1. Trang chủ
  2. » Trung học cơ sở - phổ thông

Fan loai ptlg co dap so trog de thi DH o VN

6 6 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 6
Dung lượng 568 KB

Nội dung

CÁC DẠNG PHƯƠNG TRÌNH LƯỢNG GIÁC... Phương trình bậc nhất với sin và cos.[r]

(1)(2)

1 Biến đổi thành phương trình chứa hàm số lượng giác (Bậc nhất, hai, ba )

1.DBA06.cos3 cos3 sin sin3

x xx x  16 k2 2.DBD07.2 sin cos

12

x  x

 

 

  x k ;x k

 

 

   

3B06cot sin tan tan

x xx  x 

 

π 5π +kπ; +kπ 12 12

4.A_2005cos cos 22 x x cos2x 0

  ( )

2

 

x k k Z

5.D05.cos4 sin4 cos sin 3

4

xx x   x  

   

 

4 x k 6.B04.5sinx 2 3(1 sin ) tanx 2x

   + k2π;π 5π+k2π

6

7.B_2003.cot tan 4sin 2 sin

x x x

x

   x=± +kππ

3

8.A_2002 Tìm nghiệm x(0;2 ) củapt: cos3 sin

5 sin cos

1 2sin

x x x x x            ; 3

x x  9.DB _2002

4

sin cos 1

cot

5sin 2 8sin

x x x x x    k     10.DBA 03cos 2x cosx2 tan2 x 1 2

  

2 ,

3 k k

  

  

11.A_06

6

2(cos sin ) sin cos 2sin

x x x x

x

 

 

5π x = + 2kπ

4

12.D_2006cos3xcos 2x cosx1 0

2

;

3 x k  x  k  13.D02 Tìm x0;14 cos3x 4cos 2x3cosx 0

; ; ;

2 2

x x  x  x  14.DB_2008 3sin cos 2 sin 2 4sin cos2

2

x

xxxx

7

2 , ,

2 k k k

  

   

  

15.DB.D_20084(sin4x cos ) cos 44x x sin 2x 0

   

2

x  k

16.DBB.033cos 4x 8cos6x 2 cos2 x 3 0

   

, k2 k

 

 

17

3

sin sin cos cos3 tan tan                  

x x x x

x x 6

 

 

x k

18.sin (1 cot ) cos (1 tan )3 2sin 2

   

x x x x x

2     x k

19.2tanx + cotx = 2 sin x

 ;( )

3

x kk 

20.cos x10 2cos x24 6cos x cosx cosx3  8cosx cos x. 33

2

xk  21.sin x cos x cos x6 4

  ;

2 k x 

22.sin 3cos 2sin

2

xxx

      

   

    ,

x(π/2;3π)

1

13 17

; ; ; ;

6 6

x  x   x   x   x  

23 os2 os2 1(sinx 1)

3

C x C x   

   

5

2 , ,

6

x k  x kx  k

24  4 

1 cot cot 2 sin cos 3 cos

x x x x

x

   

4 k4 x  

25

4

4

sin os

os tan( ) tan( )

4

x c x

c x

x x

 

  k2

26.A-10 (1 sin x cos 2x) sin x cos x

1 tan x

           

2 ,

6

x kx k

27.8 cos6 x 2 sin3xsin 3x 6 cos4x 1 0

   

8

π x 

28 cos sin 

tan cot cot

x x

x x x

 

 

2

x  k

29  

4

sin cos

tan cot sin 2

x x

x x

x

  VN

(3)

1.D_07

2

sin cos cos

2

x x

x

  

 

 

 

π π

+k2π; - +k2π

2

2.CĐ_2008sin 3x cos3x2sin 2x

 

4

2 , ,

3 15

x kx  kkZ 3.D_2009 cos5x 2sin cos 2x x sinx0

x k

18

 

  hay x k

6

 

 

4.B0sinx cos sin 2x x 3 cos3x 2(cos 4x sin )3x

   

2

x k2 , x k

6 42

  

    

5.A_2009 (1 2sin ) cos (1 2sin )(1 sin )

x x

x x

 

2 18  

xk

6.DB _03 

2

2 cos 2sin

2 1

2cos

x x

x

 

    

  

3 k

  

7.DB_A_2cos2x2 3sin cosx x 1 3(sinx 3cos )x

2

 

 

x k

8.DB_A_06.2sin 4sin

xx

 

   

 

 

x= +k2π; x=kπ

9.3cosx sin 2x  3 cos 2x 3 sinx 9.DB-D _2004sinxsin 2x cos xcos 2x

2 / 9 / 3;   2

   

x k x k

10.DBA_2005Tìm no (0; )

2

4sin cos 2cos

2

x

xx

     

 

.5π 17π 5π; ; 18 18

11.2sin 5x os3c xsin 3x0 ,

24

k

x    x   k

12.2cos2 2x 3cos4x 4cos x 12

4 

   

 

 

 

k k ,

12 36

  

  

3.Biến đổi thành phương trình tích

1.B-10 (sin 2x + cos 2x) cosx + 2cos2x – sin x = x =

4 k

 

 2.D-10 sin 2x cos 2x3sinx cosx1 0

5

2 ,

6

x  kx k

3.A_2008

1

4sin

sin sin

2

x

x x

 

    

    

 

 

5

; ;

4 8

x kx  kx  k

4.B_08 3 2

sin x cos xsin cosx x sin xcosx

;

4

k

x   x k 5.D_2008 2sin (1 cos ) sin 2xxx 1 2cosx

2

;

4

x kx  k  6.A_07.(1 sin2x) cosx (1 cos )sin2 x x 1 sin 2x

    

π π

x = - + kπ; x = + k2π; x = k2π

4

7.B_2007.2sin 22 x sin 7x 1 sinx

  

2

2 ; ;

8 18 18

x kx kx  k

8.B_2005.1 sin xcosxsin 2xcos 2x0

2

;

4

x kx  k  9.D_2004(2cosx1)(2sinxcos ) sin 2xx sinx

π π

x = ± + k2π; x = - + kπ

3

10.A03.cot cos sin2 1sin

1 tan

x

x x x

x

   

k

  

11.D03sin2 tan2 cos2

2

x x

x

 

  

 

 

π π + k2π; - +kπ

4

12.B_02sin 32 x cos 42 x sin 52 x cos 62 x

   k2 9,k

13.DB.A08tanx cotx 4cos 22 x

  ,

4 k k

   

  

14.DB.A08.sin sin

4

x   x  

   

   

   

,

4 k k

 

 

(4)

15.DB.B_20082sin sin

3

xx

   

   

   

   

x k , x k

3

 

 

   

16.DB.A07sin sin 1 cot 2sin sin

x x x

x x     x k    

17.DB.B07sin cos cos3

2 4

xxx

   

   

   

   

2

; ;

3

x kx kx  k  18.DB.B07sin cos tan cot

cos sin

x x

x x

xx   x k2

   

19.DB.D07(1 tan )(1 sin ) tan xx   x kπ;- +kππ

20.DB.B06 2

(2 sin x1) tan 2x3(2 cos x1)0 ± +kπ π

21B_2006cos 2x1 cos x sinx cosx0

π π

x + kπ; + k2π; π + k2π

4

22.DB.06cos3x sin3x 2sin2x 1

  

; ; k k k

 

  

   

23.DB.D_20064sin3x 4sin2x 3sin 2x 6 cosx 0

   

π 2π

x = - + k2π; x = ± + k2π

2

24.DBD05.tan sin

2 cos

x x x            π 5π

+ k2π; + k2π

6

25.DB.B _20042 cos 1

4 sin cos

x x x          

26.DB.D03    

2

cos cos

2 sin sin cos x x x x x    

2 ,

2 k k

  

  

27.DB.D _2003cot tan 2cos sin

x

x x

x

 

3 k

 

 

28.DBA 02.  

2

tanxcosx cos xsin tan tanxx x k2

29  

2

4

2 sin sin tan cos x x x x

  18 k23,518 k23

30.DBA033 tan xtanx2 sinx6 cosx0

3 k

 

 

31.3cosx sin 2x 3 cos 2x 3 sinx

, ,

3

x k  k   k  32.DB.D_2005 sin 2xcos 2x3sinx cosx 0

π π 5π

x = + k2π; x = π + k2π; x = ; x = +k2π

2 6

33.9sinx + 6cosx – 3sin2x + cos2x = 2 k

 

34.2 cos2x sin2 cosx x 4sin x

4                  x k  

  ; x k2 ; x k2

2

 

  

35.sin tan 2x x 3(sinx tan ) 3x

6 k

 

  36.sin sin sin

4

 

   

  

   

xxxx k

 

 

37.tan tan sin sin sin

6

 

   

   

   

x  xx x x

2 , 2 k k     

38.cos x3 4sin x3 3cosx sin x sinx. 0

   

 

 

  , 

4 k m

39.2 sin cos 2

4 

 

    

 

x x tg x , 2

4 k k

 

 

   40.sin23x - sin22x - sin2x = ,

6 k k

  

41sin cosxx 3 2 osc 3x 3 os2c x 8 3 cosx s inx 3 0

      

,

3

x k x k  

42 sin 3sin cos

x  xx

 

 

 

2 ,

2 k k

       43 ) sin( cos sin sin cot      x x x x x   k

x 

2 ;

2

  t

(5)

44.2 sin sin cos sin 22 cos2 

x xx x  x 

2 x  k

45.(1+sin x)2 =cosx x k2 ,x k2

2 p

= p = - + p

46.2 sin2 sin2 tan

xx x

 

  

 

  k

 

47.cos3x+cos2x+2sinx–2 = 2 ; 2

2

x k  x n

Phương trình đẳng cấp

1.DBA_04.4(sin3 x cos ) cos3x x 3sinx

  

, k k

 

 

  

2.sin3x 3 cos3x sin cosx 2x 3 sin2xcosx

  

;

4

k

x   x k 3.DBA_20052 cos3 3cos sin

4

x x x

 

   

 

 

π π

x= +kπ; x= +kπ

2

4.cosx = 8sin3

6

x

 

 

  x = k

5.tanx.sin2x2sin2x=3(cos2x+sinx.cosx)

;

4

x  kx  n

6.sinx4sin3x+cosx =0

4

x k 7.4sin3x 3cos3x 3sinx sin2xcosx 0

   

,

4 k k

 

 

  

8.Sin x2 2 tanx3

4

x k

9 Cos2x 3 sin 2x 1 sin2x

   ,

3

k   k , 10.3cos4 x 4sin2xcos2x sin4 x 0

  

,

4

x  kx  k

Giải phương pháp đặt ẩn phụ hoặc góc phụ

1.sin 3.sin

4

 

   

  

   

   

x x

2 x k  2.sin(2x -

3 

) = 5sin(x - 

) + cos3x x = 

+ k 3.2cos(

6

x ) = sin3x - cos3x , , 12 k k k

  

  

    

4.2sinx+ 2sinx 2sin2x- = + 2sin2x 1

-x k2 ,k p

= + p ẻ Â

52cos 8cos cos

x x

x

   ,

k    k  , 6.Cos2x 5 2(2 cos )(sinx cos ) xx

2 ,

2 k k

  

 

7.2sin3x – cos2x + cosx =

4

π

x ; x kπ

8.sin8 cos8 17

32

xx

8

π π

(6)

Ngày đăng: 27/04/2021, 13:41

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w