t ✐s ❝♦♠✲ ♣❧❡t❡ ✐♥ t❤❡ ♠❡tr✐❝ ✐♥❞✉❝❡❞ ❜② ✐ts ♥♦r♠✱ ✐✳❡✳✱ ❡✈❡r② ❈❛✉❝❤② s❡q✉❡♥❝❡ ✐♥ r❡q✉✐r❡❞ t♦ ❝♦♥✈❡r❣❡ t♦ ❛♥ ❡❧❡♠❡♥t ❜❡❧♦♥❣✐♥❣ t♦ ■❢ ❛ E ✐s ❛ r❡❛❧ ✈❡❝t♦r s♣❛❝❡ ❛♥❞ r❡❛❧ ❇❛♥❛❝❤ s♣❛❝❡✳ (E, ) ✐s E✳ ✐s ❛ ❇❛♥❛❝❤ s♣❛❝❡✱ t❤❡♥ ✷ E (E, ) ✐s ❝❛❧❧❡❞ ✶✳✶✳ ❇❛♥❛❝❤ s♣❛❝❡s ▲❡t E ❜❡ ❛ r❡❛❧ ❇❛♥❛❝❤ s♣❛❝❡✳ ❲❡ ❞❡♥♦t❡ ❧✐♥❡❛r ❢✉♥❝t✐♦♥❛❧s ❞❡✜♥❡❞ ♦♥ E✳ E∗ E∗ ✐s ❝❛❧❧❡❞ t❤❡ t❤❡ ❝♦❧❧❡❝t✐♦♥ ♦❢ ❛❧❧ ❝♦♥t✐♥✉♦✉s ❞✉❛❧ s♣❛❝❡ ♦❢ E✳ E ∗ ✱ t♦❣❡t❤❡r ✇✐t❤ t❤❡ ❛❞❞✐t✐♦♥ ❛♥❞ s❝❛❧❛r ♠✉❧t✐♣❧✐❝❛t✐♦♥ ❞❡✜♥❡❞ ✐♥ (f1 + f2 )(x) = f1 (x) + f2 (x), f, f1 , f2 ∈ E ∗ ❛♥❞ α ∈ R✱ ♥♦r♠ ❞❡✜♥❡❞ ❜② ❢♦r ❛❧❧ t❤❡ E∗ ❜② (αf )(x) = αf (x) ✐s ❛ ✈❡❝t♦r s♣❛❝❡✳ ❍❡♥❝❡✱ ✇❡ ❝❛♥ ❡q✉✐♣ E∗ ✇✐t❤ f = sup f (x) x ≤1 ❚❤❡♦r❡♠ ✶✳✶✳✸ ✭❍❛❤♥✲❇❛♥❛❝❤✱ ❬✼❪✮✳ ▲❡t E ❜❡ ❛ ♥♦r♠❡❞ s♣❛❝❡ ❛♥❞ F ✐s ❛ s✉❜s♣❛❝❡ ♦❢ E ✳ ❚❤❡♥✱ ❢♦r ❡❛❝❤ f ∈ F ∗ ✱ t❤❡r❡ ❡①✐sts fˆ ∈ E ∗ s✉❝❤ t❤❛t fˆ = f ❛♥❞ t❤❡ r❡str✐❝t✐♦♥ ♦❢ fˆ t♦ F ✐s f ✳ ❈♦r♦❧❧❛r② ✶✳✶✳✹ ✭❬✼❪✮✳ ■❢ x ✐s ❛ ♥♦♥③❡r♦ ❡❧❡♠❡♥t ♦❢ ❛ ♥♦r♠❡❞ s♣❛❝❡ E ✱ t❤❡♥ t❤❡r❡ ❡①✐sts ❛♥ f ∈ E ∗ s✉❝❤ t❤❛t f = ❛♥❞ f (x) = x ✳ ❈♦r♦❧❧❛r② ✶✳✶✳✺ ✭❬✼❪✮✳ ■❢ x ❛♥❞ y ❛r❡ ❞✐✛❡r❡♥t ❡❧❡♠❡♥ts ♦❢ ❛ ♥♦r♠❡❞ s♣❛❝❡ E ✱ t❤❡♥ t❤❡r❡ ❡①✐sts ❛♥ f ∈ E ∗ s✉❝❤ t❤❛t f (x) = f (y)✳ ❉❡✜♥✐t✐♦♥ ✶✳✶✳✻✳ ❆ ♥♦r♠❡❞ s♣❛❝❡ E ✐s s❛✐❞ t♦ ❜❡ s❡♣❛r❛❜❧❡ ✐❢ ✐t ❤❛s ❛ ❝♦✉♥t❛❜❧❡ (xn ) ⊂ E s♦♠❡ n ∈ N✳ ❞❡♥s❡ s✉❜s❡t✱ t❤❛t ✐s✱ t❤❡r❡ ❡①✐sts ❛ s❡q✉❡♥❝❡ ε>0 x − xn < ε ❛r❡ ❛r❜✐tr❛r②✱ t❤❡♥ ❢♦r s✉❝❤ t❤❛t ✐❢ x∈E ❛♥❞ ❉❡✜♥✐t✐♦♥ ✶✳✶✳✼✳ ▲❡t (E, ) ❜❡ ❛ ♥♦r♠❡❞ s♣❛❝❡✳ ❆ s❡q✉❡♥❝❡ (xn ) ⊂ E ✐s ❛ ❙❝❤❛✉❞❡r ❜❛s✐s ❢♦r E ✐❢✱ ❢♦r ❡❛❝❤ x ∈ E ✱ t❤❡r❡ ❡①✐sts ❛ ✉♥✐q✉❡ s❡q✉❡♥❝❡ ♦❢ s❝❛❧❛rs ( an ) s✉❝❤ t❤❛t ∞ x= an x n n=1 ❆ ❙❝❤❛✉❞❡r ❜❛s✐s (xn ) ✐s ❛ ♠♦♥♦t♦♥❡ ❜❛s✐s ✐❢ t❤❡ s❡q✉❡♥❝❡ ✐s ♠♦♥♦t♦♥❡ ✐♥❝r❡❛s✐♥❣ ❢♦r ❡❛❝❤ s❡q✉❡♥❝❡ ♦❢ s❝❛❧❛rs ❲❤❡♥ ❛ ♥♦r♠ s♣❛❝❡ ❢✉♥❝t✐♦♥❛❧s x∗n : E→R E ❤❛s ❛ ❙❝❤❛✉❞❡r ❜❛s✐s n k=1 ak xk n≥1 (an )✳ (xn )✱ ✇❡ ❞❡✜♥❡ t❤❡ ❝♦♦r❞✐♥❛t❡ ❜② x∗n (x) = an , ∞ ✇❤❡r❡ x = an x n ✳ ■t ✐s str❛✐❣❤t❢♦r✇❛r❞ t❤❛t ❡❛❝❤ n=1 x∗n (xm ) = δmn ✳ ✸ x∗n ✐s ❧✐♥❡❛r ❛♥❞ s❛t✐s✜❡s ✶✳✷✳ ❇❛♥❛❝❤ s♣❛❝❡✲✈❛❧✉❡❞ r❛♥❞♦♠ ❡❧❡♠❡♥ts ❲❡ ❛❧s♦ ❞❡✜♥❡ t❤❡ (xn )✮ (Un ) ♦♥ E s❡q✉❡♥❝❡ ♦❢ ♣❛rt✐❛❧ s✉♠ ♦♣❡r❛t♦rs ✭❢♦r t❤❡ ❙❝❤❛✉❞❡r ❜❛s✐s ❜② n n x∗k (x)xk Un = = ak x k , k=1 k=1 ∞ ✇❤❡r❡ x= ak x k ✳ k=1 x∗n ❚❤❡ ❢❛❝t t❤❛t ❛♥❞ Un E ❛r❡ ❝♦♥t✐♥✉♦✉s ✇❤❡♥❡✈❡r ✐s ❛ ❇❛♥❛❝❤ s♣❛❝❡ ✐s ❞✉❡ t♦ ❇❛♥❛❝❤ ✭❬✸❪✱ ❚❤❡♦r❡♠ ✸✳✶✮ Pr♦♣♦s✐t✐♦♥ ✶✳✶✳✽ ✭❬✽❪✮✳ ✭✐✮ ■❢ E ✐s ❛ ♥♦r♠❡❞ s♣❛❝❡ ✇❤✐❝❤ ❤❛s ❛ ♠♦♥♦t♦♥❡ ❜❛s✐s✱ t❤❡♥ Un ≤ ❢♦r ❡❛❝❤ n✳ ✭✐✐✮ ■❢ E ✐s ❛ ❇❛♥❛❝❤ s♣❛❝❡ ✇❤✐❝❤ ❤❛s ❛ ❙❝❤❛✉❞❡r ❜❛s✐s✱ t❤❡♥ t❤❡r❡ ❡①✐sts ❛ ♣♦s✐t✐✈❡ ❝♦♥st❛♥t K s✉❝❤ t❤❛t Un ≤ K ❢♦r ❛❧❧ n✳ ❉❡✜♥✐t✐♦♥ ✶✳✶✳✾✳ (E, ) ▲❡t ❜✐❝♦♥t✐♥✉♦✉s ❧✐♥❡❛r ♠❛♣ E s♣❛❝❡s ❛♥❞ F T ❢r♦♠ ❛r❡ s❛✐❞ t♦ ❜❡ ♦♥t♦ t❤❡ ♦t❤❡r✳ ❆ ♠❛♣ T: E →F ✐s ❝❛❧❧❡❞ ❛♥ ❛♥❞ E (F, ) t♦ F ✐s ❝❛❧❧❡❞ ❛♥ ✐s♦♠♦r♣❤✐❝ ✐s♦♠❡tr② x, y ∈ E ✳ ❚✇♦ ♥♦r♠❡❞ s♣❛❝❡s E ✐s♦♠♦r♣❤✐s♠✳ ❚✇♦ ♥♦r♠❡❞ ✐❢ t❤❡r❡ ✐s ❛♥ ✐s♦♠♦r♣❤✐s♠ ❢r♦♠ ❡❛❝❤ ✐❢ T (x) − T (y ) ❢♦r ❛❧❧ ❜❡ t✇♦ ♥♦r♠❡❞ s♣❛❝❡s✳ ❆ ❜✐❥❡❝t✐✈❡✱ = x−y ❛♥❞ F ❛r❡ s❛✐❞ t♦ ❜❡ ✐s♦♠❡tr✐❝ ✐❢ t❤❡r❡ ✐s ❛♥ ✐s♦♠❡tr② ❢r♦♠ ❡❛❝❤ ♦♥t♦ t❤❡ ♦t❤❡r✳ ❚❤❡♦r❡♠ ✶✳✶✳✶✵ ✭❬✸❪✮✳ ❊✈❡r② s❡♣❛r❛❜❧❡ ♥♦r♠❡❞ s♣❛❝❡ ✐s ✐s♦♠❡tr✐❝ t♦ ❛ s✉❜s♣❛❝❡ ♦❢ C [0; 1]✳ ✶✳✷ ❇❛♥❛❝❤ s♣❛❝❡✲✈❛❧✉❡❞ r❛♥❞♦♠ ❡❧❡♠❡♥ts ▲❡t (Ω, A, P) ❜❡ ❛ ♣r♦❜❛❜✐❧✐t② s♣❛❝❡✳ ▲❡t B (E ) E✳ s♣❛❝❡✳ ❲❡ ❞❡♥♦t❡ t❤❡ ♦♣❡♥ s❡ts ✐♥ ❉❡✜♥✐t✐♦♥ ✶✳✷✳✶✳ t❤❡ ❇♦r❡❧ ❆ ♠❛♣ (A, B(E ))✲♠❡❛s✉r❛❜❧❡✱ ❆ r❛♥❞♦♠ ❡❧❡♠❡♥t ✐✳❡✳✱ X σ ✲❛❧❣❡❜r❛ (E, ) ♦❢ E✱ ❜❡ ❛ r❡❛❧ s❡♣❛r❛❜❧❡ ❇❛♥❛❝❤ ✐✳❡✳✱ t❤❡ σ ✲❛❧❣❡❜r❛ X : Ω → E ✐s ❝❛❧❧❡❞ ❛ r❛♥❞♦♠ X −1 (B ) ∈ A ❢♦r ❛❧❧ B ∈ B (E )✳ ✐♥ E ✐s ❝❛❧❧❡❞ ❛ ❝♦✉♥t❛❜❧②✲✈❛❧✉❡❞ ✐s ♦❢ t❤❡ ❢♦r♠ X= xi IAi , i∈I ✹ ❡❧❡♠❡♥t ❣❡♥❡r❛t❡❞ ❜② ✐♥ E ✐❢ ✐t ✐s r❛♥❞♦♠ ❡❧❡♠❡♥t ✐❢ ✐t ✶✳✷✳ ❇❛♥❛❝❤ s♣❛❝❡✲✈❛❧✉❡❞ r❛♥❞♦♠ ❡❧❡♠❡♥ts ✇❤❡r❡ ■❢ I (xi ) ✐s ❛ s❡q✉❡♥❝❡ ✐♥ E ✱ (Ai ) ✐s ❛ ❞✐s❥♦✐♥t s❡q✉❡♥❝❡ ✐♥ A ❛♥❞ I ✐s ✜♥✐t❡✱ t❤❡♥ X ✐s ❝❛❧❧❡❞ ❛ s✐♠♣❧❡ ✐s ❝♦✉♥t❛❜❧❡✳ r❛♥❞♦♠ ❡❧❡♠❡♥t✳ ❇❡❧♦✇ ❛r❡ s♦♠❡ ♣r♦♣❡rt✐❡s ♦❢ r❛♥❞♦♠ ❡❧❡♠❡♥ts✳ ❚❤❡ r❡❛❞❡r ♠❛② r❡❢❡r t♦ ❬✽❪ ❢♦r t❤❡ ♣r♦♦❢s ♦❢ t❤❡s❡ ♣r♦♣❡rt✐❡s✳ Pr♦♣♦s✐t✐♦♥ ✶✳✷✳✷ ✭❬✽❪✮✳ ▲❡t F ❜❡ ❛ r❡❛❧ s❡♣❛r❛❜❧❡ ❇❛♥❛❝❤ s♣❛❝❡✳ ■❢ X ✐s ❛ r❛♥❞♦♠ ❡❧❡♠❡♥t ✐♥ E ❛♥❞ f : E → F ✐s (B(E ), B(F ))✲♠❡❛s✉r❛❜❧❡ ♠❛♣✱ t❤❡♥ f (X ) ✐s ❛ r❛♥❞♦♠ ❡❧❡♠❡♥t ✐♥ Y ✳ ❈♦r♦❧❧❛r② ✶✳✷✳✸✳ ■❢ ✐♥ R✳ X ✐s r❛♥❞♦♠ ❡❧❡♠❡♥t ✐♥ E t❤❡♥ X ✐s ❛ r❛♥❞♦♠ ❡❧❡♠❡♥t Pr♦♣♦s✐t✐♦♥ ✶✳✷✳✹ ✭❬✽❪✮✳ ▲❡t (Xn ) ❜❡ ❛ s❡q✉❡♥❝❡ ♦❢ r❛♥❞♦♠ ❡❧❡♠❡♥ts ✐♥ E s✉❝❤ t❤❛t Xn (ω) → X (ω) ❢♦r ❡❛❝❤ ω ∈ Ω✳ ❚❤❡♥ X ✐s ❛ r❛♥❞♦♠ ❡❧❡♠❡♥t ✐♥ E ✳ Pr♦♣♦s✐t✐♦♥ ✶✳✷✳✺ ✭❬✽❪✮✳ ❆ ♠❛♣ X : Ω → E ✐s ❛ r❛♥❞♦♠ ❡❧❡♠❡♥t ✐❢ ❛♥❞ ♦♥❧② ✐❢ t❤❡r❡ ❡①✐sts ❛ s❡q✉❡♥❝❡ (Xn ) ♦❢ ❝♦✉♥t❛❜❧②✲✈❛❧✉❡❞ r❛♥❞♦♠ ❡❧❡♠❡♥ts ✇❤✐❝❤ ❝♦♥✈❡r❣❡s ✉♥✐❢♦r♠❧② t♦ X ✳ Pr♦♣♦s✐t✐♦♥ ✶✳✷✳✻ ✭❬✽❪✮✳ X ✐s ❛ r❛♥❞♦♠ ❡❧❡♠❡♥t ✐♥ r❛♥❞♦♠ ✈❛r✐❛❜❧❡ ❢♦r ❡❛❝❤ f ∈ E ∗ ✳ E ✐❢ ❛♥❞ ♦♥❧② ✐❢ f (X ) ✐s ❛ Pr♦♣♦s✐t✐♦♥ ✶✳✷✳✼ ✭❬✽❪✮✳ ■❢ X ✐s ❛ r❛♥❞♦♠ ❡❧❡♠❡♥t ✐♥ ✈❛r✐❛❜❧❡ t❤❡♥ ξX ✐s ❛ r❛♥❞♦♠ ❡❧❡♠❡♥t✳ E ❛♥❞ ✐s ❛ r❛♥❞♦♠ ξ ❉❡✜♥✐t✐♦♥ ✶✳✷✳✽✳ ❚❤❡ r❛♥❞♦♠ ❡❧❡♠❡♥ts X1 ❛♥❞ X2 ✐♥ E ❛r❡ s❛✐❞ t♦ ❜❡ ✐❞❡♥t✐❝❛❧❧② ❞✐str✐❜✉t❡❞ ✐❢ P[X1 ∈ B ] = P[X2 ∈ B ] ❢♦r ❡❛❝❤ B ∈ B (E )✳ ❆ ❢❛♠✐❧② ♦❢ r❛♥❞♦♠ ❡❧❡♠❡♥ts ✐s ✐❞❡♥t✐❝❛❧❧② ❞✐str✐❜✉t❡❞ ✐❢ ❡✈❡r② ♣❛✐r ✐s ✐❞❡♥t✐❝❛❧❧② ❞✐str✐❜✉t❡❞✳ ❉❡✜♥✐t✐♦♥ ✶✳✷✳✾✳ ❜❡ ✐♥❞❡♣❡♥❞❡♥t ✐❢ ❆ ✜♥✐t❡ s❡t ♦❢ r❛♥❞♦♠ ❡❧❡♠❡♥ts {X1 , , X2 } ✐♥ E ✐s s❛✐❞ t♦ P[X1 ∈ B1 , , Xn ∈ Bn ] = P[X1 ∈ B1 ] P[Xn ∈ Bn ] ❢♦r ❡✈❡r② B1 , , Bn ∈ B (E )✳ ❆ ❢❛♠✐❧② ♦❢ r❛♥❞♦♠ ❡❧❡♠❡♥ts ✐♥ E ✐s s❛✐❞ t♦ ❜❡ ✐♥❞❡♣❡♥❞❡♥t ✐❢ ❡✈❡r② ✜♥✐t❡ s✉❜s❡t ✐s ✐♥❞❡♣❡♥❞❡♥t✳ Pr♦♣♦s✐t✐♦♥ ✶✳✷✳✶✵ ✭❬✽❪✮✳ ▲❡t F ❜❡ ❛ r❡❛❧ s❡♣❛r❛❜❧❡ ❇❛♥❛❝❤ s♣❛❝❡✳ ▲❡t X1 ❛♥❞ X2 ❜❡ ✐♥❞❡♣❡♥❞❡♥t ❛♥❞ ✐❞❡♥t✐❝❛❧❧② ❞✐str✐❜✉t❡❞ r❛♥❞♦♠ ❡❧❡♠❡♥ts ✐♥ E ❛♥❞ ❧❡t f : E → F ❜❡ ❛ ♠❡❛s✉r❛❜❧❡ ♠❛♣✳ ❚❤❡♥ f (X1 ) ❛♥❞ f (X2 ) ❛r❡ ✐♥❞❡♣❡♥❞❡♥t ❛♥❞ ✐❞❡♥t✐❝❛❧❧② ❞✐str✐❜✉t❡❞ r❛♥❞♦♠ ✈❛r✐❛❜❧❡s✳ ✺ ✶✳✸✳ ❊①♣❡❝t❛t✐♦♥ Pr♦♣♦s✐t✐♦♥ ✶✳✷✳✶✶ ✭❬✽❪✮✳ ❚❤❡ r❛♥❞♦♠ ❡❧❡♠❡♥ts X1 ❛♥❞ X2 ✐♥ E ❛r❡ ✐❞❡♥t✐❝❛❧❧② ❞✐str✐❜✉t❡❞ ✐❢ ❛♥❞ ♦♥❧② ✐❢ f (X1 ) ❛♥❞ f (X2 ) ❛r❡ ✐❞❡♥t✐❝❛❧❧② ❞✐str✐❜✉t❡❞ r❛♥❞♦♠ ✈❛r✐❛❜❧❡s ❢♦r ❡❛❝❤ f ∈ E ∗ ✳ Pr♦♣♦s✐t✐♦♥ ✶✳✷✳✶✷ ✭❬✽❪✮✳ ▲❡t X1 ❛♥❞ X2 ❜❡ r❛♥❞♦♠ ❡❧❡♠❡♥ts ✐♥ E ✳ ❚❤❡♥ X1 ❛♥❞ X2 ❛r❡ ✐♥❞❡♣❡♥❞❡♥t ✐❢ ❛♥❞ ♦♥❧② ✐❢ f (X1 ) ❛♥❞ g(X2 ) ❛r❡ ✐♥❞❡♣❡♥❞❡♥t r❛♥❞♦♠ ✈❛r✐❛❜❧❡s ❢♦r ❡✈❡r② f, g ∈ E ∗ ✳ ❉❡✜♥✐t✐♦♥ ✶✳✷✳✶✸✳ ❆ s❡q✉❡♥❝❡ ♦❢ r❛♥❞♦♠ ❡❧❡♠❡♥ts t❤❡ r❛♥❞♦♠ ❡❧❡♠❡♥t X ✭✐✮ ✐♥ ♣r♦❜❛❜✐❧✐t② ✐❢ ❢♦r ❡❛❝❤ (X n ) ✐s s❛✐❞ t♦ ❝♦♥✈❡r❣❡ t♦ ε>0 lim P [ Xn − X > ε] = 0; n→∞ ✭✐✐✮ ✇✐t❤ ♣r♦❜❛❜✐❧✐t② ✶ ✭✇✳♣✳✶✮✱ ♦r ❛❧♠♦st s✉r❡❧② ✭❛✳s✳✮ ✐❢ P lim Xn − X > ε = n→∞ ■❢ t❤❡ s❡q✉❡♥❝❡ ♦❢ r❛♥❞♦♠ ❡❧❡♠❡♥ts (X n ) ❝♦♥✈❡r❣❡s t♦ t❤❡ r❛♥❞♦♠ ❡❧❡♠❡♥t X ❝♦♥✈❡r❣❡s t♦ t❤❡ r❛♥❞♦♠ ❡❧❡♠❡♥t X ✐♥ ♣r♦❜❛❜✐❧✐t②✱ ✇❡ ✇r✐t❡ P Xn − → X ■❢ t❤❡ s❡q✉❡♥❝❡ ♦❢ r❛♥❞♦♠ ❡❧❡♠❡♥ts (X n ) ✇✐t❤ ♣r♦❜❛❜✐❧✐t② ✶✱ ✇❡ ✇r✐t❡ w.p.1 Xn −−−→ X ✶✳✸ ❊①♣❡❝t❛t✐♦♥ (Ω, A, P) ❜❡ ❛ ♣r♦❜❛❜✐❧✐t② s♣❛❝❡ ❛♥❞ E ❜❡ ❛ r❡❛❧ s❡♣❛r❛❜❧❡ ❇❛♥❛❝❤ s♣❛❝❡✳ X : Ω → E ❜❡ ❛ r❛♥❞♦♠ ❡❧❡♠❡♥t s✉❝❤ t❤❛t E f (X ) < ∞ ❢♦r ❡❛❝❤ f ∈ E ∗ ✳ X ▲❡t ▲❡t ✐s s❛✐❞ t♦ ❜❡ ❢♦r ❡❛❝❤ P❡tt✐s ✐♥t❡❣r❛❜❧❡ ✐❢ t❤❡r❡ ❡①✐sts ❛ r❛♥❞♦♠ ❡❧❡♠❡♥t m∈E s✉❝❤ t❤❛t f ∈ E ∗✱ f (m) = f (X ) dP Ω ❚❤❡ ❡❧❡♠❡♥t m P❡tt✐s ✐♥t❡❣r❛❧ ♦❢ X ✇✐t❤ r❡s♣❡❝t t♦ ♠❡❛s✉r❡ P✳ ❚❤❡ t❤❡ ❡①♣❡❝t❛t✐♦♥ ♦r t❤❡ ♠❡❛♥ ♦❢ X ❛♥❞ ✐s ❞❡♥♦t❡❞ ❜② ✐s ❝❛❧❧❡❞ t❤❡ ❡❧❡♠❡♥t m ✐s ❛❧s♦ ❝❛❧❧❡❞ X dP ♦r EX ✳ Ω Pr♦♣♦s✐t✐♦♥ ✶✳✸✳✶ ✭❬✽❪✮✳ ▲❡t X ✱ X1 ✱ X2 ❜❡ r❛♥❞♦♠ ❡❧❡♠❡♥ts ✐♥ E ❛♥❞ ❧❡t x ∈ E ✳ ✭✐✮ ■❢ EX ❡①✐sts✱ t❤❡♥ ✐t ✐s ✉♥✐q✉❡❧② ❞❡t❡r♠✐♥❡❞✳ ✻ ✷✳✷✳ ❲❡❛❦ ❧❛✇s ♦❢ ❧❛r❣❡ ♥✉♠❜❡rs ✐♥ ❇❛♥❛❝❤ s♣❛❝❡s ✇✐t❤ ❙❝❤❛✉❞❡r ❜❛s✐s n E n ≤ Qt (Xk ) k=1 ✭▼❛r❦♦✈✬s ✐♥❡q✉❛❧✐t②✮ ε n = εn E Qt (Xk ) k=1 = E Q t (X ) ε Qt (X1 ) ❙✐♥❝❡ → − ❛s t → − ∞ Qt (X1 ) ❛♥❞ ❝♦♥✈❡r❣❡♥❝❡ t❤❡♦r❡♠ ✭❬✷❪✱ ♣❛❣❡ ✶✸✵✮✱ ✇❡ ❤❛✈❡ ❝❤♦♦s❡ t s♦ t❤❛t ❋♦r t❤❡ t n P ≤ (K + 1) X1 ✱ ❜② ❞♦♠✐♥❛t❡❞ E Qt (X1 ) → − ❛s t → − ∞✳ ❚❤✉s✱ ε Qt (Xk ) > n < k=1 δ ✭✷✳✹✮ ❝❤♦s❡♥ ❛❜♦✈❡✱ ✇❡ ❤❛✈❡ t x∗i (x)xi Ut (x) = i=1 ∗ ∗ E ✱ ✇❤❡r❡ {x1 , , xt } ❛r❡ t❤❡ ❝♦♦r❞✐♥❛t❡ ❢✉♥❝t✐♦♥❛❧s ❢♦r t❤❡ ❜❛s✐s x ∈ ❡❧❡♠❡♥ts {x1 , , xt }✳ ❢♦r ❡❛❝❤ P n ❚❤✉s✱ n Ut (Xk ) > k=1 ε n =P n t x∗i (Xk )xi > k=1 i=1 t x∗i =P n i=1 t x∗i ≤P n i=1 t ≤ P n i=1 n Xk xi > k=1 n Xk xi > x∗i (Xk ) > ε 2t xi k=1 n k=1 ❙✐♥❝❡ t❤❡ ✇❡❛❦ ❧❛✇ ♦❢ ❧❛r❣❡ ♥✉♠❜❡rs ❤♦❧❞s ❢♦r ❡❛❝❤ s❡q✉❡♥❝❡ 0✱ ε ε ε (x∗i (Xn )) ❛♥❞ E[x∗i (X1 )] = ❢♦r ❡❛❝❤ i✱ ✇❡ ❤❛✈❡ P n → − ∞✳ N (ε, δ )✱ ❛s P n n n x∗i (Xk ) > k=1 ε 2t xi ❍❡♥❝❡✱ t❤❡r❡ ❡①✐sts ❛ ♣♦s✐t✐✈❡ ✐♥t❡❣❡r n Ut (Xk ) > k=1 ε t ≤ P i=1 n ✶✺ → − N (ε, δ ) n x∗i (Xk ) > k=1 s✉❝❤ t❤❛t ❢♦r ❛❧❧ ε 2t xi < δ n ≥ ✭✷✳✺✮ ✷✳✷✳ ❲❡❛❦ ❧❛✇s ♦❢ ❧❛r❣❡ ♥✉♠❜❡rs ✐♥ ❇❛♥❛❝❤ s♣❛❝❡s ✇✐t❤ ❙❝❤❛✉❞❡r ❜❛s✐s t ❚❤❡r❡❢♦r❡✱ ❢r♦♠ ✭✷✳✸✮✱ ❢♦r t❤❡ P n n δ = δ ❙✐♥❝❡ δ Ut (Xk ) > n k=1 < n Xk > ε ≤ P n ≥ N (ε, δ )✱ ❝❤♦s❡♥ ✐♥ ✭✷✳✹✮ ❛♥❞ ❢♦r ❛❧❧ k=1 ε +P n n Qt (Xk ) > k=1 ε δ + ❝❛♥ ❜❡ ❛r❜✐tr❛r✐❧② s♠❛❧❧✱ ✇❡ ❤❛✈❡ n n P Xk − → 0E k=1 ❚❤❡ ❛❜♦✈❡ r❡s✉❧t ❝❛♥ ❜❡ ❡①t❡♥❞❡❞ ❢♦r ❛❧❧ r❡❛❧ s❡♣❛r❛❜❧❡ ❇❛♥❛❝❤ s♣❛❝❡s ❜② ❡♠❜❡❞❞✐♥❣ ❡❛❝❤ s♣❛❝❡ ✐s♦♠♦r♣❤✐❝❛❧❧② ✐♥ t❤❡ ❇❛♥❛❝❤ s♣❛❝❡ C [0; 1] ❝❛♥ t❤❡♥ ❜❡ ❛♣♣❧✐❡❞ s✐♥❝❡ C [0; 1]✳ ❚❤❡♦r❡♠ 2.2.1 ✐s ❛ ❇❛♥❛❝❤ s♣❛❝❡ ✇❤✐❝❤ ❤❛s ❛ ❙❝❤❛✉❞❡r ❜❛s✐s ✭❬✸❪✱ ♣❛❣❡ ✷✽✮✳ ❚❤❡♦r❡♠ ✷✳✷✳✷ ✭❬✽❪✮✳ ▲❡t E ❜❡ ❛ r❡❛❧ s❡♣❛r❛❜❧❡ ❇❛♥❛❝❤ s♣❛❝❡ ❛♥❞ ❧❡t (Xn ) ❜❡ ❛ s❡q✉❡♥❝❡ ♦❢ ✐❞❡♥t✐❝❛❧❧② ❞✐str✐❜✉t❡❞ r❛♥❞♦♠ ❡❧❡♠❡♥ts ✐♥ E s✉❝❤ t❤❛t E X1 < ∞ ❛♥❞ EX1 ❡①✐sts✳ ❋♦r ❡❛❝❤ f ∈ E ∗ ✱ t❤❡ ✇❡❛❦ ❧❛✇ ♦❢ ❧❛r❣❡ ♥✉♠❜❡rs ❤♦❧❞s ❢♦r t❤❡ s❡q✉❡♥❝❡ (f (Xn )) ✐❢ ❛♥❞ ♦♥❧② ✐❢ n P n Pr♦♦❢✳ ❇② t❤❡♦r❡♠ 1.1.10✱ E Xk − → EX1 k=1 C [0; 1]✳ ❍❡♥❝❡✱ E ✐♥t♦ C [0; 1]✳ ✐s ✐s♦♠❡tr✐❝ t♦ ❛ s✉❜s♣❛❝❡ ♦❢ ❡①✐sts ❛ ❜✐❥❡❝t✐✈❡✱ ❜✐❝♦♥t✐♥✉♦✉s✱ ❧✐♥❡❛r ❢✉♥❝t✐♦♥ h ❢r♦♠ t❤❡r❡ 1.2.2✱ (h(Xn )) ✐s ❛ s❡q✉❡♥❝❡ ♦❢ ✐❞❡♥t✐❝❛❧❧② ❞✐str✐❜✉t❡❞ r❛♥❞♦♠ ∗ ∗ ❡❧❡♠❡♥ts ✐♥ C [0; 1] ✇✐t❤ E h(Xi ) < ∞✳ ▲❡t g ∈ C [0; 1] ❛♥❞ ❧❡t h ❜❡ t❤❡ ❛❞❥♦✐♥t ❇② ♣r♦♣♦s✐t✐♦♥ ❢✉♥❝t✐♦♥ ✭❬✾❪✱ ❚❤❡♦r❡♠ ✹✳✶✵✮ ♦❢ n n g (h(Xk )) = k=1 ❚❤✉s✱ ❢♦r ❡❛❝❤ (g (h(Xn )))✳ h∗ (g (Xk )) − → E[h∗ (g (X1 ))] = E[g (h(X1 ))] P n k=1 t❤❡ ✇❡❛❦ ❧❛✇ ♦❢ ❧❛r❣❡ ♥✉♠❜❡rs ❤♦❧❞s ❢♦r t❤❡ s❡q✉❡♥❝❡ ❍❡♥❝❡✱ ❜② t❤❡♦r❡♠ h n 2.2.1✱ n Xk k=1 ✇❡ ❤❛✈❡ n g ∈ C [0; 1]∗ ✱ h✱ = n n P h(Xk ) − → Eh(X1 ) = hEX1 k=1 ✶✻ ✷✳✷✳ ❲❡❛❦ ❧❛✇s ♦❢ ❧❛r❣❡ ♥✉♠❜❡rs ✐♥ ❇❛♥❛❝❤ s♣❛❝❡s ✇✐t❤ ❙❝❤❛✉❞❡r ❜❛s✐s ❙✐♥❝❡ h ✐s ❜✐❥❡❝t✐✈❡✱ ❜✐❝♦♥t✐♥✉♦✉s ❛♥❞ ❧✐♥❡❛r✱ n n ❚❤❡ r❡s✉❧ts ✐♥ t❤❡♦r❡♠ 2.2.1 P Xk − → EX1 k=1 ❛♥❞ 2.2.2 ❛r❡ ♥♦✇ ♣r♦✈❡❞ ❢♦r ❛ ❝❧❛ss ♦❢ r❛♥❞♦♠ ❡❧❡♠❡♥ts ✇❤✐❝❤ ♥❡❡❞ ♥♦t ❜❡ ✐❞❡♥t✐❝❛❧❧② ❞✐str✐❜✉t❡❞✳ ❚❤❡♦r❡♠ ✷✳✷✳✸ ✭❬✽❪✮✳ ▲❡t E ❜❡ ❛ r❡❛❧ s❡♣❛r❛❜❧❡ ❇❛♥❛❝❤ s♣❛❝❡ ✇❤✐❝❤ ❤❛s ❛ ❙❝❤❛✉❞❡r ❜❛s✐s (xn ) s✉❝❤ t❤❛t Un ≤ K ❢♦r ❡❛❝❤ n ✇❤❡r❡ K ✐s ❛ ♣♦s✐t✐✈❡ ❝♦♥st❛♥t✳ ▲❡t (Xn ) ❜❡ ❛ s❡q✉❡♥❝❡ ♦❢ ✐❞❡♥t✐❝❛❧❧② ❞✐str✐❜✉t❡❞ r❛♥❞♦♠ ❡❧❡♠❡♥ts ✐♥ E s✉❝❤ t❤❛t E X1 < ∞✳ ▲❡t (ξn ) ❜❡ ❛ s❡q✉❡♥❝❡ ♦❢ r❛♥❞♦♠ ✈❛r✐❛❜❧❡s s✉❝❤ t❤❛t n E ξk2 ≤ Γ n ✭✷✳✻✮ k=1 ❢♦r ❡❛❝❤ n ✇❤❡r❡ Γ ✐s ❛ ♣♦s✐t✐✈❡ ❝♦♥st❛♥t ❛♥❞ ❧❡t E(ξn Xn ) = E(ξ1 X1 ) ❢♦r ❡❛❝❤ n✳ ❋♦r ❡❛❝❤ ❝♦♦r❞✐♥❛t❡ ❢✉♥❝t✐♦♥❛❧ x∗i ✱ t❤❡ ✇❡❛❦ ❧❛✇ ♦❢ ❧❛r❣❡ ♥✉♠❜❡rs ❤♦❧❞s ❢♦r t❤❡ s❡q✉❡♥❝❡ (x∗i (ξn Xn )) ✐❢ ❛♥❞ ♦♥❧② ✐❢ n P ξk Xk − → E(ξ1 X1 ) n Pr♦♦❢✳ k=1 ❚❤❡ ♣r♦♦❢ ♦❢ ✧✐❢✧ ♣❛rt ✐s s✐♠✐❧❛r t♦ t❤❛t ♦❢ t❤❡♦r❡♠ 2.2.1✳ ❲❡ ♣r♦✈❡ t❤❡ ✧♦♥❧② ✐❢✧ ♣❛rt✳ Qt ≤ K + ❢♦r ❡❛❝❤ n ✇❤❡r❡ Qt ✐s t❤❡ ❧✐♥❡❛r ♦♣❡r❛t♦r ♦♥ E ❞❡✜♥❡❞ ❜② Qt (x) = x − Ut (x)✳ ❋r♦♠ ✭✷✳✻✮✱ ✉s✐♥❣ ❈❛✉❝❤②✲❙❝❤✇❛r③ ✐♥❡q✉❛❧✐t②✱ ✐t ❢♦❧❧♦✇s t❤❛t ❢♦r ❡❛❝❤ n ❋✐rst✱ ✇❡ ❤❛✈❡ n E ξk2 n < Γ + k=1 ε > ❛♥❞ δ > ❜❡ ❣✐✈❡♥✱ ✇❡ ♥❡❡❞ t♦ s❤♦✇ t❤❛t t❤❡r❡ ❡①✐sts ❛ ♣♦s✐t✐✈❡ N (ε, δ ) s✉❝❤ t❤❛t ◆♦✇✱ ❧❡t ✐♥t❡❣❡r P n n ξk Xk − E(ξ1 X1 ) > ε < δ k=1 n ≥ N (ε, δ )✳ ❡❛❝❤ n ❛♥❞ ❡❛❝❤ t✱ ❢♦r ❛❧❧ ❋♦r n n ξk Xk = k=1 n n Ut (ξk Xk ) + k=1 ✶✼ n n Qt (ξk Xk ) k=1 ✭✷✳✼✮ ✷✳✷✳ ❲❡❛❦ ❧❛✇s ♦❢ ❧❛r❣❡ ♥✉♠❜❡rs ✐♥ ❇❛♥❛❝❤ s♣❛❝❡s ✇✐t❤ ❙❝❤❛✉❞❡r ❜❛s✐s t✱ ❋♦r ❡❛❝❤ ✜①❡❞ P n n ε Qt (ξk Xk ) > k=1 =P ≤ ≤ < ❙✐♥❝❡ ❜♦t❤ E Qt (X1 ) s♦ t❤❛t ❢♦r ❛❧❧ →0 ❛♥❞ n P n n εn ξk Qt (Xk ) > k=1 k=1 n E Qt (Xk ) 4(Γ + 1) ε E Q t (X ) Qt (E(ξ1 X1 )) → n Qt (ξk Xk ) > k=1 ε ε ❛s < 2 t → ∞✱ ✇❡ ❝❛♥ ❝❤♦♦s❡ δ t ✭✷✳✽✮ ✭✷✳✾✮ n✱ ✇❡ ❤❛✈❡ k=1 n Ut (ξk Xk ) − Ut (E(ξ1 X1 )) > n k=1 n

n k=1 ❙✐♥❝❡ t❤❡ ✇❡❛❦ ❧❛✇ ♦❢ ❧❛r❣❡ ♥✉♠❜❡rs ❤♦❧❞s ❢♦r s❡q✉❡♥❝❡ N (ε, δ ) n Qt (ξk Xk ) − Qt (E(ξ1 X1 )) > n ε n +P s✉❝❤ t❤❛t ❢♦r ❛❧❧ ε ε δ + 2 (Ut (ξn Xn ))✱ n ≥ N (ε, δ ) n Ut (ξk Xk ) − Ut (E(ξ1 X1 )) > k=1 ε ≤ δ ■t ❢♦❧❧♦✇s t❤❛t P ξk Xk − E(ξ1 X1 ) > ε ≤P P n n ❛ ♣♦s✐t✐✈❡ ♥✉♠❜❡r k=1 ❝❤♦s❡♥ ✐♥ ✭✷✳✽✮ ❛♥❞ ✭✷✳✾✮ ❛♥❞ ❢♦r ❛❧❧ P ξk2 E Qt (E(ξ1 X1 )) < t E ξk Qt (Xk ) ❛♥❞ ❋r♦♠ ✭✷✳✼✮✱ ❢♦r t❤❡ ε n εn n n n ξk Xk − E(ξ1 X1 ) > ε < k=1 ✶✽ δ + δ =δ t❤❡r❡ ❡①✐sts ✷✳✷✳ ❲❡❛❦ ❧❛✇s ♦❢ ❧❛r❣❡ ♥✉♠❜❡rs ✐♥ ❇❛♥❛❝❤ s♣❛❝❡s ✇✐t❤ ❙❝❤❛✉❞❡r ❜❛s✐s n ≥ N (ε, δ )✳ ❢♦r ❛❧❧ ❙✐♥❝❡ δ ❝❛♥ ❜❡ ❛r❜✐tr❛r✐❧② s♠❛❧❧✱ ✇❡ ❤❛✈❡ n n P ξk Xk − → E(ξ1 X1 ) k=1 2.2.3 ❆❣❛✐♥✱ t❤❡ r❡s✉❧t ♦❢ t❤❡♦r❡♠ ❝❛♥ ❜❡ ❡①t❡♥❞❡❞ ❢♦r ❛❧❧ r❡❛❧ s❡♣❛r❛❜❧❡ ❇❛✲ ♥❛❝❤ s♣❛❝❡s ❜② ❡♠❜❡❞❞✐♥❣ ❡❛❝❤ s♣❛❝❡ ✐s♦♠♦r♣❤✐❝❛❧❧② ✐♥ t❤❡ ❇❛♥❛❝❤ s♣❛❝❡ C [0; 1]✳ ❚❤❡♦r❡♠ ✷✳✷✳✹ ✭❬✽❪✮✳ ▲❡t E ❜❡ ❛ r❡❛❧ s❡♣❛r❛❜❧❡ ❇❛♥❛❝❤ s♣❛❝❡ ❛♥❞ ❧❡t (Xn ) ❜❡ ❛ s❡q✉❡♥❝❡ ♦❢ ✐❞❡♥t✐❝❛❧❧② ❞✐str✐❜✉t❡❞ r❛♥❞♦♠ ❡❧❡♠❡♥ts ✐♥ E s✉❝❤ t❤❛t E X1 < ∞✳ ▲❡t (ξn ) ❜❡ ❛ s❡q✉❡♥❝❡ ♦❢ r❛♥❞♦♠ ✈❛r✐❛❜❧❡s s✉❝❤ t❤❛t n E ξk2 ≤ Γ n k=1 ❢♦r ❡❛❝❤ n ✇❤❡r❡ Γ ✐s ❛ ♣♦s✐t✐✈❡ ❝♦♥st❛♥t ❛♥❞ ❧❡t E(ξn Xn ) = E(ξ1 X1 ) ❢♦r ❡❛❝❤ n✳ ❋♦r ❡❛❝❤ f ∈ E ∗ t❤❡ ✇❡❛❦ ❧❛✇ ♦❢ ❧❛r❣❡ ♥✉♠❜❡rs ❤♦❧❞s ❢♦r t❤❡ s❡q✉❡♥❝❡ (f (ξn Xn )) ✐❢ ❛♥❞ ♦♥❧② ✐❢ n P n Pr♦♦❢✳ ❇② t❤❡♦r❡♠ 1.1.10✱ E ξk Xk − → E(A1 X1 ) k=1 C [0; 1]✳ ❍❡♥❝❡✱ E ✐♥t♦ C [0; 1]✳ ✐s ✐s♦♠❡tr✐❝ t♦ ❛ s✉❜s♣❛❝❡ ♦❢ ❡①✐sts ❛ ❜✐❥❡❝t✐✈❡✱ ❜✐❝♦♥t✐♥✉♦✉s✱ ❧✐♥❡❛r ❢✉♥❝t✐♦♥ h ❢r♦♠ t❤❡r❡ 1.2.2✱ (h(ξn Xn )) ✐s ❛ s❡q✉❡♥❝❡ ♦❢ ✐❞❡♥t✐❝❛❧❧② ❞✐str✐❜✉t❡❞ r❛♥❞♦♠ C [0; 1] ✇✐t❤ E h(Xi ) < ∞ ❛♥❞ ❇② ♣r♦♣♦s✐t✐♦♥ ❡❧❡♠❡♥ts ✐♥ Eξn h(Xn ) = Eh(ξn Xn ) = Eh(ξ1 X1 ) = Eξ1 h(X1 ) n✳ ❢♦r ❡❛❝❤ g (h(ξk Xk )) = k=1 ❚❤✉s✱ ❢♦r ❡❛❝❤ (g (h(ξn Xn )))✳ h ❙✐♥❝❡ g ∈ C [0; 1]∗ n n ▲❡t h g∈ n ❜❡ t❤❡ ❛❞❥♦✐♥t ❢✉♥❝t✐♦♥ ♦❢ h✱ ✇❡ ❤❛✈❡ h∗ (g (ξk Xk )) − → E[h∗ (g (ξ1 X1 ))] = E[g (h(ξ1 X1 ))] P k=1 C [0; 1]∗ ✱ t❤❡ ✇❡❛❦ ❧❛✇ ♦❢ ❧❛r❣❡ ♥✉♠❜❡rs ❤♦❧❞s ❢♦r t❤❡ s❡q✉❡♥❝❡ ❍❡♥❝❡✱ ❜② t❤❡♦r❡♠ h∗ n n ❛♥❞ ❧❡t n ξn Xk = k=1 2.2.3✱ n n P h(ξk Xk ) − → Eh(ξ1 X1 ) = hEX1 k=1 ✐s ❜✐❥❡❝t✐✈❡✱ ❜✐❝♦♥t✐♥✉♦✉s ❛♥❞ ❧✐♥❡❛r✱ n n P ξk Xk − → Eξ1 X1 k=1 ✶✾ ✷✳✸✳ ❲❡❛❦ ❧❛✇s ♦❢ ❧❛r❣❡ ♥✉♠❜❡rs ✐♥ ❘❛❞❡♠❛❝❤❡r t②♣❡ p ❇❛♥❛❝❤ s♣❛❝❡s ✷✳✸ ❲❡❛❦ ❧❛✇s ♦❢ ❧❛r❣❡ ♥✉♠❜❡rs ✐♥ ❘❛❞❡♠❛❝❤❡r t②♣❡ p ❇❛♥❛❝❤ s♣❛❝❡s ❉❡✜♥✐t✐♦♥ ✷✳✸✳✶✳ p ≤ 2✮ E ❆ ❇❛♥❛❝❤ s♣❛❝❡ ✐❢ t❤❡r❡ ✐s ❛ ❝♦♥st❛♥t C>0 s✉❝❤ t❤❛t ❢♦r ❡✈❡r② p n (εi ) p ✭1 ≤ x1 , , x n ∈ E ✱ xi p , i=1 i=1 ✇❤❡r❡ ❘❛❞❡♠❛❝❤❡r t②♣❡ n ≤C εi x i E ✐s s❛✐❞ t♦ ❤❛✈❡ ✐s ❛ ❘❛❞❡♠❛❝❤❡r s❡q✉❡♥❝❡✱ t❤❛t ✐s ❛ s❡q✉❡♥❝❡ ♦❢ ✐♥❞❡♣❡♥❞❡♥t ❛♥❞ ✐❞❡♥t✐❝❛❧❧② ❞✐str✐❜✉t❡❞ r❛♥❞♦♠ ✈❛r✐❛❜❧❡s ✇✐t❤ P[εi = 1] = P[εi = −1] = ❍♦✛♠❛♥♥✲❏ør❣❡♥s❡♥ ❛♥❞ P✐s✐❡r ✭❬✶✵❪✱ ❚❤❡♦r❡♠ ✷✳✶✮ ♣r♦✈❡❞ t❤❛t ❛ s❡♣❛r❛❜❧❡ ❇❛♥❛❝❤ s♣❛❝❡ ✐s ♦❢ ❘❛❞❡♠❛❝❤❡r t②♣❡ p ✐❢ ❛♥❞ ♦♥❧② ✐❢ ❢♦r ❡✈❡r② s❡q✉❡♥❝❡ (X n ) ♦❢ t❤ ♠♦♠❡♥t✱ t❤❡r❡ ❡①✐sts ❛ ✐♥❞❡♣❡♥❞❡♥t r❛♥❞♦♠ ❡❧❡♠❡♥ts ✇✐t❤ ♠❡❛♥ ✵ ❛♥❞ ✜♥✐t❡ p ❝♦♥st❛♥t C>0 s✉❝❤ t❤❛t p n Xi p ≤C Xi E n i=1 i=1 ❯s✐♥❣ t❤❡ ❛❜♦✈❡ r❡s✉❧t✱ ✇❡ ❝❛♥ ❡st❛❜❧✐s❤ ❛ ✇❡❛❦ ❧❛✇ ♦❢ ❧❛r❣❡ ♥✉♠❜❡rs ❢♦r ❛ s❡✲ q✉❡♥❝❡ ♦❢ ✐♥❞❡♣❡♥❞❡♥t ❛♥❞ ✐❞❡♥t✐❝❛❧❧② ❞✐str✐❜✉t❡❞ r❛♥❞♦♠ ❡❧❡♠❡♥ts t❛❦✐♥❣ ✈❛❧✉❡s p ✐♥ ❛ s❡♣❛r❛❜❧❡ ❇❛♥❛❝❤ s♣❛❝❡ ♦❢ t②♣❡ ✇✐t❤ ♠❡❛♥ ✵ ❛♥❞ ✜♥✐t❡ pt❤ ♠♦♠❡♥t✳ ❚❤❡ ❢♦❧❧♦✇✐♥❣ t❡❝❤♥✐❝❛❧ ❧❡♠♠❛ ✇✐❧❧ ❜❡ ♥❡❡❞❡❞ ❢♦r ♣r♦✈✐♥❣ t❤❛t✳ ▲❡♠♠❛ ✷✳✸✳✷✳ ▲❡t p ∈ [1; 2] ❛♥❞ ❧❡t k ❜❡ ❛ ♣♦s✐t✐✈❡ ✐♥t❡❣❡r✳ ❚❤❡♥ ✭✐✮ ❋♦r ❛❧❧ r ∈ (0; p) p k ≤ r k p r ✭✐✐✮ ❋♦r ❛❧❧ i0 ∈ N✱ r ∈ p p i r −2 ≤ i=i0 r ∈ (0; p)✱ t❤❡ ❛❧❧ i ∈ {1, , k} ✭✐✮ ❙✐♥❝❡ ❍❡♥❝❡✱ ❢♦r i=1 ;p k Pr♦♦❢✳ p i r −1 ; p p p r k r −1 − (i0 − 1) r −1 p−r ❢✉♥❝t✐♦♥ i i r −1 = p f (x) = x r −1 i p i r −1 dx ≥ i−1 x r −1 dx i−1 ✷✵ p ✐s ✐♥❝r❡❛s✐♥❣ ♦♥ (0; ∞)✳ ✷✳✸✳ ❲❡❛❦ ❧❛✇s ♦❢ ❧❛r❣❡ ♥✉♠❜❡rs ✐♥ ❘❛❞❡♠❛❝❤❡r t②♣❡ p ❇❛♥❛❝❤ s♣❛❝❡s ■t ❢♦❧❧♦✇s t❤❛t k k i p −1 r ≥ x r∈ ❢♦r ❛❧❧ p ;p p −1 r k dx = i−1 i=1 i=1 ✭✐✐✮ ❙✐♥❝❡ i p f (x) = x r −2 ✱ t❤❡ ❢✉♥❝t✐♦♥ i ∈ {1, , k} i p ✐s ❞❡❝r❡❛s✐♥❣ ♦♥ i p i r −2 = p r p x r −1 dx = k r p (0; ∞)✳ ❍❡♥❝❡✱ p i r −2 dx ≤ x r −2 dx i−1 i−1 ■t ❢♦❧❧♦✇s t❤❛t k k i p −2 r i ≤ x i=i0 i=1 = p −2 r k p x r −2 dx dx = i0 −1 i−1 p p r k r −1 − (i0 − 1) r −1 p−r ❚❤❡♦r❡♠ ✷✳✸✳✸ ✭❬✶✶❪✮✳ ▲❡t E ❜❡ ❛ r❡❛❧ s❡♣❛r❛❜❧❡ ❇❛♥❛❝❤ s♣❛❝❡ ♦❢ t②♣❡ p ✭1 ≤ p ≤ 2✮ ❛♥❞ ❧❡t (Xn ) ❜❡ ❛ s❡q✉❡♥❝❡ ♦❢ ✐♥❞❡♣❡♥❞❡♥t ✐❞❡♥t✐❝❛❧❧② ❞✐str✐❜✉t❡❞ r❛♥❞♦♠ ❡❧❡♠❡♥ts ✇✐t❤ ♠❡❛♥ ✵ ❛♥❞ ✜♥✐t❡ pt❤ ♠♦♠❡♥t✳ ❋♦r r ∈ (0; p)✱ ✐❢ X1 > n r → nP t❤❡♥ n Pr♦♦❢✳ n P Xi − → r i=1 n ▲❡t Yk = Xk I ✱ Xk ≤n r n Zn = Yk ✱ S n = k=1 ❋♦r ❡❛❝❤ ❛♥❞ Bn = [Sn = Zn ]✳ k=1 ε > 0✱ P Xk n− r Sn > ε ≤ P(Bn )P ≤P ≤ε −p n− r Sn > ε Bn + P(Bnc )P n− r Sn > ε Bnc n− r Zn > ε + P(Bnc ) E n − r1 n p Zn + P Xk > n r k=1 n ≤ε −p − pr n p n E Xk I k=1 Xk ≤n r + P k=1 ✷✶ Xk > n r ✷✳✸✳ ❲❡❛❦ ❧❛✇s ♦❢ ❧❛r❣❡ ♥✉♠❜❡rs ✐♥ ❘❛❞❡♠❛❝❤❡r t②♣❡ p ❇❛♥❛❝❤ s♣❛❝❡s p ≤ ε−p n1− r p Xk dP + nP X1 > n r Xk ≤n r ▲❡t p In = ε−p n1− r ❲❡ ♥❡❡❞ t♦ s❤♦✇ t❤❛t In → n → ∞ ❛s Xk Xk ≤n r p dP ■♥❞❡❡❞✱ n In = ε −p 1− pr X1 p dP k r P [k − < X1 r ≤ k] n k−1< X1 k=1 n ≤k p p ≤ ε−p n1− r k=1 n ≤ε r k p −p 1− pr i r −1 n P [k − < X1 p p ≤ k] ✭▲❡♠♠❛ i=1 k=1 n r i r −1 P [i − < X1 ≤ ε−p n1− r r ≤ n] i=1 n p p ≤ ε−p n1− r i r −2 iP [ X1 r > i − 1] i=1 ❋♦r r ∈ 0; ❢♦r ❛❧❧ p ✱ ✇❡ ❤❛✈❡ p p i r −2 ≤ n r −2 i ∈ {1, , n}❀ ❛♥❞ s✐♥❝❡ lim nP [ X1 r > n − 1] = 0, n→∞ ❜② ❙t♦❧③✲❈❡sàr♦ t❤❡♦r❡♠ ✭❬✹❪✱ ❚❤❡♦r❡♠ ✷✳✼✳✷✮ ✇❡ ♦❜t❛✐♥ n r i P [ X1 lim > i − 1] i=1 ❍❡♥❝❡✱ = n n→∞ n In ≤ ε −p −1 iP [ X1 n r > i − 1] → i=1 ❋♦r r∈ p ;p ✳ ❙✐♥❝❡ lim iP [ X1 i→∞ ❢♦r ❡❛❝❤ δ > 0✱ r > i − 1] = 0, ✇❡ ❝❛♥ ✜♥❞ ❛♥ ✐♥t❡❣❡r i0 s✉❝❤ t❤❛t ❢♦r ❛❧❧ iP [ X1 r > i − 1] < δ ✷✷ i > i0 ✱ 2.3.2(i)) ✷✳✸✳ ❲❡❛❦ ❧❛✇s ♦❢ ❧❛r❣❡ ♥✉♠❜❡rs ✐♥ ❘❛❞❡♠❛❝❤❡r t②♣❡ p ❇❛♥❛❝❤ s♣❛❝❡s ❍❡♥❝❡✱ i0 In ≤ ε −p 1− pr n i n p −1 r P [ X1 r > i − 1] + ε −p 1− pr n i=1 i=i0 +1 i0 ≤ε p −p 1− pr i r −1 P [ X1 n p i r −2 δ r p > i − 1] + ε−p n1− r δ i=1 p p r −1 n r −1 − i0r p−r (▲❡♠♠❛ 2.3.2(ii)) i0 ≤ε −p 1− pr i n p −1 r P [ X1 i=1 ❛s → ε−p δr p−r n → ∞✳ ❙✐♥❝❡ δ ❚❤❡r❡❢♦r❡✱ ❢♦r ❡❛❝❤ r p p −1 ε−p δr > i − 1] + − n1− r i0r p−r ❝❛♥ ❜❡ ❛r❜✐tr❛r✐❧② s♠❛❧❧✱ ✇❡ ❤❛✈❡ In → ε > 0✱ lim P n→∞ n− r S n > ε = ✷✸ ❛s n → ∞✳ ❈❍❆P❚❊❘ ✸ ❲❊❆❑ ▲❆❲❙ ❖❋ ▲❆❘●❊ ◆❯▼❇❊❘❙ ❋❖❘ ❇❆◆❆❈❍ ❙P❆❈❊✲❱❆▲❯❊❉ ▼❆❘❚■◆●❆▲❊❙ ✸✳✶ ❙♦♠❡ ♣r♦♣❡rt✐❡s ♦❢ ❇❛♥❛❝❤ s♣❛❝❡ ✈❛❧✉❡❞ ♠❛r✲ t✐♥❣❛❧❡s ❚❤❡♦r❡♠ ✸✳✶✳✶ ✭❬✶✷❪✮✳ ▲❡t (Xn ) ⊂ L2 (A, E ) ❜❡ ❛ ♠❛rt✐♥❣❛❧❡ ✇✐t❤ r❡s♣❡❝t t♦ t❤❡ ✐♥❝r❡❛s✐♥❣ s❡q✉❡♥❝❡ (An ) ♦❢ s✉❜ σ✲❛❧❣❡❜r❛s ♦❢ A✳ ❚❤❡♥✱ ❢♦r ❡✈❡r② ♣♦s✐t✐✈❡ ♥✉♠❜❡r δ ✱ ✇❡ ❤❛✈❡ P sup Xn > δ ≤ n Pr♦♦❢✳ δ2 sup Xn 22 n ▲❡t Bn = ω∈Ω Xi (ω ) ≤ δ, i ∈ {1, , n − 1}, Xn > δ ❛♥❞ Ωδ = ω ∈ Ω sup Xn (ω ) > δ n ∞ ❚❤❡ s❡t Bn ❛r❡ ♣❛✐r✇✐s❡ ❞✐s❥♦✐♥t✱ Bn ∈ An ❢♦r ❛❧❧ n Bn = Ωδ ✳ ❛♥❞ n=1 ❲❡ ❤❛✈❡ ∞ ∞ δ P(Ωδ ) = δ P =δ Bk k=1 P(Bk ) k=1 ∞ n ≤ Xk k=1 dP = sup n Bk Xk k=1 n Ak = sup E Xn k=1 n Xn k=1 2 EAk IBk Xn dP = sup n Bk ≤ sup n dP Bk n n k=1 dP = sup n Bk ✷✹ ∞ k=1 Ω Xn Bk dP dP ✸✳✶✳ ❙♦♠❡ ♣r♦♣❡rt✐❡s ♦❢ ❇❛♥❛❝❤ s♣❛❝❡ ✈❛❧✉❡❞ ♠❛rt✐♥❣❛❧❡s ≤ sup Xn n dP = sup Xn 22 n Ω ■t ❢♦❧❧♦✇s t❤❛t P sup Xn > δ ≤ n δ2 sup Xn 22 n ❈♦r♦❧❧❛r② ✸✳✶✳✷ ✭❬✶✷❪✮✳ ❆ss✉♠❡ t❤❛t t❤❡ ❤②♣♦t❤❡s✐s ✐♥ t❤❡♦r❡♠ 3.1.1 ✐s ❤♦❧❞✳ ❚❤❡♥✱ ❢♦r ❡✈❡r② m ∈ N✱ PAm sup Xn > δ dP ≤ n Ω Pr♦♦❢✳ sup Xn 22 δ2 n ❚❤❡ ♣r♦♦❢ ❢♦❧❧♦✇s ❢r♦♠ t❤❡ ❢❛❝t t❤❛t PAm sup Xn > δ dP = P (Ω ∩ Ωδ ) = P(Ωδ ) n Ω ❈♦r♦❧❧❛r② ✸✳✶✳✸ ✭❬✶✷❪✮✳ ▲❡t (Xn ) ⊂ L2 (A, E ) ❜❡ ❛ ♠❛rt✐♥❣❛❧❡ ✇✐t❤ r❡s♣❡❝t t♦ t❤❡ ✐♥❝r❡❛s✐♥❣ s❡q✉❡♥❝❡ (An ) ♦❢ s✉❜ σ✲❛❧❣❡❜r❛s ♦❢ A✳ ❚❤❡♥✱ ✇❡ ❤❛✈❡ ✭✐✮ ■❢ t❤❡ s❡q✉❡♥❝❡ (Xn ) ✐s ❜♦✉♥❞❡❞✱ t❤❡♥ ✐t ✐s ❜♦✉♥❞❡❞ ✐♥ t❤❡ ♥♦r♠ ❛❧♠♦st s✉r❡❧②❀ ✭✐✐✮ ■❢ t❤❡ s❡q✉❡♥❝❡ (Xn ) ❝♦♥✈❡r❣❡s ✐♥ ❛❧♠♦st s✉r❡❧②✳ Pr♦♦❢✳ ✭✐✮ ❙✐♥❝❡ t❤❡ s❡q✉❡♥❝❡ t✐✈❡ ♥✉♠❜❡r C 0✱ L2 (A, E )✱ s✉❝❤ t❤❛t sup Xn ❋♦r ❡✈❡r② t❤❡♥ ✐t ❝♦♥✈❡r❣❡s ✐♥ t❤❡ ♥♦r♠ ❜② t❤❡♦r❡♠ 3.1.1✱ 2 < C ✇❡ ❤❛✈❡ P sup Xn > δ ≤ n δ2 C ■t ❢♦❧❧♦✇s t❤❛t P sup Xn = +∞ = n ❙♦✱ t❤❡r❡ ❡①✐sts M >0 s✉❝❤ t❤❛t sup Xn ≤ M n ✷✺ ❛✳s✳ t❤❡r❡ ❡①✐sts ❛ ♣♦s✐✲ ✸✳✶✳ ❙♦♠❡ ♣r♦♣❡rt✐❡s ♦❢ ❇❛♥❛❝❤ s♣❛❝❡ ✈❛❧✉❡❞ ♠❛rt✐♥❣❛❧❡s (Xn ) ✐s ❛ ❈❛✉❝❤② s❡q✉❡♥❝❡ s❡q✉❡♥❝❡ ✐♥ n ∈ N✱ t❤❡♥ t❤❡ s❡q✉❡♥❝❡ (Xm − Xn )m≥n ✐s ❛ ♠❛rt✐♥❣❛❧❡ (Am )m≥n ✳ ❋♦r ❡✈❡r② ♣♦s✐t✐✈❡ ♥✉♠❜❡r δ ✱ ✉s✐♥❣ t❤❡♦r❡♠ 3.1.1✱ ✭✐✐✮ ❲❡ ♥❡❡❞ t♦ s❤♦✇ t❤❛t t❤❡ s❡q✉❡♥❝❡ E✳ ▲❡t ✉s ✜① ❛♥ ✇✐t❤ r❡s♣❡❝t t♦ ✇❡ ♦❜t❛✐♥ P sup Xm − Xn > δ ≤ m≥n δ2 sup Xm − Xn 22 m≥n ■t ❢♦❧❧♦✇s t❤❛t lim P sup Xm − Xn ≤ δ = n→∞ ❍❡♥❝❡✱ t❤❡ s❡q✉❡♥❝❡ (X n ) m≥n E✳ ✐s ❛❧♠♦st s✉r❡❧② ❈❛✉❝❤② ✐♥ ❚❤❡♦r❡♠ ✸✳✶✳✹ ✭❬✶✷❪✮✳ ▲❡t E ❜❡ ❛ ❇❛♥❛❝❤ s♣❛❝❡ ❛♥❞ (An ) ✐s ❛♥ ✐♥❝r❡❛s✐♥❣ s❡✲ q✉❡♥❝❡ ♦❢ s✉❜ σ✲❛❧❣❡❜r❛s ♦❢ A✳ ❆ss✉♠❡ t❤❛t (Xn ) ⊂ L2 (A; E ) ✐s ❛ ♠❛rt✐♥❣❛❧❡ ✇✐t❤ r❡s♣❡❝t t♦ (An )✳ ❚❤❡♥✱ ❢♦r ❡✈❡r② ♣♦s✐t✐✈❡ ♥✉♠❜❡r δ✱ ✇❡ ❤❛✈❡ P sup n n Pr♦♦❢✳ n 1 Xi > δ ≤ δ2 i=1 sup Xn 22 n ▲❡t Ωδ = n ω ∈ Ω sup n n X i (ω ) > δ i=1 ❛♥❞ Bk = m ω∈Ω Xi (ω ) ≤ δ, m ∈ {1, , k − 1}, m k X i (ω ) > δ k i=1 i=1 ∞ ❚❤❡ s❡ts Bk Bn = Ωδ ✳ ❛r❡ ♣❛✐r✇✐s❡ ❞✐s❥♦✐♥t ❛♥❞ n=1 ❲❡ ❤❛✈❡ δ P sup n n ∞ ∞ n 2 Xi > δ = δ P =δ Bn P(Bn ) n=1 n=1 i=1 ✭✸✳✶✮ ❛♥❞ ❜② ❈❛✉❝❤②✲❙❝❤✇❛r③ ✐♥❡q✉❛❧✐t②✱ δ < n2 n ≤ Xi i=1 n ≤ Xi n2 i=1 n n Xi i=1 ❈♦♠❜✐♥❡ ✭✸✳✶✮ ❛♥❞ ✭✸✳✷✮✱ ✇❡ ♦❜t❛✐♥ ∞ δ P(Ωδ ) ≤ n=1 Bn n n n Xi i=1 dP = sup n ✷✻ k=1 Bk k k Xi i=1 dP ✭✸✳✷✮ ✸✳✷✳ ❲❡❛❦ ❧❛✇s ♦❢ ❧❛r❣❡ ♥✉♠❜❡rs ❢♦r ❇❛♥❛❝❤ s♣❛❝❡✲✈❛❧✉❡❞ ♠❛rt✐♥❣❛❧❡s n = sup n Bk k=1 n ≤ sup n n Ai E Xn k Xn n n k=1 n k=1 Bk dP Xn k dP = sup dP = sup Bk k=1 i=1 Xn ≤ sup n k k EAi IBk Xn dP i=1 Bk dP = sup Xn 22 n Ω ❍❡♥❝❡✱ P sup n n n Xi > δ ≤ i=1 δ2 sup Xn 22 n ✸✳✷ ❲❡❛❦ ❧❛✇s ♦❢ ❧❛r❣❡ ♥✉♠❜❡rs ❢♦r ❇❛♥❛❝❤ s♣❛❝❡✲ ✈❛❧✉❡❞ ♠❛rt✐♥❣❛❧❡s ❋✐rst✱ ✇❡ ♣r♦✈❡ t❤❡ ❢♦❧❧♦✇✐♥❣ ❧❡♠♠❛✳ ▲❡♠♠❛ ✸✳✷✳✶ ✭❬✶✷❪✮✳ ▲❡t (Xn ) ⊂ L2 (A, E ) ❜❡ ❛ ♠❛rt✐♥❣❛❧❡ ✇✐t❤ r❡s♣❡❝t t♦ t❤❡ ✐♥❝r❡❛s✐♥❣ s❡q✉❡♥❝❡ (An ) ♦❢ s✉❜ σ✲❛❧❣❡❜r❛s ♦❢ A✳ ❚❤❡♥✱ t❤❡ s❡q✉❡♥❝❡ ( Xn ) ✐s ❛ s✉❜♠❛rt✐♥❣❛❧❡ ✇✐t❤ r❡s♣❡❝t t♦ (An )✳ Pr♦♦❢✳ ❋♦r n ≥ m✱ ✐t ❢♦❧❧♦✇s ❢r♦♠ ♣r♦♣♦s✐t✐♦♥ 1.4.4(vii) t❤❛t EAm Xn ≤ EAm Xn ❍❡♥❝❡✱ Xm ≤ EAm Xn ❚❤❡r❡❢♦r❡✱ ( Xn ) ✐s ❛ s✉❜♠❛rt✐♥❣❛❧❡ ✇✐t❤ r❡s♣❡❝t t♦ ●✐✈❡♥ ❛ s❡q✉❡♥❝❡ (X n ) (An )✳ ♦❢ r❛♥❞♦♠ ❡❧❡♠❡♥ts✱ ✇❡ ❞❡♥♦t❡ Xn∗ = max i∈{1, ,n} Xi ❚❤❡♦r❡♠ ✸✳✷✳✷ ✭❬✶✷❪✮✳ ▲❡t E ❜❡ ❛ ❇❛♥❛❝❤ s♣❛❝❡ ❛♥❞ (An ) ✐s ❛♥ ✐♥❝r❡❛s✐♥❣ s❡✲ q✉❡♥❝❡ ♦❢ s✉❜ σ✲❛❧❣❡❜r❛s ♦❢ A✳ ❆ss✉♠❡ t❤❛t (Xn ) ⊂ L2 (A, E ) ✐s ❛ ♠❛rt✐♥❣❛❧❡ ✇✐t❤ r❡s♣❡❝t t♦ (An ) ❛♥❞ Xn > ❢♦r ❛❧❧ n✳ ■❢ ❢♦r ❡✈❡r② ♣♦s✐t✐✈❡ ♥✉♠❜❡r ε✱ ✇❡ ❤❛✈❡ lim E I[X ≥ε] Xn = 0✱ t❤❡♥ t❤❡ s❡q✉❡♥❝❡ ( Xn ) ♦❜❡②s t❤❡ ✇❡❛❦ ❧❛✇ ♦❢ ❧❛r❣❡ n→∞ ♥✉♠❜❡rs ✐♥ t❤❡ ♠❛①✲❝♦♥✈♦❧✉t✐♦♥✱ ✐✳❡✳✱ ∗ n lim P n→∞ max i∈{1, ,n} ✷✼ Xi < ε = ✸✳✷✳ ❲❡❛❦ ❧❛✇s ♦❢ ❧❛r❣❡ ♥✉♠❜❡rs ❢♦r ❇❛♥❛❝❤ s♣❛❝❡✲✈❛❧✉❡❞ ♠❛rt✐♥❣❛❧❡s Pr♦♦❢✳ (An )✳ ❇② ❧❡♠♠❛ 3.2.1✱ t❤❡ s❡q✉❡♥❝❡ ❋♦r ❡✈❡r② ♣♦s✐t✐✈❡ ♥✉♠❜❡r ❛♥❞ s❡t k=n ε✱ ❧❡t ( Xn ) τ ✐❢ t❤❡r❡ ❡①✐sts ♥♦ s✉❝❤ ♥✉♠❜❡r s✉❜♠❛rt✐♥❣❛❧❡✱ ❢♦r ❛❧❧ ✐s ❛ s✉❜♠❛rt✐♥❣❛❧❡ ✇✐t❤ r❡s♣❡❝t t♦ ❜❡ t❤❡ ✜rst ♥✉♠❜❡r k✳ k ❙✐♥❝❡ t❤❡ s❡q✉❡♥❝❡ n≥τ Xτ ≤ EAτ Xn ❙♦✱ Xτ I[Xτ∗ ≥ε] ≤ EAτ Xn I[Xn∗ ≥ε] ■t ❢♦❧❧♦✇s t❤❛t P [ X τ ≥ ε] ≤ E ε ❙✐♥❝❡ Xτ I[Xτ∗ ≥ε] ≤ ε E Xn I[Xn∗ ≥ε] [ X τ ≥ ε] = [ X n ≥ ε] ✱ P [ X n ≥ ε] ≤ E ε ❍❡♥❝❡✱ Xn I[Xn∗ ≥ε] P [ Xn < ε] = − P [ Xn ≥ ε] ≥ − E ε ❯s✐♥❣ t❤❡ ❤②♣♦t❤❡s✐s lim E I[Xn∗ ≥ε] Xn n→∞ = 0✱ lim P [Xn∗ < ε] ≥ n→∞ ❙✐♥❝❡ P [Xn∗ < ε] ≤ ❢♦r ❛❧❧ n✱ lim P n→∞ max i∈{1, ,n} ✷✽ Xn I[Xn∗ ≥ε] ✇❡ ♦❜t❛✐♥ Xi < ε = Xn ≥ ε ( Xn ) ✐s ❛ s✉❝❤ t❤❛t ❇■❇▲■❖●❘❆P❍❨ ❬✶❪ N N Vahani , V I Tarieladze, S A Qoban n✱ Vero tnostnye Raspredeleni v Banahovyh Prostranstvah✱ Moskva «Nauka»✱ ✶✾✽✺✳ ❬✷❪ ❱✳ ■✳ ❇♦❣❛❝❤❡✈✱ ▼❡❛s✉r❡ ❚❤❡♦r② ✭❱♦❧✉♠❡ ■✮✱ ❙♣r✐♥❣❡r✲❱❡r❧❛❣ ❇❡r❧✐♥ ❍❡✐❞❡❧✲ ❜❡r❣✱ ✷✵✵✼✳ ❬✸❪ ◆✳ ▲✳ ❈❛r♦t❤❡rs✱ ❆ ❙❤♦rt ❈♦✉rs❡ ♦♥ ❇❛♥❛❝❤ ❙♣❛❝❡ ❚❤❡♦r②✱ ❈❛♠❜r✐❞❣❡ ❯♥✐✲ ✈❡rs✐t② Pr❡ss✱ ✷✵✵✺✳ ❬✹❪ ❆✳❉✳❘✳ ❈❤♦✉❞❛r②✱ ❈♦♥st❛♥t✐♥ P✳ ◆✐❝✉❧❡s❝✉✱ ❘❡❛❧ ❆♥❛❧②s✐s ♦♥ ■♥t❡r✈❛❧s✱ ❙♣r✐♥❣❡r ■♥❞✐❛✱ ✷✵✶✹✳ ❬✺❪ ❇✳ ❱✳ ●♥❡❞❡♥❦♦✱ ❬✻❪ ▼✳ ▲♦❡✈❡✱ ❚❤❡ ❚❤❡♦r② ♦❢ Pr♦❜❛❜✐❧✐t②✱ ▼✐r P✉❜❧✐s❤❡rs✱ ▼♦s❝♦✇✱ ✶✾✼✽✳ Pr♦❜❛❜✐❧✐t② ❚❤❡♦r② ■✱ ❙♣r✐♥❣❡r✲❱❡r❧❛❣ ◆❡✇ ❨♦r❦✱ ✶✾✼✼✳ ❬✼❪ ❘♦❜❡rt ❊✳ ▼❡❣❣✐♥s♦♥✱ ❆♥ ■♥tr♦❞✉❝t✐♦♥ t♦ ❇❛♥❛❝❤ ❙♣❛❝❡ ❚❤❡♦r②✱ ❙♣r✐♥❣❡r✲ ❱❡r❧❛❣ ◆❡✇ ❨♦r❦✱ ✶✾✾✽✳ ▲❛✇s ♦❢ ▲❛r❣❡ ◆✉♠❜❡rs ❢♦r ◆♦r♠❡❞ ▲✐♥❡❛r ❙♣❛❝❡s ❛♥❞ ❈❡rt❛✐♥ ❋r❡❝❤❡t ❙♣❛❝❡s✱ ▲❡❝t✉r❡ ◆♦t❡s ✐♥ ▼❛t❤❡♠❛t✐❝s ✸✻✵✱ ❙♣r✐♥❣❡r✲ ❬✽❪ ❲✳ ❏✳ P❛❞❣❡tt✱ ❘✳ ▲✳ ❚❛②❧♦r✱ ❱❡r❧❛❣ ❇❡r❧✐♥ ❍❡✐❞❡❧❜❡r❣ ◆❡✇ ❨♦r❦✱ ✶✾✼✸✳ ❬✾❪ ❲❛❧t❡r ❘✉❞✐♥✱ ❋✉♥❝t✐♦♥❛❧ ❆♥❛❧②s✐s ✭✷♥❞ ❡❞✳✮✱ ▼❝●r❛✇✲❍✐❧❧✱ ✶✾✾✶✳ ❚❤❡ ▲❛✇ ♦❢ ▲❛r❣❡ ◆✉♠❜❡rs ❛♥❞ ❚❤❡ ❈❡♥✲ tr❛❧ ▲✐♠✐t ❚❤❡♦r❡♠ ✐♥ ❇❛♥❛❝❤ ❙♣❛❝❡s✱ ❚❤❡ ❆♥♥❛❧s ♦❢ Pr♦❜❛❜✐❧✐t②✱ ❱♦❧✳ ✹✱ ◆♦✳ ❬✶✵❪ ❏✳ ❍♦✛♠❛♥♥✲❏ør❣❡♥s❡♥✱ ●✳ P✐s✐❡r✱ ✹ ✭✶✾✼✻✮✱ ✺✽✼✲✺✾✾✳ ❙t❛❜❧❡ ♠❡❛s✉r❡s ❛♥❞ ❝❡♥tr❛❧ ❧✐♠✐t t❤❡♦r❡♠s ✐♥ s♣❛❝❡s ♦❢ st❛❜❧❡ t②♣❡✱ ❚r❛♥s✳ ❆♠❡r✳ ▼❛t❤✳ ❙♦❝✳ ✷✺✶ ✭✶✾✼✾✮✱ ✼✶✲✶✵✶✳ ❬✶✶❪ ▼❛r❝✉s✱ ▼✳✱ ❲♦②❝③②♥s❦✐✱ ❲✳✱ ❬✶✷❪ ❈❛♦ ❱❛♥ ◆✉♦✐✱ ▲❡ ❚✉ ◆❛♠ ▲♦♥❣✱ ❚❤❡ ▲❛✇ ♦❢ ▲❛r❣❡ ◆✉♠❜❡rs ❢♦r ▼❛rt✐♥❣❛❧❡s ✐♥ ❛ ❇❛♥❛❝❤ s♣❛❝❡✱ ❏♦✉r♥❛❧ ♦❢ ❆❞✈❛♥❝❡ ✐♥ ▼❛t❤❡♠❛t✐❝❛❧ ❙❝✐❡♥❝❡✱ ❱♦❧✳ ✷✱ ■ss✉❡ ✶ ✭✷✵✶✺✮✱ ✶✵✻✲✶✶✹✳ ✷✾ ...THE UNIVERSITY OF DANANG UNIVERSITY OF EDUCATION FACULTY OF MATHEMATICS DUONG PHUOC LUAN WEAK LAWS OF LARGE NUMBERS IN BANACH SPACES UNDERGRADUATE THESIS Supervisor:... s♣❛❝❡s p ≤ ε−p n1− r p Xk dP + nP X1 > n r Xk ≤n r ▲❡t p In = ε−p n1− r ❲❡ ♥❡❡❞ t♦ s❤♦✇ t❤❛t In → n → ∞ ❛s Xk Xk ≤n r p dP ■♥❞❡❡❞✱ n In = ε −p 1− pr X1 p dP k r P [k − < X1 r ≤ k] n k−1< X1 k=1... ❙t♦❧③✲❈❡sàr♦ t❤❡♦r❡♠ ✭❬✹❪✱ ❚❤❡♦r❡♠ ✷✳✼✳✷✮ ✇❡ ♦❜t❛✐♥ n r i P [ X1 lim > i − 1] i=1 ❍❡♥❝❡✱ = n n→∞ n In ≤ ε −p −1 iP [ X1 n r > i − 1] → i=1 ❋♦r r∈ p ;p ✳ ❙✐♥❝❡ lim iP [ X1 i→∞ ❢♦r ❡❛❝❤ δ > 0✱ r >

Ngày đăng: 17/05/2021, 00:28

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN