1. Trang chủ
  2. » Tài Chính - Ngân Hàng

Giai de Toan TS 10 7 9

4 27 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 4
Dung lượng 365,48 KB

Nội dung

b) Chứng minh rắng tứ giác FCBM nội tiếp được trong đường tròn. Tìm tâm đường tròn đó.. Hai đường kính AB và CD vuông góc nhau. Gọi E là điểm chính giữa của cung nhỏ BC. Dây AE cắt CO t[r]

(1)

GIẢI MỘT SỐ ĐỀ TOÁN TUYỂN SINH 10 ĐỀ SỐ 7

(Thời gian : 120 phút) Bài 1.

Cho biểu thức P =

2

2

1 2

x x x

x x x

      

   

      

 

a) Rút gọn biểu thức

b) Chứng minh < x < P > c) Tìm giá trị lớn biểu thức P Bài 2.

Giải hệ phương trình : y x xy

x y xy

 

 

 

Bài 3.

a) Chứng minh với số thực dương a, b ta có :

1

a b a b

b) Tìm nghiệm nguyên x, y phương trình : 6x2 + 5y2 = 74 Bài 4.

Cho đường tròn (O ; R) Hai đường kính AB CD vng góc Gọi E điểm cung nhỏ BC Dây AE cắt CO F, dây DE cắt AB M

a) Tam giác CEF EMB tam giác ?

b) Chứng minh rắng tứ giác FCBM nội tiếp đường trịn Tìm tâm đường trịn c) Chứng minh đường thẳng OE, BF, CM đồng quy

Bài 5.

Chứng minh a + b + c = abc ≠ : a b b c c a c a b

c a b a b b c c a

  

   

    

      

   

GIẢI Bài 1

a) Ta có P =

2

2

1 2

x x x

x x x

      

   

      

  =  

2

2

( 1)( 1) 1

x x x

x x x

 

    

  

 

     

  

 

=  

2

2

( 2)( 1) ( 1)( 2)

.( 1) ( 1)

2( 1)

x x x x

x x

x x

    

 

 

=

.( 1)

x x

=  x.( x 1) = x.(1 x)

b) Nếu < x <  < x <  – x > suy P = x.(1 x) >

* Đặt t = x >  P = t – t2 =

2

1 1

2

4 t 2t

 

    

  =

2

1

4 t

 

   

  ≤

(2)

Vậy P đạt giá trị lớn 

1 t

1 x

1 x

* Có thể dùng Bất đẳng thức Cauchy cho hai số dương có tổng khơng đổi tích chúng lớn hai số

Bài 2.

Giải hệ phương trình : y x xy

x y xy

 

 

 

+ Dễ thấy x = , y = nghiệm hệ + Nếu x ≠ y ≠

Thì chia pt hệ cho xy , ta : 1

1

5 x y y x

 

  

  

 

Đặt u = x ; v =

1 y

Hệ 

1

4

u v v u

 

 

 

 

9 7 u v

       

 

7 x y

        

Vậy hệ có nghiệm (0 ; 0) ( 9;

7 2) * Cách khác :

Nhân pt (1) cho trừ vế , ta 2y – 9x =  y =

9 2x

Thế vào (1) , ta : 9x2 – 7x =  x(9x – 7) =  x x

     

Tứ suy nghiệm hệ : (0 ; 0) ( 9;

7 2) Bài 3.

a) Chứng minh với số thực dương a, b ta có :

1

a b a b (1)

(1) 

4 a b

ab a b

 

   

2

a b  ab (a, b dương)

 (a2 – 2ab + b2) ≥ : Đúng

Vậy (1)

b) Tìm nghiệm nguyên x, y phương trình : 6x2 + 5y2 = 74 Đặt u = x2 ≥ , v = y2 ≥

Ta có 6u + 5x = 74  6u = 74 – 5x 

74

v u 

= 12 +

6 v

(3)

Đặt t =

6 v

 6t = – 5v  5v = – 6t 

2

t v 

=

5 t

t

 

Đặt k =

5 t

 5k = – t  t = – 5k

Vậy ta có :

u = 12 + – 5k = 14 – 5k v = k – + 5k = 6k – Do :

14

6

u k

v k

 

 

 

 với k, t, u, v số nguyên

Vì u = x2 , x nguyên nên u số phương 14 – 5k > 0, k nguyên nên k { 1; } Nên : chọn k =  u =  x = 3 ; v =  y = 

Nhưng k = v = 10 khơng số phương, nên loại k =

Vậy nghiệm nguyên phương trình cần tìm (3 ; 2) ; (3 ; -2) ; (-3 ; 2) ; (-3 ; -2) Cách khác :

6x2 + 5y2 = 74  6(x2 – 4) = 5(10 – y2)

Suy : x2 – = 5u 10 – y2 = 6v u = v Vì x2 = + 5u ≥  u ≥

4

y2 = 10 – 6v ≥  v ≤

+ Hoặc u = v = y2 = 10 , y nguyên : không xảy ra + Hoặc u = v = x2 = ; y2 = 4

Vậy nghiệm nguyên phương trình cần tìm (3 ; 2) ; (3 ; -2) ; (-3 ; 2) ; (-3 ; -2) Bài

Cho đường trịn (O ; R) Hai đường kính AB CD vng góc Gọi E điểm cung nhỏ BC Dây AE cắt CO F, dây DE cắt AB M

a) Tam giác CEF EMB tam giác ?

b) Chứng minh rắng tứ giác FCBM nội tiếp đường trịn Tìm tâm đường trịn c) Chứng minh đường thẳng OE, BF, CM đồng quy

a) Ta có

 1(  )

2

FCEEB BD

(góc nội tiếp chắn cung EBD)

 1(  )

2

CFEEB BD

(góc có đỉnh bên đường tròn)

CE EB  (E điểm cung BC)

Suy : CFE = FCEECF cân E

Chứng minh tương tự : EMC cân E

Mà hai cạnh CE = EB

Nên Tam giác CEF EMB tam giác cân

b) Ta có : góc BCF chắn cung BD = 90o góc BCM chắn cung AC = 90o

suy : hai góc BCF BCM nhìn FM đưới

K

M F

E

D C

B O

(4)

một góc nhau, tứ giác BCFM nội tiếp đường tròn

EC = EF = EM = EB suy E tâm đường tròn ngoại tiếp tứ giác BCFM

c) Ta có OE trung trực BC FM

Gọi K giao điểm CM BF , ta chứng minh OE qua K.Thật :

FKC = MBK (g – c – g) :

+ FCKMBK (góc nội tiếp chắn cung FM)

+ FC = BM (cmt)

+ CFK BMK (góc nội tiếp chắn cung BC)

Từ suy : FK = KM KB = KC nên K thuộc trung trực OE Bài 5.

Chứng minh a + b + c = abc ≠ : a b b c c a c a b

c a b a b b c c a

  

   

    

   

  

   

Đặt a b x

c

 

1 c

xa b ;

b c y

a

 

1 a

yb c ;

c a z

b

 

1 b

zc a

Và : M =

a b b c c a c a b c a b a b b c c a

  

   

   

      

   

Ta có :

M =  

1 1

a b b c c a c a b

x y z

c a b a b b c c a x y z

 

  

   

          

      

     

= +

y z z x x y x y z

  

 

(1) Do a + b + c = nên :

a + b = – c  a3 + 3ab(a + b) + b3 = – c3 a3 + b3 + c3 = 3abc (2)

Ta có :

2 ( )( )

b c c a b bc ac a a b a b c y z

a b ab ab

       

    

Suy :

2

( )( )

( )

a b a b c

y z ab a b c c c a b

x ab ab

c

  

  

  

Tương tự cách hốn vị vịng quanh, ta :

2 z x a

y bc

 

;

2 x y b

z ca

 

Thay vào (1), áp dụng (2) , ta : M = +

2 2c

ab + 2b

ca + 2a

bc = +

3 3

2(a b c ) abc

 

= + 2.3abc

Ngày đăng: 12/04/2021, 16:23

TỪ KHÓA LIÊN QUAN

w