[r]
(1)Bài Tập Phương Trình Mũ – Logarit
http://ebook.here.vn – Thư viện Bài giảng, ðề thi trắc nghiệm 3x x
3 − =9 + 2x2+3x 2− =16x 1+ 65 3x− =216 7x2+ −x =1
x x 2x
2 −.5 − =10 + 3x2−x =811 x− 31 2x 27
− =
3x
1
16
2 − =
2x 5x
2
5
− −
=
2
x 15 x
3 − =9 25x2− +x 2=53x 2−
x x 5x
2
2
− +
− +
=
2
x 15 x
5 − =25
2
x 2x
5 − =125
x
x
5
25
−
−
=
x
6
216
− =
x x
10
100
+ − = 4x =82x 3− 2x2−x =4x 2+ 3 x2 4x
243
− + =
x 2x 2x x
3 − =18 2− + ( )0, x =(6, 25)6x 5− 3.3x x 2− 5x 1+ =1500
2x 2x
5 + −3.5 − =550 2x x 1−.5 − =0.001.102x 5+
x 10 x
x 10 x 15
16 0, 25.8
+ +
− = −
x x
x 1
3
3 27
=
x x 2
3 =225
x x
3
4 16
=
x x
2 27
3 64
=
3x 7x
3
7
− −
=
x272x 1− = 92x 1− 5 x −51− x + =4 0
x
x 2
3 −8.3 +15=0
2 x
x 1
3
27
− −
−
= 3x2−15 =9x 9x2−2x =3x 3− 53x x 31
−
−
=
3x
2
8
− = 3x 7 x2 4x 5
2 − =4 + −
2
x x x
25 − =5 +
2 x
6x 3
2
+
+ − =
x 2x
4.9 − =3 + 2x 3− =5x2−5x 6+
x x x
5 500
−
= 10x+10x 1− =0,11
x x x x
3.4 6.4
3
+ + +
+ = 2x x+.5 =2.102x 5+ 2 3x x x 2−.5 − =12
2
x 6x 2,5
2 − − =16 2x 1− +2x 1− +2x 2− = −3x 1− +3x +3x 2− 4x +2x− =6
x x
9 −8.3 − − =1 22x 1+ −5.2x + =2 3.9x 1− −24.3x 2− + =4 9x 1+ +3x 2+ =4
2x x
5 −2.5 −15=0 3.52x 2.5x 1
− − − = 2x x
3 + −4.3 + +27=0 4x 1,5+ +9x =6x 1+
x x
4 −9.2 + =8 42x 3− −3.4x 2− − =1 4x +2x 1+ =80 132x−6.13x+ =5
1 x
x
16 + =15.4 +4 62x 8.6− x+ =12 22x 1+ +2x 2+ =16 4x −9.2x + =8
2x x
5 −4.5 − =5 34 x −4.32 x + =3 4x2+2−9.2x2+2+ =8 3x 2+ +32 x− =0
x 2 x
2 + −2 − =15 5x 1+ +51 x− =26 2x 1+ +22 x− =9 4x +9x =2,5.6x
x x
15.2 + +15.2 − =135 101 x+ −101 x− =99 4.22x −6x =18.32x
( )x ( )x
4− 15 + 4+ 15 =8 ( ) ( )
x x
2− + 2+ =4 25−x +5− +x 1=50
( )x ( )x
5 6− + 6+ =10 ( ) ( )
x x
7+ 48 + 7− 48 =14
1
3
x x
64 −2 + +12=0
x x
25 −6.5 + +5 =0 32x 4+ +45.6x −9.22x 2+ =0 6.9x −13.6x+6.4x =0
x x x
(2)x x x
5.4 −7.10 +2.25 =0 8x +18x =2.27x x 2− +16=2 x 2−
1
x x
2
4 7.2
− + −
− = 3x2−2x 1+ + =2 9.2 3x2−2x
1
x x
2
16 15.4
+
= +
4x 2x
3 + −4.3 + +27=0 (4+ 15) (x + 4− 15)x =62 3.49x +2.14x −4x =0
( ) 1( )
3
2
log x +3x−4 =log 2x+2 l o g x 1l o g x 1( )
= +
x x
log 10 log 10 6− − =0
( ) ( )
3
log x −4x+3 =log 3x+21 log2(x2−6)=log2(3x−6) log5(x2−11x+43)=2
( ) ( )
4
log x −4x+3 =log 3x−7 log5(2x2− +x 3)=log5(2x 1+ ) logx 1− 4=2
( )
x
log 3x −5x−3 =2 l o g 2x( )=2 l o g 4x 15( − ) logx(2x2−3x−4)=2
( )
x
log + x −3x 1+ =1 logx(3x2−8x+3)=2 logx 1− (3x2−7x−2)=2
( )
5 x
log − x −2x+65 =2 1 1
5
x 2
log log
10 x
+ =
+ 5( )
3x
log x log
x
− =
+
( x x )
2 x
2
1
log 15.2 27 log
4.2
+ + − =
−
( ) ( )
2
1
3
log x −7x 1− =log 2x−
( ) ( )
2
log x +2x 1− =log x 1+ log2(x2− =1) log2(x 1+ ) log3x 2x( − =5)
( 2) ( )3
log 10x 12x− − =log 2x 1− log x( 3 )2−5log 9x3 + =3
( ) ( )
4 4
log x+3 −log x 1− = −2 log log 2.logx 2x2=log4x2
( )
3 3
log x−2 +log x=log log x( −9)+2 log 2x 1− =2
( ) ( )
log x+3 −2 log x−2 =log 0, log4(x+2)−log4(x−2)= −2 log 84
( ) ( )
5 5
1
log x log x log 2x
2 + + − = + 2
2
2 log x+log x+log x=9
( ) ( ) ( )
9 9
log x 1+ −log x− =log 2x+3 log7(x−2)−log7(x+2)= −1 log7(2x−7)
( ) ( )
2
2
log x 1+ + =1 log x−
5 4.log x− +1 log x+ = 3
3
log x−log x+log x=6
2 13
7 log x− +11 log x+ =12 2 2
1
1
2 log x− +4+log x = 3 3
1
2 log x− +log x =
x
7
log log x
6
− + = log x2 +log 2x =2,5 22 2 1
2
log x+3log x+log x=2
2 2x
x
log 16 log+ 64=3 log22(x 1− )2 = +5 log0,2(x 1− ) log22(x 1− = +) log2(x 1− )2
2
log x +9.log x=40 log x22 + =3 2.log x2 log x2 3−10log x 1+ =0
2
64 x
5
log x log
3
+ =
64 x
5
log x log
3
+ =
x x x
log 5+log 5x−2, 25=log
x 16
3.log 16 4.log− x=2.log x log 16 log xx − 2 + =3 log x5 −log 125 1x − =0
3
x x x
log 10 log 10 log 10− − =0 log x− =3 log x log x23 −5log 9x3 + =3
3 x x
1
log x log log x log
2
+ = + + 1 1 ( )
10 10
2x 54
log log x
x
− = −
+ 1
3