CÁC DẠNG PHƯƠNG TRÌNH LƯỢNG GIÁC... Phương trình bậc nhất với sin và cos.[r]
(1)(2)1 Biến đổi thành phương trình chứa hàm số lượng giác (Bậc nhất, hai, ba )
1.DBA06.cos3 cos3 sin sin3
x x x x 16 k2 2.DBD07.2 sin cos
12
x x
x k ;x k
3B06cot sin tan tan
x x x x
π 5π +kπ; +kπ 12 12
4.A_2005cos cos 22 x x cos2x 0
( )
2
x k k Z
5.D05.cos4 sin4 cos sin 3
4
x x x x
4 x k 6.B04.5sinx 2 3(1 sin ) tanx 2x
+ k2π;π 5π+k2π
6
7.B_2003.cot tan 4sin 2 sin
x x x
x
x=± +kππ
3
8.A_2002 Tìm nghiệm x(0;2 ) củapt: cos3 sin
5 sin cos
1 2sin
x x x x x ; 3
x x 9.DB _2002
4
sin cos 1
cot
5sin 2 8sin
x x x x x k 10.DBA 03cos 2x cosx2 tan2 x 1 2
2 ,
3 k k
11.A_06
6
2(cos sin ) sin cos 2sin
x x x x
x
5π x = + 2kπ
4
12.D_2006cos3xcos 2x cosx1 0
2
;
3 x k x k 13.D02 Tìm x0;14 cos3x 4cos 2x3cosx 0
; ; ;
2 2
x x x x 14.DB_2008 3sin cos 2 sin 2 4sin cos2
2
x
x x x x
7
2 , ,
2 k k k
15.DB.D_20084(sin4x cos ) cos 44x x sin 2x 0
2
x k
16.DBB.033cos 4x 8cos6x 2 cos2 x 3 0
, k2 k
17
3
sin sin cos cos3 tan tan
x x x x
x x 6
x k
18.sin (1 cot ) cos (1 tan )3 2sin 2
x x x x x
2 x k
19.2tanx + cotx = 2 sin x
;( )
3
x k k
20.cos x10 2cos x24 6cos x cosx cosx3 8cosx cos x. 33
2
xk 21.sin x cos x cos x6 4
;
2 k x
22.sin 3cos 2sin
2
x x x
,
x(π/2;3π)
1
13 17
; ; ; ;
6 6
x x x x x
23 os2 os2 1(sinx 1)
3
C x C x
5
2 , ,
6
x k x k x k
24 4
1 cot cot 2 sin cos 3 cos
x x x x
x
4 k4 x
25
4
4
sin os
os tan( ) tan( )
4
x c x
c x
x x
k2
26.A-10 (1 sin x cos 2x) sin x cos x
1 tan x
2 ,
6
x k x k
27.8 cos6 x 2 sin3xsin 3x 6 cos4x 1 0
8
π x kπ
28 cos sin
tan cot cot
x x
x x x
2
x k
29
4
sin cos
tan cot sin 2
x x
x x
x
VN
(3)1.D_07
2
sin cos cos
2
x x
x
π π
+k2π; - +k2π
2
2.CĐ_2008sin 3x cos3x2sin 2x
4
2 , ,
3 15
x k x k kZ 3.D_2009 cos5x 2sin cos 2x x sinx0
x k
18
hay x k
6
4.B0sinx cos sin 2x x 3 cos3x 2(cos 4x sin )3x
2
x k2 , x k
6 42
5.A_2009 (1 2sin ) cos (1 2sin )(1 sin )
x x
x x
2 18
x k
6.DB _03
2
2 cos 2sin
2 1
2cos
x x
x
3 k
7.DB_A_2cos2x2 3sin cosx x 1 3(sinx 3cos )x
2
x k
8.DB_A_06.2sin 4sin
x x
7π
x= +k2π; x=kπ
9.3cosx sin 2x 3 cos 2x 3 sinx 9.DB-D _2004sinxsin 2x cos xcos 2x
2 / 9 / 3; 2
x k x k
10.DBA_2005Tìm no (0; )
2
4sin cos 2cos
2
x
x x
.5π 17π 5π; ; 18 18
11.2sin 5x os3c xsin 3x0 ,
24
k
x x k
12.2cos2 2x 3cos4x 4cos x 12
4
k k ,
12 36
3.Biến đổi thành phương trình tích
1.B-10 (sin 2x + cos 2x) cosx + 2cos2x – sin x = x =
4 k
2.D-10 sin 2x cos 2x3sinx cosx1 0
5
2 ,
6
x k x k
3.A_2008
1
4sin
sin sin
2
x
x x
5
; ;
4 8
x k x k x k
4.B_08 3 2
sin x cos xsin cosx x sin xcosx
;
4
k
x x k 5.D_2008 2sin (1 cos ) sin 2x x x 1 2cosx
2
;
4
x k x k 6.A_07.(1 sin2x) cosx (1 cos )sin2 x x 1 sin 2x
π π
x = - + kπ; x = + k2π; x = k2π
4
7.B_2007.2sin 22 x sin 7x 1 sinx
2
2 ; ;
8 18 18
x k x k x k
8.B_2005.1 sin xcosxsin 2xcos 2x0
2
;
4
x k x k 9.D_2004(2cosx1)(2sinxcos ) sin 2x x sinx
π π
x = ± + k2π; x = - + kπ
3
10.A03.cot cos sin2 1sin
1 tan
x
x x x
x
k
11.D03sin2 tan2 cos2
2
x x
x
π π + k2π; - +kπ
4
12.B_02sin 32 x cos 42 x sin 52 x cos 62 x
k2 9,k
13.DB.A08tanx cotx 4cos 22 x
,
4 k k
14.DB.A08.sin sin
4
x x
,
4 k k
(4)15.DB.B_20082sin sin
3
x x
x k , x k
3
16.DB.A07sin sin 1 cot 2sin sin
x x x
x x x k
17.DB.B07sin cos cos3
2 4
x x x
2
; ;
3
x k x k x k 18.DB.B07sin cos tan cot
cos sin
x x
x x
x x x k2
19.DB.D07(1 tan )(1 sin ) tan x x x kπ;- +kππ
20.DB.B06 2
(2 sin x1) tan 2x3(2 cos x1)0 ± +kπ π
21B_2006cos 2x1 cos x sinx cosx0
π π
x + kπ; + k2π; π + k2π
4
22.DB.06cos3x sin3x 2sin2x 1
; ; k k k
23.DB.D_20064sin3x 4sin2x 3sin 2x 6 cosx 0
π 2π
x = - + k2π; x = ± + k2π
2
24.DBD05.tan sin
2 cos
x x x π 5π
+ k2π; + k2π
6
25.DB.B _20042 cos 1
4 sin cos
x x x
26.DB.D03
2
cos cos
2 sin sin cos x x x x x
2 ,
2 k k
27.DB.D _2003cot tan 2cos sin
x
x x
x
3 k
28.DBA 02.
2
tanxcosx cos xsin tan tanx x x k2
29
2
4
2 sin sin tan cos x x x x
18 k23,518 k23
30.DBA033 tan xtanx2 sinx6 cosx0
3 k
31.3cosx sin 2x 3 cos 2x 3 sinx
, ,
3
x k k k 32.DB.D_2005 sin 2xcos 2x3sinx cosx 0
π π 5π
x = + k2π; x = π + k2π; x = ; x = +k2π
2 6
33.9sinx + 6cosx – 3sin2x + cos2x = 2 k
34.2 cos2x sin2 cosx x 4sin x
4 x k
; x k2 ; x k2
2
35.sin tan 2x x 3(sinx tan ) 3x
6 k
36.sin sin sin
4
x x x x k
37.tan tan sin sin sin
6
x x x x x
2 , 2 k k
38.cos x3 4sin x3 3cosx sin x sinx. 0
,
4 k m
39.2 sin cos 2
4
x x tg x , 2
4 k k
40.sin23x - sin22x - sin2x = ,
6 k k
41sin cosx x 3 2 osc 3x 3 os2c x 8 3 cosx s inx 3 0
,
3
x k x k
42 sin 3sin cos
x x x
2 ,
2 k k
43 ) sin( cos sin sin cot x x x x x k
x
2 ;
2
t
(5)44.2 sin sin cos sin 22 cos2
x x x x x
2 x k
45.(1+sin x)2 =cosx x k2 ,x k2
2 p
= p = - + p
46.2 sin2 sin2 tan
x x x
k
47.cos3x+cos2x+2sinx–2 = 2 ; 2
2
x k x n
Phương trình đẳng cấp
1.DBA_04.4(sin3 x cos ) cos3x x 3sinx
, k k
2.sin3x 3 cos3x sin cosx 2x 3 sin2xcosx
;
4
k
x x k 3.DBA_20052 cos3 3cos sin
4
x x x
π π
x= +kπ; x= +kπ
2
4.cosx = 8sin3
6
x
x = k
5.tanx.sin2x2sin2x=3(cos2x+sinx.cosx)
;
4
x k x n
6.sinx4sin3x+cosx =0
4
x k 7.4sin3x 3cos3x 3sinx sin2xcosx 0
,
4 k k
8.Sin x2 2 tanx3
4
x k
9 Cos2x 3 sin 2x 1 sin2x
,
3
k k , 10.3cos4 x 4sin2xcos2x sin4 x 0
,
4
x k x k
Giải phương pháp đặt ẩn phụ hoặc góc phụ
1.sin 3.sin
4
x x
2 x k 2.sin(2x -
3
) = 5sin(x -
) + cos3x x =
+ k 3.2cos(
6
x ) = sin3x - cos3x , , 12 k k k
4.2sinx+ 2sinx 2sin2x- = + 2sin2x 1
-x k2 ,k p
= + p ẻ Â
52cos 8cos cos
x x
x
,
k k , 6.Cos2x 5 2(2 cos )(sinx cos ) x x
2 ,
2 k k
7.2sin3x – cos2x + cosx =
4
π
x nπ; x kπ
8.sin8 cos8 17
32
x x
8
π π
(6)