1. Trang chủ
  2. » Giáo Dục - Đào Tạo

NBV TỔNG ôn tập ỨNG DỤNG TÍCH PHÂN (vấn đề 15)

50 4 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 50
Dung lượng 2,21 MB

Nội dung

TÀI LIỆU TỔNG ÔN TẬP TNTHPT 2020 Vấn đề 15 ỨNG DỤNG TÍCH PHÂN A ỨNG DỤNG TÍCH PHÂN TÍNH DIỆN TÍCH HÌNH PHẲNG   b (C ) : y  f (x )     Hình phẳng (H ) giới hạn (C ) : y  g (x ) diện tích S  f (x )  g(x ) dx   a x  a, x  b (a  b )      b (C ) : y  f (x )    f (x ) dx Hình phẳng (H ) giới hạn (C ) : Ox : y  diện tích S    a x  a, x  b (a  b )      Selip  ab (E ) : x y2  1 a b2  Hình thức đề thường hay cho Hình thức 1: Khơng cho hình vẽ, cho dạng (H ) : {y  f (x ), y  g(x ), x  a, x  b (a  b)} b   f (x )  g(x ) dx  kết quả, so sánh với bốn đáp án casio a Hình thức 2: Khơng cho hình vẽ, cho dạng (H ) : {y  f (x ), y  g(x )} xi casio Giải f (x )  g(x ) tìm nghiệm x1, , xi , với x nhỏ nhất, x i lớn    f (x )  g (x ) dx x1 Hình thức 3: Cho hình vẽ, giải phương trình tìm tọa độ giao điểm (nếu chưa cho hình), chia diện tích nhỏ, xổ hình từ xuống, ghi cơng thức bấm máy tính Hình thức 4: Cho ba hàm trở lên, chẳng hạn y  f (x ), y  g(x ), y  h(x ) ta nên vẽ hình Câu Diện tích hình phẳng gạch chéo hình bên   2 x C   2 x A 1 1 Câu 2  x   dx  2x D   x B  x   dx 1 1  x   dx  x   dx Diện tích S hình phẳng giới hạn đường y  x , y  1 , x  x  tính cơng thức sau đây? 1 A S     x  1 dx B S    x  1 dx C S    x  1 dx D S    x  1 dx 0 0 Facebook Nguyễn Vương https://www.facebook.com/phong.baovuong Trang NGUYỄN BẢO VƯƠNG - 0946798489 Câu Diện tích phần hình phẳng gạch chéo hình vẽ bên tính theo cơng thức đây? y y  x2  2x 1 x 1 O y   x2  A  2x  x   dx B 1 Câu C 1   x  2 dx D 1   2 x  x   dx 1 Gọi S diện tích hình phẳng giới hạn đường y  e x , y  , x  , x  Mệnh đề đúng? 2 A S    e x dx B S   e x dx Câu   2 x   dx 2 C S    e x dx D S   e2 x dx 0 Diện tích hình phẳng giới hạn đồ thị hàm số y  f  x  , trục hoành hai đường thẳng x  a , x  b  a  b  (phần tơ đậm hình vẽ) tính theo công thức ? c b A S    f  x  dx   f  x  dx a c c a c  f  x  dx a b C S   f  x  dx   f  x  dx Câu b B S  b D S   f  x  dx a Cho hàm số y  f  x  liên tục  có đồ hình vẽ bên Hình phẳng đánh dấu hình vẽ bên có diện tích A b c  f  x  dx   f  x  dx b c  f  x  dx   f  x  dx a C a Câu b b B b b  f  x  dx   f  x  dx a c b c D   f  x  dx   f  x  dx a b Diện tích hình phẳng ( H ) giới hạn đồ thị hàm số y  f ( x) , trục hoành hai đường thẳng x  a , x  b (a  b) (phần tô đậm hình vẽ) tính theo cơng thức Trang Fanpage Nguyễn Bảo Vương  https://www.facebook.com/tracnghiemtoanthpt489/ TÀI LIỆU TỔNG ÔN TẬP TNTHPT 2020 b A S  c  f ( x)dx b B S   f ( x)dx   f ( x )dx a a c b c C S   f ( x)dx a Câu b D S    f ( x)dx   f ( x)dx a c Cho hàm số y  f  x   x  x  có đồ thị hình vẽ bên Gọi S diện tích hình phẳng giới hạn đồ thị hàm số y  f  x  trục hoành (miền phẳng tơ đậm hình vẽ) Mệnh đề sau sai? A S   f  x  dx B S   f  x  dx 2 C S   f  x  dx   f  x  dx D S   f  x  dx Tính diện tích hình phẳng giới hạn đồ thị hàm số y  x  x đồ thị hàm số y  x  x 37 81 A B C D 13 12 12 Câu 10 Cho hàm số f  x  liên tục  Gọi S diện tích hình phẳng giới hạn cá đường Câu y  f  x  , y  0, x  2 x  (như hình vẽ) Mệnh đề đúng? y y=f(x) x O A S   2 C S  3 f  x  dx   f  x  dx B S    f  x  dx   f  x  dx 2  f  x  dx   f  x  dx 2 1 D S    f  x  dx   f  x  dx 2 Facebook Nguyễn Vương https://www.facebook.com/phong.baovuongTrang NGUYỄN BẢO VƯƠNG - 0946798489 Câu 11 Cho hàm số f  x  liên tục  Gọi S diện tích hình phẳng giới hạn đường y  f  x  , y  0, x  1 x  (như hình vẽ bên) Mệnh đề đúng? A S    f  x  dx   f  x  dx 1 C S  B S  1  f  x  dx   f  x  dx 1  f  x  dx   f  x  dx 1 1 D S    f  x  dx   f  x  dx 1 Câu 12 Cho hàm số f  x  liên tục  Gọi S diện tích hình phẳng giới hạn đường y  f  x  , y  0, x  1, x  (như hình vẽ bên) Mệnh đề đúng? A