1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Bộ đề Vtest số 9: Đề thi thử Đại học môn Toán lần V năm 2013 - Trường THPT chuyên ĐHSP Hà Nội (Có đáp án)

6 5 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 6
Dung lượng 801,9 KB

Nội dung

Mời các bạn cùng tham khảo "Đề thi thử Đại học môn Toán lần V năm 2013" trong bộ đề Vtest số 9 dưới đây để nắm bắt được nội dung 9 câu hỏi về khảo sát hàm số, giải hệ phương trình, tích phân, hình học không gian,... Với các bạn đang học và ôn thi Đại học, Cao đẳng thì đây là tài liệu tham khảo hữu ích.

B ĐỀ VTEST SỐ Đề thi thử Đại học lần V năm 2013 – Trường THPT chuyên ĐHSP Hà Nội Câu (2 điểm) Cho hàm số y = x3 + 3x + 1 Khảo sát biến thiên vẽ đồ thị (C) hàm số Đường thẳng ∆ qua điểm A (−1, 3) với hệ số góc k Tìm giá trị k để ∆ cắt (C) điểm phân biệt A, D, E Gọi d1, d2, tiếp tuyến (C) D E Chứng minh khoảng cách từ A đến d1 d2 sin 3x Câu2 (1 điểm) Giải phương trình  cot x cos 3x  2cos x  x  xy   Câu (1 điểm) Giải hệ phương trình   y  3xy   Câu (1 điểm) Tính tích phân I =   cos x  cos x dx cos5 x Câu (1 điểm) Tứ diện ABCD có AB = AC = AD = a, ̂ = 20o ; ̂ = 60o BCD tam giác vng D Tính thể tích khối tứ diện ABCD khoảng cách hai đường thẳng AD, BC Câu (1 điểm) Các số thực dương x, y thay đổi thỏa mãn x + 2y = Chứng minh rằng: 25   x y  48xy Câu (1 điểm) Trong mặt phẳng Oxy, cho hình vng ABCD với đỉnh A(0; 0) M(10; 5) trung điểm cạnh BC Hãy viết phương trình dạng tổng quát cạnh hình vng ABCD Câu (1 điểm) Trong không gian Oxyz, cho điểm A (1; 1; 2), mặt phẳng (P): x + y + z – = đường x 5 y  z  thẳng ∆: Tìm tọa độ điểm M thuộc mặt phẳng (P) cho đường thẳng   1 ∆ khoảng cách từ M đến ∆ Câu (1 điểm) Tìm số phức z thỏa mãn đồng thời hai điều kiện sau: z   z   26 2 3   i  lớn Số z     Page B ĐỀ VTEST SỐ Đề thi thử Đại học lần V năm 2013 – Trường THPT chuyên ĐHSP Hà Nội Câu (2 điểm) (1 điểm): Học sinh tự giải (1 điểm) Đường thẳng  : y = k(x + 1) + cắt (C) điểm phân biệt  pt sau có nghiệm phân biệt x3 + 3x2 + = k(x + 1) +  (x  1)(x  2x  k  2)  Để pt có nghiệm phân biệt pt x2 + 2x – k – = (*) có nghiệm  '   k    k  3 phân biệt khác –1   (0,5 điểm)  1  k   Gọi D (xD ; yD), E (xE ; yE) xD, xE nghiệm (*) Theo hệ thức Viet ta có xD + xE = –2 Hệ số góc tiếp tuyến D E k1 = y’(xD) = x 2D  6x D , k  y' (x E )  3x E2  6x E Do xD, xE nghiệm (*) nên x 2D  6x D =3(k + 2) = x 2E + 6xE Suy tiếp tuyến D E (C) có hệ số góc Mặt khác xD + xE = –2 = 2x A điểm A, D, E thẳng hàng nên A trung điểm DE Suy d (A; d1) = d (A; d2) (đpcm) Câu (1 điểm) Điều kiện: sinx  0, cos3x  2cos x  (0,5 điểm) 4 3sin x  4sin x sin x   cot x  cot x Pt  3 cos x cos x 4cos x  cos x  sin x sin x 3(1  cot x)    cot x 4cot x  cot x(1  cot x) (0,5 điểm) 3cot x  1   cot x   cot x  cot3 x  3cot x  cot x cot x   cot x   x   k, k  Z Kiểm tra điều kiện ta thấy thỏa mãn  Vậy nghiệm phương trình x =  k, k  Z (0,5 điểm) Câu (1 điểm) Từ pt x3 + xy – = suy x  y   x3 , thay vào pt thứ hai ta x   x3     3(2  x )    x  Page Đặt t = x3  , phương trình trở thành t3 – 3t2 + 3t – =  (t  1)3   t   Từ ta có : x   y  1 (1,0 điểm) 1 Câu (1 điểm) Ta có I =     3 cos x  cos x tan x 4 dx   1.dx  0 cos4 x cos2 x 0 cos4 x dx cos x cos x 1 dx  (1  tan x)dx  dt  dx cos x 1 t2  Với x = t = ; x = t =  (1  tan x)  (1  t ) Ta có (0,5 điểm) cos4 x 1 11 3 48 Suy I =  (1  t ) t dt   t dt   t dt  t  t    0 0 11 55 11 Đặt t = tanx  dt  48 55 Câu (1 điểm) Trong ABC cân A kẻ AH  BC  ABH