Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 133 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
133
Dung lượng
7,65 MB
Nội dung
VIETNAM NATIONAL UNIVERSITY - HO CHI MINH CITY HO CHI MINH CITY UNIVERSITY OF TECHNOLOGY TU NGOC THACH SYNTHESIS OF COBALT AND IRON-BASED METAL-ORGANIC FRAMEWORKS AND THEIR APPLICATIONS PhD THESIS HO CHI MINH CITY, 2016 VIETNAM NATIONAL UNIVERSITY - HO CHI MINH CITY HO CHI MINH CITY UNIVERSITY OF TECHNOLOGY TU NGOC THACH SYNTHESIS OF COBALT AND IRON-BASED METAL-ORGANIC FRAMEWORKS AND THEIR APPLICATIONS Faculty: Chemical Engineering, Division of Organic Chemical Engineering Division code: 62527505 Independent Reviewer 1: Prof Dr DINH Thi Ngo Independent Reviewer 2: Assoc Prof Dr VU Anh Tuan Reviewer 1: Assoc Prof Dr NGUYEN Thi Phuong Phong Reviewer 2: Assoc Prof Dr NGUYEN Cuu Khoa Reviewer 3: Assoc Prof Dr LE Van Thang Scientific Advisor: Prof Dr PHAN Thanh Son Nam TU N THACH ASSURANCES I hereby declared that this is the work of the author myself The findings and conclusions in this thesis are honest, and not copied from any source in any shape or form The reference sources cited were made and recorded reference sources according to specifications Author of the Thesis TU NGOC THACH i TU N THACH ABSTRACT The synthesis, structural identification of four novel cobalt and iron-based metal-organic frameworks (MOFs), named VNU-10 (cobalt-based MOF), VNU-15 (iron-based MOF, VNU = Vietnam National University), Fe-NH2-BDC and Fe-BTC have been done by single crystal x-ray diffraction (SC-XRD) Full characterization and applications of VNU-10, VNU-15 were undertaken and preliminary characterizations have been done for Fe-NH2BDC and Fe-BTC Accordingly, VNU-10 with 1.4 nm pore aperture and high surface area (2600 m2 g-1) exhibited exceptional catalytic activity toward the direct amination of bezoxazoles via CH/N-H couplings while a previously reported topological isomer, Co 2(BDC)2(DABCO)sql displayed poor activity under testing condition Leaching tests indicated that homogeneous catalysis via leached active cobalt species is unlikely Furthermore, the VNU-10 catalyst was facilely isolated from the reaction mixture and reused several times without degradation of the catalytic reactivity VNU-15 with integrated sulphate ligands accompanied by hydrogen-bonded dimethyl ammonium ions that lined the pore channels, the proton conductivity of this material reached 2.90 × 10-2 S cm-1 at 95 °C and 60% relative humidity which is roughly 2.5 times higher than nafion under similar conditions (1.0 × 10-2 S cm-1 at 60% RH and 80 °C) and on the order of a magnitude higher than that observed in several of the highest performing MOFs reported, albeit these materials’ proton conductivity properties were reported with high working relative humidity (RH ≥ 90%) Remarkably, the ultrahigh proton conductivity of VNU-15 was maintained under these conditions, without any appreciable loss, for 40 hours ii TU N THACH ACKNOWLEGDMENT I would like to give acknowledgement to My Adviser, Prof Nam Son Thanh Phan who gave valuable research directions and guided me to achieve the final scientific goals Dr Hiroyasu Furukawa at University of California-Berkeley, who provided valuable inputs for research directions and guided me to become organized researcher Mr Kyle Ellis Cordova at MANAR center & University of California-Berkeley, who gave valuable inputs for proton conducting application of VNU-15 and catalytic application of VNU-10 Dr Thanh Vu Truong, Mr Khoa D Nguyen, and Mr Truong N Nguyen who have significant contributions to the catalytic application of VNU-10 Mr Thanh V Trong, Ms Nghi Q Phan, who scaled up VNU-15 for proton conduction measurement, Mr Ha L Nguyen for topology analysis of VNU-15, Dr Hoang Thai Nguyen for his initial guide for proton conducting measurement Special thanks to all friends at MANAR and University of technology who assisted me to finalize the thesis Special thanks to my parent who continuingly motivated me during the hard times iii TU N THACH CONTENTS INTRODUCTION CHAPTER 1: THE CHEMISTRY & APPLICATIONS OF METAL ORGANIC FRAMEWORKS 1.1 Definition of Metal Organic Framework 1.2 Applications of Metal-organic Frameworks 1.2.1 Applications of Metal organic Frameworks as Heterogeneous Catalysis 1.2.1.1 Metal-organic Frameworks as Scaffold for Oxidative Transformation of Organic Substrates 1.2.1.1.1 Cobalt-based MOFs for Oxidative Transformation of Small Organic Substrates 1.2.1.1.2 Metal-organic Frameworks for Oxidative Conversation of Large Organic Substrates 1.2.1.2 Strategy for Design the Catalytic Active Centers in MOFs 1.2.1.2.1 Metal Clusters as the Catalytic Active Sites in MOFs 1.2.1.2.2 Functional Linkers as Catalytic Active Sites in MOFs 10 1.2.1.2.3 Post-Modification Strategy for Incorporating Catalytic Active Sites into MOFs 12 1.2.1.2.4 1.2.2 Immobilization of Catalytic Active Guests into MOFs via Self-Assembly 13 MOFs for Proton Conduction 15 1.2.2.1 Water-mediated Proton Conducting MOFs 16 1.2.2.1.1 Design Strategy toward High Proton Conductivity MOFs under Humidity Condition 16 1.2.2.1.1.1 Doping Proton Donors Molecules into the MOFs 16 1.2.2.1.1.2 Coordinately Unsaturated Metal Sites Approach 17 iv TU N THACH 1.2.2.1.1.3 Acidic Functional Groups Approach 17 1.2.2.1.1.4 Defect Sites Approach 18 1.2.2.1.1.5 Water-mediated Proton Conductivity of MOFs 18 1.2.2.2 Anhydrous proton-conducting MOFs 20 CHAPTER 2: SYNTHESIS OF THE NOVEL METAL-ORGANIC FRAMEWORKS AND MATERIAL CHARACTERIZATIONS 22 2.1 Introduction 22 2.1.1 The Modular Nature in Design and Synthesis of MOFs and The Quest to Design and Synthesize New MOFs 22 2.1.2 Objective 24 2.1.3 Approach 24 2.2 Materials and Instrumentation 24 2.2.1 Materials 24 2.2.2 Single Crystal X-ray Diffraction (SC-XRD) and Powder X-ray Diffraction (PXRD) Data Collection 25 2.2.3 Instruments for Characterization of VNU-10, VNU-15, Fe-NH2BDC, Fe-BTC 26 2.3 Material Synthesis, Single Crystal Structure Analysis and Characterization for VNU-10 27 2.3.1 Synthesis of VNU-10 27 2.3.2 Crystal Structure of VNU-10 27 2.3.3 Characterization of VNU-10 31 2.3.3.1 Microscope Image of VNU-10 31 2.3.3.2 PXRD Analysis of VNU-10 31 2.3.3.3 FT-IR Analysis of activated VNU-10 32 v TU N THACH 2.3.3.4 Thermogravimetric Analysis of VNU-10 33 2.3.3.5 Gas Adsorption Measurements 33 2.4 Material Synthesis, Single Crystal Structure Analysis and Characterization for the Novel structure of VNU-15 35 2.4.1 Synthesis of VNU-15 35 2.4.2 Crystal Structures of VNU-15 36 2.4.3 Characterization of VNU-15 40 2.4.3.1 Microscope Image of VNU-15 40 2.4.3.2 PXRD Analysis for VNU-15 40 2.4.3.3 FT-IR Analysis of activated VNU-15 41 2.4.3.4 Thermogravimetric Analysis of VNU-15 42 2.4.3.5 Porosity and Gas Adsorption of VNU-15 43 2.4.3.6 Water Uptake, PXRD and FT-IR of Corresponding VNU-15 Sample 45 2.5 Material Synthesis, Single Crystal Structure Analysis and Characterization for the Novel structure of Fe-NH2BDC 46 2.5.1 Synthesis of Fe-NH2BDC 46 2.5.2 Crystal Structures of Fe-NH2BDC 47 2.5.3 Characterization of Fe-NH2BDC 50 2.5.3.1 Microscope Image of Fe-NH2BDC 50 2.5.3.2 PXRD Analysis of Fe-NH2BDC 50 2.5.3.3 FT-IR Analysis of activated Fe-NH2BDC 51 2.5.3.4 Thermogravimetric Analysis of Fe-NH2BDC 51 2.6 Material Synthesis, Single Crystal Structure Analysis and Characterization for the Novel structure of Fe-BTC 52 vi TU N THACH 2.6.1 Synthesis of Fe-BTC 52 2.6.2 Crystal Structures of Fe-BTC 53 2.6.3 Characterization of Fe-BTC 55 2.6.3.1 PXRD Analysis of Fe-BTC 55 2.6.3.2 Thermogravimetric Analysis of Fe-BTC 56 CHAPTER 3: APPLICATIONS OF VNU-10 AND VNU-15 57 3.1 NEW TOPOLOGICAL HETEROGENEOUS CATALYST Co2(BDC)2(DABCO) FOR AMINATION AS OF HIGHLY ACTIVE OXAZOLES VIA OXIDATIVE C-H/N-H COUPLINGS 57 3.1.1 The Quest for Large Pore Window (above 15 Å) and High Surface Area (above 2600 m2 g-1) MOFs as Catalyst for Large Substrate Conversions 57 3.1.2 Direct Amination of Azoles under Mild Reaction Conditions 58 3.1.3 Objective 59 3.1.4 Approach 59 3.1.5 Method for Catalysis Study 60 3.1.5.1 Method for Gas Chromatographic 60 3.1.5.2 GC Calculation and analysis 61 3.1.5.3 Method for Catalytic studies 61 3.1.5.4 Synthesis of Reported MOFs 62 3.1.6 Investigations on VNU-10 Catalytic Performance for Direct Oxidative Amination of Benzoxazole with Piperidine 62 3.1.6.1 Conditions Screening for Direct Oxidative Amination of Benzoxazole with Piperidine Using Heterogeneous VNU-10 62 3.1.6.1.1 Effect of Reagent Ratio on GC Yield 63 vii TU N THACH 3.1.6.1.2 Effect of Catalyst Loading on GC Yield 64 3.1.6.1.3 Effect of Various Solvents on GC Yield 65 3.1.6.1.4 Effect of Various Acids on GC Yield 66 3.1.6.1.5 Effect of Various Oxidants on GC Yield 68 3.1.6.1.6 Optimizing Condition for Amination of Benzoxazole Reaction Using VNU- 10 Catalyst & Product Analysis by 1H-NMR and 13C-NMR 70 3.1.6.2 Advantages of VNU-10 for Amination of Benzoxazole Reaction over Other Heterogeneous and Homogeneous Catalyst 71 3.1.6.3 The Heterogeneous Nature of VNU-10 75 3.1.6.4 Greener Protocol to Benzoxazole Amine Compounds by Recycling of VNU-10 76 3.1.6.5 Synthesis of Diverse Benzoxazole Amine Derivatives with Different Amine Substitutes 79 3.2 HIGH PROTON CONDUCTIVITY AT LOW RELATIVE HUMIDITY IN AN ANIONIC Fe-BASED METAL-ORGANIC FRAMEWORK 81 3.2.1 Introduction of Hydrogen Fuel Cell, Impedance and Nyquist Plot of Impedance 81 3.3.1.1 Hydrogen Fuel Cell 81 3.3.1.2 Definition of Impedance and Nyquist Plot of Impedance 83 3.2.2 The Quest of Proton Conducting Membrane that Maintain High Conductivity at High Temperature and Low Humidity 84 3.2.3 Objectives 85 3.2.4 Approach 85 3.2.5 Method for Proton Conductivity Measurement 85 3.2.5.1 Preparation of Pelletized VNU-15 and Proton Conductivity Measurement 85 viii TU N THACH 3.2.6.5 Investigation for the Working Stability of VNU-15 as Function of Time & Conductivities under 55 and 60% RH at 95 °C Fig 77 Nyquist plot of VNU-15 at 55 (blue circles) and 60% RH (red circles) at 95 ºC after 40 h of consecutive ac impedance measurements Fig 78 Time-dependent proton conductivity of VNU-15 at 55% RH (blue circles) and 60% RH (red circles) and 95 ºC In order to understand the working capacity of VNU-15 as a function of time, timedependent ac impedance measurements were performed at 60% RH and 95 °C 96 TU N THACH Remarkably, it was found that VNU-15 maintained ultrahigh proton conductivity (2.6 × 10-2 S cm-1) for ≥ 40 h, without any observable loss in performance (Figure 76, 77) 97 TU N THACH CONCLUSION Material Synthesis and characterization Four novel metal organic frameworks, namely, VNU-10, VNU-15, Fe-NH2-BDC and Fe-BTC have been synthesized and the structure of these compounds was solved by single crystal x-ray diffraction (SC-XRD) SC-XRD revealed the structure of VNU-10, which was built from DABCO- pillared kagome layers in the triangular and hexagonal fashion to construct the large hexagonal channels (14 Å) with high surface area (2600 m2 g-1) SC-XRD revealed that the architecture of VNU-15, that encompasses a novel infinite rod SBU The architecture of VNU-15 adopts the unprecedented fob topology with pore channels that are densely occupied by a hydrogen-bonded network of sulphate ligands and dimethylammonium (DMA) ions The structure of Fe-NH2-BDC and Fe-BTC were identified by SC-XRD Compound Fe-NH2-BDC possessed a two dimension architecture, in which the framework was constructed from sql layers, on the other hand, compound Fe-BTC possessed a three dimension architecture, which adopting mmm-a topology Full characterization of VNU-10 and VNU-15 was done by various host method, included single and powder X-rays diffraction, Fourier transforms infrared analysis (FT-IR), thermogravimetric analysis (TGA) gas (CO2, CH4, N2), atomic absorption spectroscopy (AAS) and water adsorption at various temperature Preliminary characterization on Fe-NH2-BDC and Fe-BTC have been done by powder X-rays diffraction, Fourier transforms infrared analysis (FT-IR), thermogravimetric analysis (TGA) Application of VNU-10 VNU-10 with large pore aperture was found to efficient catalyze for direct amination reactions of oxazoles Excellent conversions with a variety of amines were obtained Remarkably, VNU-10 offered significantly higher activity than that of Co2(BDC)2(DABCO) with the sql structure as well as other Co-based catalysts 98 TU N THACH VNU-10 was proven to be recyclable without a significant degradation in catalytic activity Leaching tests indicated no contribution of homogeneous leached active cobalt species Various derivatives from amination of benzoxazole with different amines were also synthesized using VNU-10 catalyst Application of VNU-15 VNU-15 exhibited ultrahigh proton conductivity (2.9 × 10-2 S cm-1) at the practical conditions of 60% RH and 95 °C with low activation energy (0.22 eV) through the wide range temperature Time-dependent proton conductivity at 60% RH and 95 °C indicated the stable conductivity of pelletized VNU-15 with no appreciated loss of conductivity over 40 hours Powder X-rays diffraction, Fourier transforms infrared analysis (FT-IR) revealed the maintenance of long range structural order of VNU-15 after proton conducting measurement The proton conductivity of VNU-15 is amongst the highest reported in MOF chemistry, especially when considering practical operating conditions 99 TU N THACH List of Publications Tu, N Thach; Nguyen, K D.; Nguyen T N.; Truong, T.; Phan N T S New topological Co2(BDC)2(DABCO) as highly active heterogeneous catalyst for amination of oxazoles via oxidative C-H/N-H couplings, Catalysis Science & Technology 2016, 6, 1384-1392 DOI: 10.1039/C5CY01145K (IF: 5.287) Tu, N Thach; Phan N Q.; Vu, T T.; Nguyen, H L.; Cordova, K E.; Furukawa, H High Proton Conductivity at Low Relative Humidity in an Anionic Fe-based Metal-Organic Framework, Journal of Materials Chemistry A 2016, 4, 3638-3641 DOI: 10.1039/c5ta10467j (IF: 8.262) 100 TU N THACH References (1) Furukawa, H.; Cordova, K E.; O’Keeffe, M.; Yaghi, O M Science 2013, 341 (6149), 974 (2) Li, Q.; He, R.; Jensen, J O.; Bjerrum, N J Chem Mater 2003, 15 (26), 4896 (3) Ramaswamy, P.; Wong, N E.; Shimizu, G K H Chem Soc Rev 2014, 43 (16), 5913 (4) Tu, T N.; Phan, N Q.; Vu, T T.; Nguyen, H L.; E Cordova, K.; Furukawa, H J Mater Chem A 2016, (10), 3638 (5) Tu Nguyen, K.D., Nguyen, T.N., Truong, T., Phan, N.T.S., T N Catal Sci Technol 2016, (5), 1384 (6) Li, H.; Eddaoudi, M.; O’Keeffe, M.; Yaghi, O M Nature 1999, 402, 276 (7) Farha, O K.; Yazaydın, A O.; Malliakas, C D.; Kanatzidis, M G.; Nguyen, S B T.; T.Hupp, J.; Hauser, B G Nat Chem 2010, (11), 944 (8) Furukawa, H.; Aratani, N.; Choi, S B.; Choi, E.; Snurr, R Q.; O’Keeffe, M.; Kim, J.; Yaghi, O M Science 2010, 329 (5990), 424 (9) Li, B.; Wen, H M.; Zhou, W.; Chen, B J Phys Chem Lett 2014, (20), 3468 (10) Liu, J.; Chen, L.; Cui, H.; Zhang, J.; Zhang, L.; Su, C Y Chem Soc Rev 2014, 43 (16), 6011 (11) Kreno, L E.; Leong, K.; Farha, O K.; Allendorf, M.; Van Duyne, R P.; Hupp, J T Chem Rev 2012, 112 (2), 1105 (12) So, M C.; Wiederrecht, G P.; Mondloch, J E.; Hupp, J T.; Farha, O K Chem Commun 2015, 51 (17), 3501 (13) Keskin, S.; Kızılel, S Ind Eng Chem Res 2011, 50 (4), 1799 (14) Wang, L.; Han, Y.; Feng, X.; Zhou, J.; Qi, P.; Wang, B Coord Chem Rev 2016, 101 TU N THACH 307, 361 (15) Kuppler, R J.; Timmons, D J.; Fang, Q R.; Li, J R.; Makal, T A.; Young, M D.; Yuan, D.; Zhao, D.; Zhuang, W.; Zhou, H C Coord Chem Rev 2009, 253 (23-24), 3042 (16) Tonigold, M.; Tu, Y.; Bredenkötter, B.; Rieger, B.; Bahnmüller, S.; Hitzbleck, J.; Langstein, G.; Volkmer, D Angew Chem Int Ed 2009, 48 (41), 7546 (17) Tonigold, M.; Lu, Y.; Mavrandonakis, A.; Puls, A.; Staudt, R.; Mollmer, J.; Sauer, J.; Volkmer, D Chem Eur J 2011, 17 (31), 8671 (18) Ren, H Y.; Yao, R X.; Zhang, X M Inorg Chem 2015, 54 (13), 6312 (19) Sun, D.; Sun, F.; Deng, X.; Li, Z Inorg Chem 2015, 54 (17), 8639 (20) Feng, D.; Gu, Z Y.; Li, J R.; Jiang, H L.; Wei, Z.; Zhou, H C Angew Chem Int Ed 2012, 51 (41), 10307 (21) Wang, K.; Feng, D.; Liu, T F.; Su, J.; Yuan, S.; Chen, Y P.; Bosch, M.; Zou, X.; Zhou, H C J Am Chem Soc 2014, 136 (40), 13983 (22) Vermoortele, F.; Vandichel, M.; Voorde, B Van de; Ameloot, R.; Waroquier, M.; Speybroeck, V Van; Vos, D E D Angew Chem Int Ed 2012, 51 (20), 4887 (23) Phan, N T S.; Nguyen, C K.; Nguyen, T T.; Truong, T Catal Sci Technol 2014, (2), 369 (24) Leus, K.; Muylaert, I.; Vandichel, M.; Marin, G B.; Waroquier, M.; Speybroeck, V V; Voort, P V D Chem Commun 2010, 46 (28), 5085 (25) Shi, D.; Ren, Y.; Jiang, H.; Cai, B.; Lu, J Inorg Chem 2012, 51 (12), 6498 (26) Horike, S.; Dinca, M.; Tamaki, K.; Long, J R J Am Chem Soc 2008, 130 (18), 5854 (27) Phan, N T S.; Vu, P H L.; Nguyen, T T J Catal 2013, 306, 38 102 TU N THACH (28) Roberts, J M.; Fini, B M.; Sarjeant, A a; Farha, O K.; Hupp, J T.; Scheidt, K a J Am Chem Soc 2012, 134 (7), 3334 (29) Shultz, A M.; Farha, O K.; Hupp, J T.; Nguyen, S B T J Am Chem Soc 2009, 131 (12), 4204 (30) Zhu, C.; Yuan, G.; Chen, X.; Yang, Z.; Cui, Y J Am Chem Soc 2012, 134 (19), 8058 (31) Meng, L.; Cheng, Q.; Kim, C.; Gao, W Y.; Wojtas, L.; Chen, Y S.; Zaworotko, M J.; Zhang, X P.; Ma, S Angew Chem Int Ed 2012, 51 (40), 10082 (32) Li, B.; Leng, K.; Zhang, Y.; Dynes, J J.; Wang, J.; Hu, Y.; Ma, D.; Shi, Z.; Zhu, L.; Zhang, D.; Sun, Y.; Chrzanowski, M.; Ma, S J Am Chem Soc 2015, 137 (12), 4243 (33) Manna, K.; Zhang, T.; Greene, F X.; Lin, W J Am Chem Soc 2015, 137 (7), 2665 (34) Canivet, J.; Aguado, S.; Schuurman, Y.; Farrusseng, D J Am Chem Soc 2013, 135 (11), 4195 (35) Alcañiz, J J.; Gascon, J.; Kapteijn, F J Mate Chem 2012, 22 (20), 10102 (36) Alkordi, M H.; Y.Liu; Larsen, R W.; Eubank, J F.; Eddaoudi, M J Am Chem Soc 2008, 130 (38), 12639 (37) J Song; Z Luo; D K Britt; H Furukawa; O M Yaghi; K I Hardcastle; Hill, C L J Am Chem Soc 2011, 133 (42), 16839 (38) Biswas, S.; Maes, M.; Dhakshinamoorthy, A.; Feyand, M.; De Vos, D E.; Garcia, H.; Stock, N J Mater Chem 2012, 22 (20), 10200 (39) Wang, S.; Yao, W.; Lin, J.; Ding, Z.; Wang, X Angew Chem Int Ed 2014, 53 (4), 1034 (40) Y., M.; S., K.; N., S.; K., K Angew Chem Int Ed 2013, 52 (10), 2688 103 TU N THACH (41) Dybtsev, D N.; Ponomareva, V G.; Aliev, S B.; Chupakhin, A P.; Gallyamov, M R.; Moroz, N K.; Kolesov, B A.; Kovalenko, K A.; Shutova, E S.; Fedin, V P ACS Appl Mater Interfaces 2014, (7), 5161 (42) Phang, W J.; Lee, W R.; Yoo, K.; Ryu, D W.; Kim, B.; Hong, C S Angew Chem Int Ed 2014, 53 (32), 8383 (43) Ponomareva, V G.; Kovalenko, K A.; Chupakhin, A P.; Dybtsev, D N.; Shutova, E S.; Fedin, V P J Am Chem Soc 2012, 134 (38), 15640 (44) Jeong, N C.; Samanta, B.; Lee, C Y.; Farha, O K.; Hupp, J T J Am Chem Soc 2012, 134 (1), 51 (45) Xu, G.; Otsubo, K.; Yamada, T.; Sakaida, S.; Kitagawa, H J Am Chem Soc 2013, 135 (20), 7438 (46) Phang, W J.; Jo, H.; Lee, W R.; Song, J H.; Yoo, K.; Kim, B.; Hong, C S Angew Chem Int Ed 2015, 54 (17), 5142 (47) Kim, S.; Dawson, K W.; Gelfand, B S.; Taylor, J M.; Shimizu, G K J Am Chem Soc 2013, 135 (3), 963 (48) Ramaswamy, P.; Wong, N E.; Gelfand, B S.; Shimizu, G K J Am Chem Soc 2015, 137 (24), 7640 (49) Sen, S.; Nair, N N.; Yamada, T.; Kitagawa, H.; Bharadwaj, P K J Am Chem Soc 2012, 134 (47), 19432 (50) Shigematsu, A.; Yamada, T.; Kitagawa, H J Am Chem Soc 2011, 133 (7), 2034 (51) Taylor, J M.; Dawson, K W.; Shimizu, G K H J Am Chem Soc 2013, 135 (4), 1193 (52) Taylor, J M.; Komatsu, T.; Dekura, S.; Otsubo, K.; Takata, M.; Kitagawa, H J Am Chem Soc 2015, 137 (35), 11498 (53) Taylor, J M.; Dekura, S.; Ikeda, R.; Kitagawa, H Chem Mater 2015, 27 (7), 104 TU N THACH 2286 (54) Tang, Q.; Liu, Y.; Liu, S.; He, D.; Miao, J.; Wang, X.; Yang, G.; Shi, Z.; Zheng, Z J Am Chem Soc 2014, 136 (35), 12444 (55) Zhai, Q G.; Mao, C.; Zhao, X.; Lin, Q.; Bu, F.; Chen, X.; Bu, X.; Feng, P Angew Chem Int Ed 2015, 54 (27), 7886 (56) Nagarkar, S S.; Unni, S M.; Sharma, A.; Kurungot, S.; Ghosh, S K Angew Chem Int Ed 2014, 53 (10), 2638 (57) Horike, S.; Kamitsubo, Y.; Inukai, M.; Fukushima, T.; Umeyama, D.; Itakura, T.; Kitagawa, S J Am Chem Soc 2013, 135 (12), 4612 (58) Colodrero, R M.; Pastor, P O.; Losilla, E R.; Aranda, M A.; Reina, L L.; Papadaki, M.; McKinlay, A C.; Morris, R E.; Demadis, K D.; Cabeza, A Dalt Trans 2012, 41 (14), 4045 (59) Sadakiyo, M.; Yamada, T.; Kitagawa, H J Am Chem Soc 2009, 131 (29), 9906 (60) Garcia, M B.; Colodrero, R M.; Papadaki, M.; Garczarek, P.; Zon, J.; Pastor, P O.; Losilla, E R.; Reina, L L.; Aranda, M A.; Lazarte, D C.; Demadis, K D.; Cabeza, A J Am Chem Soc 2014, 136 (15), 5731 (61) Panda, T.; Kundu, T.; Banerjee, R Chem Commun 2012, 48 (44), 5464 (62) Panda, T.; Kundu, T.; Banerjee, R Chem Commun 2013, 49 (55), 6197 (63) Ohkoshi, S I.; Nakagawa, K.; Tomon, K.; Imoto, K.; Tsunobuchi, Y.; Tokoro, H J Am Chem Soc 2010, 132 (19), 6620 (64) Pardo, E.; Train, C.; Gontard, G.; Boubekeur, K.; Fabelo, O.; Liu, H.; Dkhil, B.; Lloret, F.; Nakagawa, K.; Tokoro, H.; Ohkoshi, S.; Verdaguer, M J Am Chem Soc 2011, 133 (39), 15328 (65) Colodrero, R M.; Pastor, P O.; Losilla, E R.; Alonso, D H.; Aranda, M A.; Reina, L L.; Rius, J.; Demadis, K D.; Moreau, B.; Villemin, D.; Palomino, M.; Rey, F.; Cabeza, A Inorg Chem 2012, 51 (14), 7689 105 TU N THACH (66) Hurd, J A.; Vaidhyanathan, R.; Thangadurai, V.; Moudrakovski, I L.; Shimizu, G K Nat Chem 2009, (9), 705 (67) Yamada, T.; Sadakiyo, M.; Kitagawa, H J Am Chem Soc 2009, 131 (9), 3144 (68) Liang, X.; Zhang, F.; Feng, W.; Zou, X.; Zhao, C.; Na, H.; Sun, F.; Zhu, G Chem Sci 2013, (3), 983 (69) Colodrero, R M P.; Papathanasiou, K E.; Stavgianoudaki, N.; Pastor, P O.; Losilla, E R.; Aranda, M A G.; Reina, L L.; Sanz, J.; Sobrados, I.; Lazarte, D C.; Ruiz, J M G.; Atienzar, P.; Rey, F.; Demadis, K D.; Cabeza, A Chem Mater 2012, 24 (19), 3780 (70) Begum, S.; Wang, Z.; Donnadio, A.; Costantino, F.; Casciola, M.; Valiullin, R.; Chmelik, C.; Bertmer, M.; Karger, J.; Haase, J.; Krautscheid, H Chem Eur J 2014, 20 (29), 8862 (71) Dong, X Y.; Wang, R.; Wang, J Z.; Zang, S Q.; Maka, T C W J Mater Chem A 2015, (2), 641 (72) Mallick, A.; Kundu, T.; Banerjee, R Chem Commun 2012, 48 (70), 8829 (73) Sadakiyo, M.; Yamada, T.; Kitagawa, H J Am Chem Soc 2014, 136 (38), 13166 (74) Okawa, H.; Shigematsu, A.; M.Sadakiyo; Miyagawa, T.; Yoneda, K.; M.Ohba; Kitagawa, H J Am Chem Soc 2009, 131 (37), 13516 (75) Bao, S S.; Otsubo, K.; Taylor, J M.; Jiang, Z.; Zheng, L M.; Kitagawa, H J Am Chem Soc 2014, 136 (26), 9292 (76) Umeyama, D.; Horike, S.; Inukai, M.; Hijikata, Y.; Kitagawa, S Angew Chem Int Ed 2011, 50 (49), 11706 (77) Horike, S.; Chen, W.; Itakura, T.; Inukai, M.; Umeyama, D.; Asakura, H.; Kitagawa, S Chem Commun 2014, 50 (71), 10241 (78) Umeyama, D.; Horike, S.; Inukai, M.; Itakura, T.; Kitagawa, S J Am Chem 106 TU N THACH Soc 2012, 134 (30), 12780 (79) Ponomareva, V G.; Kovalenko, K A.; Chupakhin, A P.; Shutova, E S.; Fedin, V P Solid State Ionics 2012, 225, 420 (80) Eddaoudi, M.; Kim, J.; Rosi, N.; Vodak, D.; Wachter, J.; O’Keeffe, M.; Yaghi, O M Science 2002, 295 (5554), 469 (81) Ma, B Q.; Mulfort, K L.; Hupp, J T Inorg Chem 2005, 44 (14), 4912−4914 (82) Banerjee, R.; Phan, A.; Wang, B.; Knobler, C.; Furukawa, H.; O’Keeffe, M.; Yaghi, O M Science 2008, 319 (5865), 939 (83) Shimizu, G K.; Vaidhyanathan, R.; Taylor, J M Chem Soc Rev 2009, 38 (5), 1430 (84) Peng, Y.; Krungleviciute, V.; Eryazici, I.; Hupp, J T.; Farha, O K.; Yildirim, T J Am Chem Soc 2013, 135 (32), 11887 (85) Hamon, L.; Serre, C.; Devic, T.; Loiseau, T.; Millange, F.; Ferey, G.; Weireld, G D J Am Chem Soc 2009, 131 (25), 8775 (86) Cavka, J H.; Jakobsen, S.; Olsbye, U.; Guillou, N.; Lamberti, C.; Bordiga, S.; Lillerud, K P J Am Chem Soc 2008, 130 (42), 13850 (87) Rosi, N L.; Kim, J.; Eddaoudi, M.; Chen, B.; O’Keeffe, M.; Yaghi, O M J Am Chem Soc 2004, 127 (5), 1504 (88) Spek, A L Acta Cryst 2009, D65, 148 (89) O’Keeffe, M.; Peskov, M A.; Ramsden, S J.; Yaghi, O M Acc Chem Res 2008, 41 (12), 1782 (90) Serre, C.; Draznieks, C M.; Audebrand, N.; Filinchuk, Y.; Ferey, G Science 2007, 315 (5820), 1828 (91) Lee, C Y.; Bae, Y S.; Jeong, N C.; Farha, O K.; Sarjeant, A A.; Stern, C L.; Nickias, P.; Snurr, R Q.; Hupp, J T.; Nguyen, S T J Am Chem Soc 2011, 133 107 TU N THACH (14), 5228 (92) Liu, D.; Lang, J P.; Abrahams, B F J Am Chem Soc 2011, 133 (29), 11042 (93) Morabito, J V; Chou, L Y.; Li, Z.; Manna, C M.; Petroff, C A.; Kyada, R J.; Palomba, J M.; Byers, J A.; Tsung, C K J Am Chem Soc 2014, 136 (36), 12540 (94) Farha, O K.; Eryazici, I.; Jeong, N C.; Hauser, B G.; Wilmer, C E.; Sarjeant, A A.; Snurr, R Q.; Nguyen, S T.; Yazaydin, A O.; Hupp, J T J Am Chem Soc 2012, 134 (36), 15016 (95) Deng, H.; Grunder, S.; Cordova, K E.; Valente, C.; Furukawa, H.; Hmadeh, M.; Whalley, A C.; Liu, Z.; Asahina, S.; Kazumori, H.; O’Keeffe, M.; Terasaki, O.; Stoddart, J F.; Yaghi, O M Science 2012, 336 (6084), 1018 (96) Farha, O K.; Malliakas, C D.; Kanatzidis, M G.; Hupp, J T J Am Chem Soc 2010, 132 (3), 950 (97) Kaye, S S.; Dailly, A.; Long, J R J Am Chem Soc 2007, 129 (46), 14176 (98) Nelson, A P.; Farha, O K.; Hupp, J T J Am Chem Soc 2009, 131 (2), 458 (99) Park, H J.; Lim, D W.; Yang, W S.; Oh, T R.; Suh, M P Chem Eur J 2011, 17 (26), 7251 (100) Ferey, G.; Draznieks, C M.; Serre, C.; Millange, F.; Dutour, J.; Surble, S.; Margiolaki, I Science 2005, 309 (5743), 2040 (101) Volkringer, C.; Meddouri, M.; Loiseau, T.; Guillou, N.; Ferey, G.; Haouas, M.; Taulelle, F.; Audebrand, N.; Latroche, M Inorg Chem 2008, 47 (24), 11892 (102) Chun, H.; Moon, J Inorg Chem 2007, 46 (11), 4371 (103) Maniam, P.; Stock, N Inorg Chem 2011, 50 (11), 5085 (104) Hili, R.; Yudin, A K Nat Chem Biol 2006, (6), 284 (105) Zhang, L.; Cheng, J.; Ohishi, T.; Hou, Z Angew Chem Int Ed 2010, 49 (46), 108 TU N THACH 8670 (106) Ng, K H.; Chan, A S C.; Yu, W Y J Am Chem Soc 2010, 132 (37), 12862 (107) Vedernikov, A N.; Caulton, K G Chem Commun 2004, No 2, 162 (108) Paul, E.; Patt, J.; Hartwig, J F J Am Chem Soc 1994, 116 (13), 5969 (109) Guram, A S.; Buchwald, S L J Am Chem Soc 1994, 116 (17), 7901 (110) Evano, G.; Blanchard, N.; Toumi, M Chem Rev 2008, 108 (8), 3054 (111) Kawano, T.; Hirano, K.; Satoh, T.; Miura, M J Am Chem Soc 2010, 132 (20), 6900 (112) Matsuda, N.; Hirano, K.; Satoh, T.; Miura, M Org Lett 2011, 13 (11), 2860 (113) Tan, Y.; Hartwig, J F J Am Chem Soc 2010, 132 (11), 3676 (114) Nadres, E T.; Daugulis, O J Am Chem Soc 2012, 134 (1), (115) Wasa, M.; Yu, J Q J Am Chem Soc 2008, 130 (43), 14058 (116) Yoo, E J.; Ma, S.; Mei, T S.; Chan, K S.; Yu, J Q J Am Chem Soc 2011, 133 (20), 7652 (117) Chen, X.; Hao, X S.; Goodhue, C E.; Yu, J Q J Am Chem Soc 2006, 128 (21), 6790 (118) John, A.; Nicholas, K M J Org Chem 2011, 76 (10), 4158 (119) Shuai, Q.; Deng, G.; Chua, Z.; Bohle, D S.; Li, C J Adv Synth Catal 2010, 352 (4), 632 (120) Wang, Q.; Schreiber, S L Org Lett 2009, 11 (22), 5178 (121) Cho, S H.; Yoon, J.; Chang, S J Am Chem Soc 2011, 133 (15), 5996 (122) Cho, S H.; Kim, J Y.; Lee, S Y.; Chang, S Angew Chem Int Ed 2009, 48 (48), 9127 (123) Kim, J Y.; Cho, S H.; Joseph, J.; Chang, S Angew Chem Int Ed 2010, 49 (51), 109 TU N THACH 9899 (124) Wang, H.; Getzschmann, J.; Senkovska, I.; Kaskel, S Microporous Mesoporous Mater 2008, 116, 653 (125) Wang, W.; Zhang, R.; He, D.; Liao, S Catal Comm 2011, 12 (10), 875 (126) Maes, M.; Schouteden, S.; Hirai, K.; Furukawa, S.; Kitagawa, S.; Vos, D E D Langmuir 2011, 27 (15), 9083 (127) Rosi, N L.; Kim, J.; Eddaoudi, M.; Chen, B.; O’Keeffe, M.; Yaghi, O M J Am Chem Soc 2005, 127 (5), 1504 (128) Steele, B C.; Heinzel, A Nature 2001, 414 (6861), 345 (129) Wang, Y J.; Zhao, N.; Fang, B.; Li, H.; Bi, X T.; Wang, H Chem Rev 2015, 115 (9), 3433 (130) Sone, Y.; Ekdunge, P.; Simonsson, D J Electrochem Soc 1996, 143 (4), 1254 (131) Li, Z.; He, G.; Zhang, B.; Cao, Y.; Wu, H.; Jiang, Z.; Tiantian, Z ACS Appl Mater Interfaces 2014, (12), 9799 (132) Kim, G.; Jhi, S H ACS Nano 2011, (2), 805 (133) Martin, K E.; Kopasz, J P Fuel Cells 2009, (4), 356 110 ... CHEMISTRY & APPLICATIONS OF METAL ORGANIC FRAMEWORKS 1.1 Definition of Metal Organic Framework 1.2 Applications of Metal- organic Frameworks 1.2.1 Applications of Metal organic. .. MINH CITY UNIVERSITY OF TECHNOLOGY TU NGOC THACH SYNTHESIS OF COBALT AND IRON- BASED METAL- ORGANIC FRAMEWORKS AND THEIR APPLICATIONS Faculty: Chemical Engineering, Division of Organic Chemical Engineering... METALORGANIC FRAMEWORKS 1.1 Definition of Metal Organic Frameworks Metal organic frameworks (MOFs) is the compound which are consisted of metal clusters and linker, typically, polytopic organic carboxylates