S    f  x  dx   f  x  dx 1 1 C S  B S    f  x  dx+  f  x  dx 1  f  x  dx   f  x  dx 1 2 D S   f  x  dx +  f  x  dx 1 Câu 13 Cho hàm số y  f  x  liên tục  Gọi S diện tích hình phẳng giới hạn đường y  f  x  , y  0, x  1 x  (như hình vẽ bên) Mệnh đề sau đúng? A S   f ( x)dx   f ( x)dx 1 1 C S    f ( x)dx   f ( x)dx 1 B S   f ( x)dx   f ( x)dx 1 1 D S    f ( x)dx   f ( x)dx 1 Trang Fanpage Nguyễn Bảo Vương  https://www.facebook.com/tracnghiemtoanthpt489/ TÀI LIỆU TỔNG ÔN TẬP TNTHPT 2020 Câu 14 Diện tích hình phẳng giới hạn đồ thị hàm số y  x đường thẳng y  x là: 1 1 A B C D Câu 15 Diện tích hình phẳng giới hạn đồ thị hàm số y   x  x  , y  x  x  A B C D 10 x 1 Câu 16 Gọi S diện tích hình phẳng giới hạn đồ thị hàm số y  trục tọa độ Khi giá x 1 trị S A S  ln  B S  2ln  C S  2ln  D S  ln  Câu 17 Gọi ( H ) hình phẳng giới hạn đồ thị hàm số y  3 x  x  Gọi S1 S diện S tích phần hình ( H ) nằm bên trái bên phải trục tung Tính tỷ số S2 S 208 S S 135 S 135 54 A  B  C  D  S2 343 S2 343 S2 343 S2 208 Câu 18 Cho S diện tích hình phẳng giới hạn đồ thị  C  hàm số y  x  x , trục hoành, trục tung đường thẳng x  Biết S  a  b  a, b  Tính a  b D a  b  Câu 19 Tính diện tích hình phẳng giới hạn đồ thị hàm số y  x3 , trục hoành hai đường thẳng x  1, x  biết đơn vị dài trục tọa độ cm 15 17 cm2  cm  A B C 17  cm  D 15  cm    4 A a  b  B a  b  C a  b  7  x  x  Câu 20 Cho hàm số f  x    Tính diện tích hình phẳng giới hạn đồ thị hàm số x    x f  x  đường thẳng x  0, x  3, y  16 20 A B C 10 D Câu 21 Tính diện tích hình phẳng giới hạn đồ thị hàm số y  x ln x , trục Ox đường thẳng x e e2  e2  e2  e2  A S  B S  C S  D S  2 Câu 22 Cho hai hàm số f  x   ax  bx  cx 1 g  x   dx  ex   a, b, c, d, e Biết đồ thị hàm số y  f ( x ) y  g ( x ) cắt ba điểm có hồnh độ  3;  1; (tham khảo hình vẽ) Hình phẳng giới hạn hai đồ thị cho có diện tích Facebook Nguyễn Vương https://www.facebook.com/phong.baovuongTrang NGUYỄN BẢO VƯƠNG - 0946798489 A 253 12 B 125 12 C 253 48 D 125 48 Câu 23 Cho  H hình phẳng giới hạn parabol y  3x , cung trịn có phương trình y   x (với  x  ) trục hồnh (phần tơ đậm hình vẽ) Diện tích  H  4    2 D Câu 24 Ơng An có mảnh vườn hình Elip có độ dài trục lớn 16m độ dài trục bé 10m Ông muốn trồng hoa dải đất rộng 8m nhận trục bé elip làm trục đối xứng (như hình vẽ) Biết kinh phí để trồng hoa 100.000 đồng/ 1m2 Hỏi ông An cần tiền để A 4  12 B 4  C trồng hoa dải đất đó? (Số tiền làm trịn đến hàng nghìn.) 8m A 7.862.000 đồng B 7.653.000 đồng C 7.128.000 đồng D 7.826.000 đồng Câu 25 Một hoa văn trang trí tạo từ miếng bìa mỏng hình vng cạnh 10 cm cách kht bốn phần có hình dạng parabol hình bên Biết AB  5cm , OH  4cm Tính diện tích bề mặt hoa văn A O H B 160 140 14 B C D 50 cm cm cm cm 3 Câu 26 Cho hàm số y  f  x  hàm số đa thức bậc có đồ thị hình vẽ A Hình phẳng giới hạn đồ thị hàm số y  f  x  y  f   x  có diện tích Trang Fanpage Nguyễn Bảo Vương  https://www.facebook.com/tracnghiemtoanthpt489/ TÀI LIỆU TỔNG ÔN TẬP TNTHPT 2020 127 127 107 13 A B C D 40 10 5 Câu 27 Cho parabol  P  có phương trình y  x đường thẳng d qua điểm A 1;3 Giả sử đường thẳng d có hệ số góc k diện tích hình phẳng giới hạn parabol  P  đường thẳng d nhỏ Giá trị thực k thuộc khoảng sau đây? A  ; 3 B  3;   C  3;  D  0;3 Câu 28 Một viên gạch hoa hình vng cạnh 80cm Người thiết kế sử dụng đường parabol có chung đỉnh tâm viên gạch để tạo cánh hoa (được tơ màu sẫm hình vẽ bên) Diện tích cánh hoa viên gạch 800 1600 400 B C D 250  cm  cm2  cm2  cm2     3 Câu 29 Một biển quảng cáo có dạng Elip với bốn đỉnh A1 , A2 , B1 , B2 hình vẽ Người ta chia Elip A parapol có đỉnh B1 ,trục đối xứng B1 B2 qua điểm M , N Sau sơn phần tơ đậm với giá 200.000 đồng/ m trang trí đèn led phần cịn lại với giá 500.000 đồng/ m Hỏi kinh phí sử dụng gần với giá trị đây? Biết A1 A2  4m , B1B2  2m, MN  2m A 2.341.000 đồng B 2.057.000 đồng C 2.760.000 đồng D 1.664.000 đồng Câu 30 Cho hai hàm số f ( x)  ax  bx  cx  g ( x)  dx  ex  ( a , b, c, d , e   ) Biết đồ thị hàm số y  f ( x ) y  g ( x ) cắt ba điểm có hồnh độ 3; 1;1 (tham khảo hình vẽ) Hình phẳng giới hạn hai đồ thị cho (miền tơ đậm) có diện tích Câu 31 Bạn An cần mua gương có đường viền đường Parabol bậc ( xem hình vẽ) Biết khoảng cách đoạn AB  60 cm , OH  30 cm Diện tích gương bạn An mua A B C D Facebook Nguyễn Vương https://www.facebook.com/phong.baovuongTrang NGUYỄN BẢO VƯƠNG - 0946798489   A 900 cm   B 1000 cm2   C 1200 cm2   D 1400 cm2 Câu 32 Cho  H  hình phẳng giới hạn parabol  P  : y  x , tiếp tuyến với  P  điểm M  2;  trục hồnh Tính diện tích hình phẳng  H  ? B C D 3 3 Câu 33 Cho hàm số f  x   ax3  bx  cx  d có đồ thị  C  Đồ thị hàm số y  f   x  cho A hình vẽ Biết đường thẳng d : y  x cắt  C  tạo thành hai phần hình phẳng có diện tích Tổng a  b  c  d A B C D Câu 34 Một cổng có dạng hình vẽ, với chiều cao 6m chiều rộng 8m Mái vịm cổng có hình bán elip với chiều rộng 6m, điểm cao mái vòm 5m (tham khảo hình vẽ) Người ta muốn lát gạch hoa để trang trí cho cổng với chi phí 250 000 đồng/m2 Hỏi số tiền cần chi trả gần với số sau đây? A 6.210.000 B 6.110.000 C 6.100.000 D 6.145.000 Câu 35 Đợt thi đua 26/3 Đồn trường THPT Nho Quan A có thực dự án trưng bày pano có dạng parabol hình vẽ Biết Đồn trường yêu cầu lớp gửi hình dự thi dán lên khu vực hình chữ nhật ABCD , phần cịn lại trang trí hoa văn cho phù hợp Chi phí dán hoa văn 150.000đ 1m bảng Hỏi chi phí thấp cho việc hồn tất hoa văn pano bao nhiêu( kết làm tròn lấy phần nguyên)? Trang Fanpage Nguyễn Bảo Vương  https://www.facebook.com/tracnghiemtoanthpt489/ TÀI LIỆU TỔNG ÔN TẬP TNTHPT 2020 A 575.034 đồng B 676.239 đồng C 536.272 đồng D 423.215 đồng Câu 36 Một khn viên có dạng nửa hình trịn đường kính m Trên đó, người ta thiết kế phần để trồng hoa có dạng cách hoa hình parabol có đỉnh trùng với tâm nửa hình trịn, hai đầu mút cánh hoa nằm nửa đường trịn (phần tơ đậm) cách khoảng m Phần cịn lại khn viên (phần khơng tơ đậm) dành để trồng cỏ Biết kích thước cho hình vẽ kinh phí để trồng cỏ 100.000 đồng / m2 Số tiền cần có để trồng cỏ (số tiền làm trịn đến hàng nghìn)? A 388 000 đồng B 895 000 đồng C 194 000 đồng D 948 000 đồng Câu 37 Tính diện tích S miền hình phẳng giới hạn đồ thị hàm số f  x   ax3  bx  c, đường thẳng x  1, x  trục hồnh (miền gạch chéo cho hình vẽ) 53 52 50 C S  D S  8 B ỨNG DỤNG TÍCH PHÂN TÍNH THỂ TÍCH (THEO CHƯƠNG TRÌNH TINH GIẢN CỦA BỘ NĂM HỌC 2020, THÌ PHẦN NỘI DUNG NÀY SẼ KHƠNG CĨ TRONG ĐỀ THI, VÌ THẾ MÌNH CHỈ GIỚI THIỆU VÀI CÂU)  Thể tích vật thể Gọi B phần vật thể giới hạn hai mặt phẳng vng góc với trục Ox điểm a b, S (x ) diện tích thiết diện vật thể bị cắt mặt phẳng vng góc với trục Ox điểm x , (a  x  b) Giả sử S (x ) hàm số liên tục đoạn [a;b ] Khi đó, thể tích vật thể B A S  51 B S  b xác định: V   S (x )dx a  Thể tích khối trịn xoay a) Thể tích khối trịn xoay sinh quay hình phẳng giới hạn đường y  f (x ), trục hoành hai đường thẳng x  a, x  b quanh trục Ox : Facebook Nguyễn Vương https://www.facebook.com/phong.baovuongTrang NGUYỄN BẢO VƯƠNG - 0946798489 y y  f ( x) O a (C ) : y  f ( x )  b (Ox ) : y  Vx     f ( x ) dx  x x  a a  x  b b b) Thể tích khối trịn xoay sinh quay hình phẳng giới hạn đường x  g(y ), trục hoành hai đường thẳng y  c, y  d quanh trục Oy : y d c  (C ) : x  g ( y )   (Oy ) : x   y  c  y  d x O d Vy    g (y ) dy c c) Thể tích khối trịn xoay sinh quay hình phẳng giới hạn đường y  f (x ), y  g(x ) (cùng nằm phía so với Ox ) hai đường thẳng x  a , x  b quanh trục Ox : y b V    f (x )  g (x ) dx f (x ) a g(x ) O a x b Câu 38 Cho hình phẳng  H  giới hạn đường y  x 3, y  , x  , x  Gọi V thể tích khối trịn xoay tạo thành quay  H  xung quanh trục O x Mệnh đề đúng? 2 A V     x   dx 2 B V     x  3 dx C V    x   dx D V    x   dx Câu 39 Cho hàm số y  f  x  liên tục đoạn  a; b Gọi D hình phẳng giới hạn đồ thị hàm số y  f  x  , trục hoành hai đường thẳng x  a, x  b  a  b  Thể tích khối trịn xoay tạo thành quay D quanh trục hồnh tính theo cơng thức: b b A V    f  x dx a b B V  2  f  x dx a b C V    f  x dx a D V    f  x dx a Câu 40 Cho hình phẳng  H  giới hạn đường thẳng y  x  2, y  0, x  1, x  Gọi V thể tích khối trịn xoay tạo thành quay  H  xung quanh trục Ox Mệnh đề đúng?   2   2     A V    x2  dx B V   x  dx C V    x2  dx D V   x  dx 1 1 Câu 41 Cho hình phẳng hình (phần tơ đậm) quay quanh trục hồnh Thể tích khối trịn xoay tạo thành tính theo cơng thức nào? Trang 10 Fanpage Nguyễn Bảo Vương  https://www.facebook.com/tracnghiemtoanthpt489/ NGUYỄN BẢO VƯƠNG - 0946798489 Trên đoạn  0; 1 hình phẳng giới hạn đồ thị hàm số y  x trục hoành Trên đoạn 1;  hình phẳng giới hạn đồ thị hàm số y  x tiếp tuyến d 2 Vậy diện tích hình phẳng  H  xác định là: S   x dx    x  x   dx  Câu 33 Cho hàm số f  x   ax3  bx  cx  d có đồ thị  C  Đồ thị hàm số y  f   x  cho hình vẽ Biết đường thẳng d : y  x cắt  C  tạo thành hai phần hình phẳng có diện tích Tổng a  b  c  d A B C Lời giải D Chọn A Giả sử f   x   mx  nx  p  m   có đồ thị  P  hình vẽ đề  n 1  2m  n   I 1; 3 đỉnh  P    2m  1  m  n  p  3  m  n  p  3 O  0;0    P   p   2 Từ 1  2 , suy m  3, n  6  f   x   3x  x f  x    f   x  dx    x  x  dx  x  x  C f   x   x   điểm uốn I 1; C   I  d  C  Thử lại: x  x   x có nghiệm Trang 18 Fanpage Nguyễn Bảo Vương  https://www.facebook.com/tracnghiemtoanthpt489/ TÀI LIỆU TỔNG ÔN TẬP TNTHPT 2020 Suy f  x   x3  3x  Vậy a  b  c  d  Câu 34 Một cổng có dạng hình vẽ, với chiều cao 6m chiều rộng 8m Mái vịm cổng có hình bán elip với chiều rộng 6m, điểm cao mái vịm 5m (tham khảo hình vẽ) Người ta muốn lát gạch hoa để trang trí cho cổng với chi phí 250 000 đồng/m2 Hỏi số tiền cần chi trả gần với số sau đây? A 6.210.000 B 6.110.000 C 6.100.000 Lời giải D 6.145.000 Chọn B Chọn hệ trục tọa độ Oxy hình vẽ: y 8m D C 6m x A -3 O B • Diện tích hình chữ nhật ABCD : S1  6.8  48 m • Bán đường elip có phương trình: y   x2  Diện tích cổng diện tích hình phẳng giới hạn đồ thị hàm số y   x trục hoành: S2    x dx  23,562 m 3 • Diện tích phần cần lát gạch hoa: S  S1  S  48  23, 562  24, 438  Số tiền cần chi trả để lát gạch hoa: T   24, 438 250 000  6.109.500 đồng Facebook Nguyễn Vương https://www.facebook.com/phong.baovuongTrang 19 NGUYỄN BẢO VƯƠNG - 0946798489 Câu 35 Đợt thi đua 26/3 Đoàn trường THPT Nho Quan A có thực dự án trưng bày pano có dạng parabol hình vẽ Biết Đồn trường u cầu lớp gửi hình dự thi dán lên khu vực hình chữ nhật ABCD , phần cịn lại trang trí hoa văn cho phù hợp Chi phí dán hoa văn 150.000đ 1m bảng Hỏi chi phí thấp cho việc hồn tất hoa văn pano bao nhiêu( kết làm tròn lấy phần nguyên)? A 575.034 đồng B 676.239 đồng C 536.272 đồng Lời giải D 423.215 đồng Chọn B Gắn hình Parabol cho vào hệ trục tọa độ Oxy hình vẽ, dễ thấy phương trình Parabol cho y   x Đặt tọa độ A   a;  a  với  a  , ta có B  a;  a  , C  a; 4  , D   a; 4  Dễ thấy diện tích phần Parabol phải trang trí nhỏ diện tích hình chữ nhật ABCD lớn với S ABCD  AB AD  2a   a  m Xét f  a   2a   a   f   a    6a 3 , với điều kiện  a  nên a  3 Ta có bảng biến thiên f a   a   Diên tích phần Parabol trưng bày là: S P   4.4    x dx  2 Vậy diện tích cần trang trí là: 32 32 32   32 32  Chi phí thấp cho việc hoàn tất hoa văn pano là:    150000  676239   Trang 20 Fanpage Nguyễn Bảo Vương  https://www.facebook.com/tracnghiemtoanthpt489/ TÀI LIỆU TỔNG ÔN TẬP TNTHPT 2020 Câu 36 Một khn viên có dạng nửa hình trịn đường kính m Trên đó, người ta thiết kế phần để trồng hoa có dạng cách hoa hình parabol có đỉnh trùng với tâm nửa hình tròn, hai đầu mút cánh hoa nằm nửa đường trịn (phần tơ đậm) cách khoảng m Phần cịn lại khn viên (phần khơng tơ đậm) dành để trồng cỏ Biết kích thước cho hình vẽ kinh phí để trồng cỏ 100.000 đồng / m2 Số tiền cần có để trồng cỏ (số tiền làm trịn đến hàng nghìn)? A 388 000 đồng B 895 000 đồng C 194 000 đồng D 948 000 đồng Lời giải Chọn D Chọn hệ trục tọa độ Oxy hình vẽ Phương trình nửa đường tròn y  20  x Phương trình parabol có đỉnh gốc tọa độ có dạng y  ax Parabol qua điểm  2;  suy Vậy phương trình parabol là: y  x Diện tích phần tơ đậm: S1    20  x  x dx 2 Diện tích nửa đường trịn: S      10  m2  Diện tích phần trồng cỏ là: S2  S  S1 Khi số tiền để trồng cỏ là: 100000 S2  1948000 đồng Câu 37 Tính diện tích S miền hình phẳng giới hạn đồ thị hàm số f  x   ax3  bx  c, đường thẳng x  1, x  trục hoành (miền gạch chéo cho hình vẽ) Facebook Nguyễn Vương https://www.facebook.com/phong.baovuongTrang 21 NGUYỄN BẢO VƯƠNG - 0946798489 A S  51 B S  53 C S  52 D S  50 Lời giải Chọn A Ta có: y  3ax  2bx x  y     x   2b 3a  Dựa vào đồ thị, ta thấy đồ thị hàm số cho có hai điểm cực trị  0;3  2;1  a  c   c    2b    2  3a  b   b   Khi ta có:   3a 8a  4b  2  8a  4b    c    3 Vậy f  x   x  x  2 1 51  Khi diện tích phần gạch chéo là: S    x3  x   dx  1 2   B ỨNG DỤNG TÍCH PHÂN TÍNH THỂ TÍCH (THEO CHƯƠNG TRÌNH TINH GIẢN CỦA BỘ NĂM HỌC 2020, THÌ PHẦN NỘI DUNG NÀY SẼ KHƠNG CĨ TRONG ĐỀ THI, VÌ THẾ MÌNH CHỈ GIỚI THIỆU VÀI CÂU)  Thể tích vật thể Gọi B phần vật thể giới hạn hai mặt phẳng vng góc với trục Ox điểm a b, S (x ) diện tích thiết diện vật thể bị cắt mặt phẳng vng góc với trục Ox điểm x , (a  x  b) Giả sử S (x ) hàm số liên tục đoạn [a;b ] Khi đó, thể tích vật thể B b xác định: V   S (x )dx a  Thể tích khối trịn xoay a) Thể tích khối trịn xoay sinh quay hình phẳng giới hạn đường y  f (x ), trục hoành hai đường thẳng x  a, x  b quanh trục Ox : Trang 22 Fanpage Nguyễn Bảo Vương  https://www.facebook.com/tracnghiemtoanthpt489/ TÀI LIỆU TỔNG ÔN TẬP TNTHPT 2020 y y  f ( x) a O b (C ) : y  f ( x )  b (Ox ) : y  V    x a  f ( x ) dx x x  a  x  b b) Thể tích khối trịn xoay sinh quay hình phẳng giới hạn đường x  g(y), trục hoành hai đường thẳng y  c, y  d quanh trục Oy : y d c O  (C ) : x  g ( y )   (Oy ) : x   y  c  y  d x d Vy    g (y ) dy c c) Thể tích khối trịn xoay sinh quay hình phẳng giới hạn đường y  f (x ), y  g(x ) (cùng nằm phía so với Ox ) hai đường thẳng x  a , x  b quanh trục Ox : y b V    f (x )  g (x ) dx 2 f (x ) a g(x ) O a Câu 38 Cho hình phẳng  H  giới hạn đường b y  x2 3, x y  , x  , x  Gọi V thể tích khối trịn xoay tạo thành quay  H  xung quanh trục O x Mệnh đề đúng? 2 A V     x   dx B V     x  3 dx C V    x   dx D V    x   dx Lời giải Chọn A Thể tích khối tròn xoay tạo thành quay  H  xung quanh trục O x là: 2 V     x   dx Câu 39 Cho hàm số y  f  x  liên tục đoạn  a; b Gọi D hình phẳng giới hạn đồ thị hàm số y  f  x  , trục hoành hai đường thẳng x  a, x  b  a  b  Thể tích khối trịn xoay tạo thành quay D quanh trục hồnh tính theo cơng thức: b A V    f  x dx a b B V  2  f  x dx a b C V    f  x dx a b D V    f  x dx a Lời giải Facebook Nguyễn Vương https://www.facebook.com/phong.baovuongTrang 23 NGUYỄN BẢO VƯƠNG - 0946798489 Chọn A Câu 40 Cho hình phẳng  H  giới hạn đường thẳng y  x  2, y  0, x  1, x  Gọi V thể tích khối trịn xoay tạo thành quay  H  xung quanh trục Ox Mệnh đề đúng?   2   2     A V    x2  dx B V   x  dx C V    x  dx D V   x  dx 1 1 Lời giải   Ta có: V    x  dx Câu 41 Cho hình phẳng hình (phần tơ đậm) quay quanh trục hồnh Thể tích khối trịn xoay tạo thành tính theo công thức nào? b b A V    f ( x)  g ( x)  dx B V     f ( x)  g ( x) dx a a b b C V     f ( x)  g ( x)  dx D V     f ( x)  g ( x)dx a a Lời giải Chọn B Gọi V1 thể tích khối trịn xoay quay hình phẳng giới hạn đồ thị hàm số y  f ( x) , b trục Ox hai đường thẳng x  a; x  b quay quanh trục hồnh Ta có V1    f ( x)dx a Gọi V2 thể tích khối trịn xoay quay hình phẳng giới hạn đồ thị hàm số y  g ( x) , b trục Ox hai đường thẳng x  a; x  b quay quanh trục hoành Ta có V2    g ( x)dx a Do f ( x)  g ( x) , x   a; b  nên thể tích khối trịn xoay tạo thành quay hình phẳng (phần b tơ đậm) quanh trục hồnh V  V1  V2     f ( x)  g ( x) dx a Câu 42 Trong không gian với hệ tọa độ Oxyz , cho vật thể  H  giới hạn hai mặt phẳng có phương trình x  a x  b Gọi S  x  diện tích thiết diện  H  bị cắt mặt phẳng vuông góc với trục Ox điểm có hồnh độ x , với a  x  b Giả sử hàm số y  S  x  liện tục đoạn  a ; b  Khi đó, thể tích vật thể  H  cho công thức : b b A V    S  x  dx a b C V    S  x   dx a B V     S  x   dx a b D V   S  x  dx a Trang 24 Fanpage Nguyễn Bảo Vương  https://www.facebook.com/tracnghiemtoanthpt489/ TÀI LIỆU TỔNG ÔN TẬP TNTHPT 2020 Lời giải Chọn D Do S  x  diện tích thiết diện  H  bị cắt mặt phẳng vuông góc với trục Ox điểm có hồnh độ x , với a  x  b b Khi đó, thể tích vật thể  H  tính cơng thức V   S  x  dx a Câu 43 Tính thể tích V phần vật thể giới hạn hai mặt phẳng x  x  , biết cắt vật thể mặt phẳng vng góc với trục Ox điểm có hồnh độ x (  x  ) thiết diện hình chữ nhật có độ dài hai cạnh 3x 124 A V  32  15 B V  124 C V  D V  (32  15) Lời giải Chọn C 3x  Diện tích thiết diện là: S ( x)  x x   Thể tích vật thể là: V   x x  2dx  124 Câu 44 Cho hình phẳng D giới hạn đường cong y   cos x , trục hoành đường thẳng x  0, x   Khối tròn xoay tạo thành D quay quanh trục hồnh tích V bao nhiêu? A V  (   1) B V    C V    Lời giải D V  (   1) Chọn A  V      2  cos x dx    x  sin x   (   1) 0 Câu 45 Cho hình phẳng D giới hạn đường cong y   sin x , trục hoành đường thẳng x  , x   Khối tròn xoay tạo thành quay D quay quanh trục hồnh tích V bao nhiêu? A V  22 B V      1 C V  2 D V     1 Lời giải Chọn B Ta có phương trình  V      sin x  vô nghiệm nên:    sin x dx     sin x  dx    x  cos x   2    1 0 Câu 46 Cho hình phẳng D giới hạn đường cong y  e x , trục hoành đường thẳng x  , x  Khối trịn xoay tạo thành quay D quanh trục hồnh tích V bao nhiêu?  e2   e2  e2  e A V  B V  C V  D V  2     Lời giải Chọn A Facebook Nguyễn Vương https://www.facebook.com/phong.baovuongTrang 25 NGUYỄN BẢO VƯƠNG - 0946798489 e2 x V    e dx  2x    e2   Câu 47 Cho hình phẳng D giới hạn với đường cong y  x  , trục hoành đường thẳng x  0, x  Khối tròn xoay tạo thành quay D quanh trục hồnh tích V bao nhiêu? 4 A V  B V  2 C V  D V  3 Lời giải Chọn A Thể tích khối trịn xoay tính theo cơng thức: 1  x3  4 2   V    x  dx     x  1 dx     x      0 Câu 48 Cho hình phẳng giới hạn đường y  x  , y  x  quay xung quanh trục Ox Tính thể tích khối trịn xoay tạo thành 5 7 11 A V  B V  C V  D V  11 6 Lời giải Chọn B Hoành độ giao điểm đồ thị hàm số y  x  y  là:  x  x 20   x   x  11 Khi đó: V    x  dx  (Dùng MTCT)   Câu 49 Tính thể tích khối trịn xoay tạo thành quay hình phẳng giới hạn đồ thị hàm số y  3x  x trục hoành, quanh trục hoành 85 41 81 8 A (đvtt) B (đvtt) C (đvtt) D (đvtt) 10 10 Lời giải Chọn C x  Xét phương trình x  x     x  Tính thể tích khối trịn xoay tạo thành quay hình phẳng giới hạn đồ thị hàm số y  3x  x trục hoành, quanh trục hoành V    3 x  x  2   81 dx    9 x  x  x  dx   3 x  x  x5   (đvtt)   0 10 3 Câu 50 Thể tích vật thể trịn xoay quay hình  H  quanh Ox với  H  giới hạn đồ thị hàm số y  x  x trục hoành 31 32 A B 3 C 34 D 35 Lời giải Chọn B Trang 26 Fanpage Nguyễn Bảo Vương  https://www.facebook.com/tracnghiemtoanthpt489/ TÀI LIỆU TỔNG ÔN TẬP TNTHPT 2020 Phương trình hồnh độ giao điểm: x  x  x2    x  4 Thể tích vật thể trịn xoay quay hình  H  quanh Ox là: V     4x  x  dx  323 C ỨNG DỤNG TÍCH PHÂN VÀO BÀI TỐN CHUYỂN ĐỘNG Câu 51 Một tơ chạy với vận tốc 10m/s người lái đạp phanh; từ thời điểm đó, tơ chuyển động chậm dần với vận tốc v  t   5t  10 (m/s), t khoảng thời gian tính giây, kể từ lúc bắt đầu đạp phanh Hỏi từ lúc đạp phanh đến dừng hẳn, ô tô di chuyển mét? A 0,2m B 2m C 10m D 20m Lời giải Chọn C Xét phương trình 5t  10   t  Do vậy, kể từ lúc người lái đạp phanh sau 2s ô tô dừng hẳn Quãng đường ô tô kể từ lúc người lái đạp phanh đến ô tô dừng  2 s    5t  10  dt    t  10t   10 m  0 Câu 52 Một chất điểm A xuất phát từ O , chuyển động thẳng với vận tốc biến thiên theo thời gian quy luật v  t   13 t  t  m/s  , 100 30 t (giây) khoảng thời gian tính từ lúc A bắt đầu chuyển động Từ trạng thái nghỉ, chất điểm B xuất phát từ O , chuyển động thẳng hướng với A chậm 10 giây so với A có gia tốc a m/s2  ( a số) Sau B xuất phát 15 giây đuổi kịp A Vận tốc B thời điểm đuổi kịp A A 15 m/s  B  m/s C 42 m/s  D 25 m/s Lời giải Chọn D Ta có vB  t    a.dt  at  C , vB  0   C   vB  t   at Quãng đường chất điểm A 25 giây 25  13  25 375  13  t  t   S A    t  t  dt   60  100 30   300  Quãng đường chất điểm B 15 giây 15 at 15 225a  S B   at.dt  2 Ta có 375 225 a  a 2 Vận tốc B thời điểm đuổi kịp A v B 15   15  25 m/s  Câu 53 Một chất điểm chuyển động đường thẳng nằm ngang với gia tốc phụ thuộc thời gian t (s) a  t   2t  (m/s2) Biết vận tốc đầu 10 (m/s), hỏi sau chất điểm đạt vận tốc 18 (m/s)? A (s) B (s) C (s) Lời giải D (s) Chọn D Ta có v  t    a  t  dt    2t   dt  t  7t  C , mặt khác v    10 nên C  v    10 Facebook Nguyễn Vương https://www.facebook.com/phong.baovuongTrang 27 NGUYỄN BẢO VƯƠNG - 0946798489  v  t   t  7t  10 t   nhËn  Để chất điểm đạt vận tốc 18 (m/s) v  t   18  t  7t     t  1  lo¹i  Vậy thời điểm t  (s) chất điểm đạt vận tốc 18 (m/s) Câu 54 Một ôtô chạy với vận tốc 19 m / s người lái hãm phanh, ơtơ chuyển động chậm dần với vận tốc v  t   38t  19  m / s  , t khoảng thời gian tính giây kể từ lúc bắt đầu hãm phanh Hỏi từ lúc hãm phanh đến dừng hẳn, ơtơ cịn di chuyển mét? A m B 4,5 m C 4, 25 m D 4, 75 m Lời giải Chọn D Thời điểm người lái hãm phanh: t  Thời điểm ôtô dừng hẳn: v  t    38t  19   t   Ta có: s  t    v  t  dt Từ lúc hãm phanh đến dừng hẳn, ơtơ cịn di chuyển được: 2 s   v  t  dt    38t  19  dt  0 19  4, 75  m  Câu 55 Tại nơi gió, khí cầu đứng n độ cao 162 (mét) so với mặt đất phi cơng cài đặt cho chế độ chuyển động xuống Biết rằng, khí cầu chuyển động theo phương thẳng đứng với vận tốc tuân theo quy luật v(t )  10t  t , t (phút) thời gian tính từ lúc bắt đầu chuyển động, v (t ) tính theo đơn vị mét/phút ( m / p ) Nếu bắt đầu tiếp đất vận tốc v khí cầu là: A v  9( m / p ) B v  5( m / p ) C v  7( m / p ) D v  3( m / p ) Lời giải Chọn A Gọi b (phút) thời gian khí cầu từ độ cao 162 (mét) chuyển động tiếp đất b b 1 Ta có s   v(t )dt  162   (10t  t ) dt  162  5b  b3   b3  5b  162   b  3 0 Vậy vận tốc khí cầu thời điểm tiếp đất v  10.9   (m / p ) Câu 56 Một vật chuyển động với vận tốc v( km / h ) phụ thuộc vào thời gian t( h) có đồ thị vận tốc hình bên Trong thời gian kể từ bắt đầu chuyển động, đồ thị phần đường parabol có đỉnh I (2; 9) trục đối xứng song song với trục tung, khoảng thời gian lại đồ thị đoạn thẳng song song với trục hồnh Tính qng đường s mà vật chuyển động (kết làm trịn đến hàng phần trăm) A s  15, 50( km) B s  23, 25( km) Trang 28 Fanpage Nguyễn Bảo Vương  https://www.facebook.com/tracnghiemtoanthpt489/ TÀI LIỆU TỔNG ÔN TẬP TNTHPT 2020 C s  13,83( km) D s  21, 58( km) Lời giải Chọn D   c  b    Gọi phương trình parabol v  at  bt  c ta có hệ sau: 4a  2b  c   c   b    a     2a 31 Với t  ta có v    31 259  21,583 Vậy quãng đường vật chuyển động s     t  5t  dt   dt  4 12  0 Câu 57 Một vật chuyển động với vận tốc v  km/h  phụ thuộc thời gian t  h  có đồ thị phần đường parabol có đỉnh I  2;  trục đối xứng song song với trục tung hình bên Tính quãng đường s mà vật di chuyển A s  26,75  km  B s  25, 25  km  C s  24, 25  km  D s  24,75  km  Lời giải Chọn D Tìm phương trình vận tốc v  t    t  3t  3 Vậy S   (  t  3t  6)dt  24,75 Câu 58 Một vật chuyển động theo quy luật s   t  6t với t (giây) khoảng thời gian tính từ vật bắt đầu chuyển động s  m  quãng đường vật di chuyển khoảng thời gian Hỏi khoảng thời gian giây, kể từ bắt đầu chuyển động, vận tốc lớn vật đạt bào nhiêu? A 64  m/s  B 24  m/s  C 18  m/s  D 108  m/s  Lời giải Chọn B Vận tốc vật chuyển động v  s   t  12t  f  t  Facebook Nguyễn Vương https://www.facebook.com/phong.baovuongTrang 29 NGUYỄN BẢO VƯƠNG - 0946798489 Tìm giá trị lớn hàm số f  t  đoạn 0;  Ta có f   t   3t  12  f   t    t    0;  f    0; f    24; f    18 Vậy vận tốc lớn 24  m/s  Câu 59 Một vật chuyển động với vận tốc v (km/h) phụ thuộc thời gian t (h) có đồ thị vận tốc hình bên Trong khoảng thời gian kể từ bắt đầu chuyển động, đồ thị phần đường parabol có đỉnh I  2;  với trục đối xứng song song với trục tung, khoảng thời gian lại đồ thị đoạn thẳng song song với trục hồnh Tính qng đường s mà vật di chuyển A s  26, (km) B s  24 (km) C s  28, (km) D s  27 (km) Lời giải Chọn C Gọi  P  : y  ax  bx  c Vì  P  qua O  0;  có đỉnh I  2;  nên dễ tìm phương trình y  Ngồi x  ta có y  9 x  9x 27 4  9  27 Vậy quãng đuờng cần tìm là: S    x  x dx   dx  27 ( km) 4  0 Câu 60 Một vật chuyển động với vận tốc v (km/ h) phụ thuộc thời gian t (h) có đồ thị phần đường parabol có đỉnh I (1;3) trục đối xứng song song với trục tung hình bên Tính qng đường s mà vật di chuyển kể từ lúc xuất phát Trang 30 Fanpage Nguyễn Bảo Vương  https://www.facebook.com/tracnghiemtoanthpt489/ TÀI LIỆU TỔNG ÔN TẬP TNTHPT 2020 A s  50 (km) B s  10 (km) C s  20(km) D s  64 (km) Lời giải Chọn D Ta có v(t )  at  bt  c có dạng parabol đỉnh I (1;3) , qua điểm A(0; 4) B(4;12)  b  b  2a   2a  b  2a b  2a b  2      a  b  c   a  b  c   a  b  1  a  (2a )  1  a  v(0)  0   c  c  c  c         Do v(t )  t  2t  Quãng đường vật di chuyển kể từ lúc xuất phát tính sau 4  t3   43  64 s   v(t )dt   (t  2t  4)dt    t  4t     42  4.4    (km) 3 0   0 Câu 61 Một chuyển động với vận tốc v ( km/h) phụ thuộc thời gian t ( h ) có đồ thị phần đường parabol có đỉnh I 1;1 trục đối xứng song song với trục tung hình bên Tính qng đường s mà vật kể từ lúc xuất phát A s  40  km  B s   km  C s  46  km  D s   km  Lời giải Chọn A Ta có phương trình vận tốc v  t   at  bt  c  P  P  qua điểm  0;2 nên c  Mặt khác  P  có đỉnh 1;1 nên  b 2a  b  a   1    2a a  b    b  2 a  b  c  Nên phương trình vận tốc v  t   t  2t  Quãng đường mà vật kể từ lúc xuất phát là: 40   t  2t  2 dt   km Theo dõi Fanpage: Nguyễn Bảo Vương  https://www.facebook.com/tracnghiemtoanthpt489/ Facebook Nguyễn Vương https://www.facebook.com/phong.baovuongTrang 31 NGUYỄN BẢO VƯƠNG - 0946798489 Hoặc Facebook: Nguyễn Vương  https://www.facebook.com/phong.baovuong Tham gia ngay: Nhóm Nguyễn Bào Vương (TÀI LIỆU TOÁN)  https://www.facebook.com/groups/703546230477890/ Ấn sub kênh Youtube: Nguyễn Vương  https://www.youtube.com/channel/UCQ4u2J5gIEI1iRUbT3nwJfA?view_as=subscriber Tải nhiều tài liệu tại: http://diendangiaovientoan.vn/ ĐỂ NHẬN TÀI LIỆU SỚM NHẤT NHÉ! Trang 32 Fanpage Nguyễn Bảo Vương  https://www.facebook.com/tracnghiemtoanthpt489/ ... https://www.facebook.com/tracnghiemtoanthpt489/ TÀI LIỆU TỔNG ÔN TẬP TNTHPT 2020 Vấn đề 15 ỨNG DỤNG TÍCH PHÂN A ỨNG DỤNG TÍCH PHÂN TÍNH DIỆN TÍCH HÌNH PHẲNG   b (C ) : y  f (x )    S  f (x... LIỆU TỔNG ÔN TẬP TNTHPT 2020 Phương trình hồnh độ giao điểm: x  x  x2    x  4 Thể tích vật thể trịn xoay quay hình  H  quanh Ox là: V     4x  x  dx  323 C ỨNG DỤNG TÍCH PHÂN... diện tích phần gạch chéo là: S    x3  x   dx  1 2   B ỨNG DỤNG TÍCH PHÂN TÍNH THỂ TÍCH (THEO CHƯƠNG TRÌNH TINH GIẢN CỦA BỘ NĂM HỌC 2020, THÌ PHẦN NỘI DUNG NÀY SẼ KHƠNG CĨ TRONG ĐỀ THI,

Ngày đăng: 01/05/2021, 18:35

w