vng H có AB = a a BAH  600  AH  Vậy I = HB = HC = HD = (0,5 điểm) D F a (vì ∆ BCD vng) a 3a   a  AD2 Ta có HA + HD = 4  AH  HD AH  (BCD) ABD cân J E B M H C I A có BAD  600 nên ABD  BD  a DC = BC2  BD2  a 1 a 2.a a Vậy VABCD  AH.SBCD  (đvt) (0,5 điểm)  2 12 Ta tạo mặt phẳng chứa AD song song với BC Qua A kẻ đường thẳng d song song với BC Trong mp (BCD) kẻ DE  BC , mp (ABC) qua E kẻ đường thẳng song song với AH cắt d M Khi BC // (ADM) BC  (DEM) Trong ∆DEM kẻ EF  DM độ dài EF khoảng cách hai đường thẳng AD BC Do AH  (BCD) nên (BCD)  (ABC)  DE  (ABC)  DE  ME Trong DEM vng E có EF đường cao, ta có Page 1   (*) 2 EF ED EM2 Ta có EM = AH = Do từ (*) a DB.DC a , SBCD  BC.DE = DB.DC  DE   BC 3 11 a 22     EF  EF 2a a 2a 11 Vậy khoảng cách hai đường thẳng AD BC a 22 11 (0,5 điểm) Câu (1 điểm) Từ giả thiết x, y > x + 2y =  x   2y < y < Bất đẳng thức trở thành : 2 25    2y y 1 48y2 (1 2y)  (2  3y) 1  48y (1  2y)   25y(1  2y)  (2  3y)(1  48y  96y3 )  25y(1  2y)    28y  146y2  336y3  288y4   144y4  168y3  73y2  14y  1  (12y2  7y  1)2  (đpcm) (1,0 điểm) Câu (1 điểm) Gọi độ dài cạnh hình vng 2a, AM2 = AB2 + BM2 = 5a2, D mà AM2 = 125  a  MB2  Gọi H(x; y), MA MH   5MH  MA A MH MA hướng MA 5(x  10)  10 x    H:  5(y  5)  5 y  Kẻ BH  AM  MH  C H M B Điểm B giao đường thẳng qua H vng góc với AM đường trịn đường kính AM (0,5 điểm) Ta có AM(10;5) Phương trình đường thẳng BH: 2x + y – 20 = 125 Phương trình đường trịn đường kính AM: (x  5)  (y  )  Gọi B (t; 20 – 2t)  (t  5)2  (  t  10 35 125  2t)   t  16t  60    t6 Với t = 10 Ta có B (10; 0)  C (10; 10) Khi phương trình cạnh hình vng ABCD là: AB: y = 0, BC: x = 10, CD: y = 10 AD: x = Page Với t = Ta có B(6; 8)  C(14; 2) Khi phương trình cạnh hình vuông ABCD là: AB: 4x – 3y = 0, BC: 2x + 4y – 50 = 0, CD: 4x – 3y – 50 = 0, AD: 3x + 4y = (0,5 điểm) Câu (1 điểm) ∆ Đường thẳng AM thuộc mặt phẳng (Q) vng góc với  Phương trình (Q): x + y – z = Giao điểm (Q) với  điểm H ( 2; 1;1 ) A d M Q Giao tuyến d (F) (Q) H 1 1 1 1 , , có vectơ phương u d phương với vectơ  n p , n Q       2; 2;0   1 1 1  Chọn u d  (1;  1;0) (0,5 điểm)  xt  Điểm N (0 ; ; 1)  d , suy phương trình d :  y   t  M(t;1  t;1)  z 1  Ta có d(M,  ) = MH =  (2  t)2  (2  t)  18  t  t  1 Vậy có hai điểm thỏa mãn tốn : M1 (5;  4) M2 (1;2;1) (0,5 điểm) Câu (1 điểm) Giả sử z = x + yi; x, y  R Ta có z   z   26  (x  2)  y2  (x  2)  y  26 2  x  y2  Suy tập hợp điểm biểu diễn số phức z thỏa mãn điều kiện đường tròn (S) tâm gốc tọa độ O, bán kính R = 3   2  2  i    x  Ta có z      y         (0,5 điểm) 2 3  3  3  Vì  ;      nên điểm K   thuộc đường tròn (S) 2 2       Gọi điểm M (x ; y) điểm thuộc (S), 2 3   2  2 z    i    x     y    MK 2 2       Page 3  Suy z    i  lớn  MK lớn  MK đường kính (S) 2    3  M   ; 2  Vậy z =     3  i 2 (0,5 điểm) Page ...B ĐỀ VTEST SỐ Đề thi thử Đại học lần V năm 2013 – Trường THPT chuyên ĐHSP Hà Nội Câu (2 điểm) (1 điểm): Học sinh tự giải (1 điểm) Đường thẳng  : y =... thuộc mặt phẳng (Q) vng góc v? ??i  Phương trình (Q): x + y – z = Giao điểm (Q) v? ??i  điểm H ( 2; 1;1 ) A d M Q Giao tuyến d (F) (Q) H 1 1 1 1 , , có vectơ phương u d phương v? ??i vectơ  n p , n...  a DC = BC2  BD2  a 1 a 2.a a V? ??y VABCD  AH.SBCD  (đvt) (0,5 điểm)  2 12 Ta tạo mặt phẳng chứa AD song song v? ??i BC Qua A kẻ đường thẳng d song song v? ??i BC Trong mp (BCD) kẻ DE  BC ,

Ngày đăng: 30/04/2021, 00:01

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN