1. Trang chủ
  2. » Kỹ Năng Mềm

De Thi DH Mon Toan BGD Ca 3 Khoimoi nhat

7 9 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 7
Dung lượng 204,83 KB

Nội dung

Vậy tứ diện ABCD có các cặp cạnh đối đôi một bằng nhau.. Từ đó ABCD là một tứ diện gần.[r]

(1)

BỘ GIÁO DỤC VÀ ĐÀO TẠO ĐỂ THI THỬ ĐẠI HỌC, CAO ĐẲNG NĂM 2009

ĐỀ CHÍNH THỨC Mơn thi: TỐN, khối A,B,D

Thời gian làm bài: 180 phút, không kể thời gian giao đề. I PHẦN CHUNG CHO TẤT CẢ CÁC THÍ SINH (7 điểm)

Câu I (2 điểm) Cho hàm số yf x( )mx33mx2 m1x 1, m tham số Khảo sát biến thiên vẽ đồ thị hàm số m = Xác định giá trị m để hàm số yf x( ) khơng có cực trị Câu II (2 điểm)

Giải phương trình lượng giác: (2cosx-1).(2sinx + cosx) = sin2x - sinx Cho hệ phương trình:

2

12 26

xy y

x xy m

   

   

a) Giải hệ phương trình với m=2

b) Với nhương giá trị m hệ phương trình cho có nghiệm?

Câu III (1 điểm) Tính tích phân:  

2

4

0

cos sin cos

I x x x dx

 

Câu IV (1 điểm) Cho chóp tứ giác S.ABCD có cạnh bên bán kính mặt cầu ngoại tiếp cho chóp tứ giác S.ABCD Hãy tính thể tích chóp S.ABCD Câu V (1 điểm) Cho a,b,c ba số dương CMR: a

2

b2+ b2

c2+ c2

a2 a b+

b c+

c a Cho a,b,c dương a+b+c =1.CMR: (1+1

a).(1+ b).(1+

1 c)≥ 64 II.PHẦN RIÊNG (3 điểm): Thí sinh làm hai phần (Phần phần 2) 1 Theo chương trình chuẩn.

Câu VI.a (2 điểm)

1.Trong mặt phẳng với hệ tọa độ Oxy cho hai điểm A(0 ; 1), B(-1 ; 3) đường thẳng (d) : -2x + y 1 = Tìm điểm C thuộc (d) cho diện tích tam giác ABC

2 Giải bất phương trình:

 

2

3 1

3

1

log log log

2

xx  x  x

Câu VII.a.(1điểm)1.Trong mp oxyz ,viết phương trình đường thẳng (d) qua A(3;-1;-4), cắt trục tung song song với mp(P): x+ 2y – z + =

2.Giải Phương trình :

2

2cos sin cos

3

.4 42.36 6.9

4

xx x

 

2 Theo chương trình nâng cao. Câu VI.b (2 điểm)

1 Trong mặt phẳng tọa độ Oxy, cho hình chữ nhật ABCD có diện tích 12, tâm I thuộc đường thẳng

 d :x y  0

có hồnh độ I

x 

, trung điểm cạnh giao điểm (d) trục Ox Tìm tọa độ đỉnh hình chữ nhật

2 Trong khơng gian với hệ tọa độ Oxyz, cho mặt cầu (S) mặt phẳng (P) có phương trình

2 2

( ) :S xyz  4x2y 6z 5 0, ( ) : 2P x2y z 16 0 .

Điểm M di động (S) điểm N di động (P) Tính độ dài ngắn đoạn thẳng MN Xác định vị trí M, N tương ứng

Câu VII.b (1 điểm) Cho a b c, , số dương thỏa mãn: a2b2c2 3 Chứng minh bất đẳng thức

2 2

1 1 4

7 7

a b b c c a     a  b  c

-Hết -Cán coi thi khơng giải thích thêm

(2)

Đáp án.(lộn xộn số câu ,thông cảm)

Câu Ý Nội dung Điểm

I 2,00

1 1,00

+ MXĐ: D  0,25

+ Sự biến thiên

 Giới hạn: xlim  y; limx y

 

3

' 4 ; '

1 x

y x x x x y

x  

      

 

0,25

 Bảng biến thiên

     

1 1; 1; 0

CT CT

yy   yy  yC§ y

0,25

 Đồ thị

0,25

2 1,00

Ta có f x'( ) 4 x3 4x Gọi a, b hồnh độ A B

Hệ số góc tiếp tuyến (C) A B kAf a'( ) 4 a3 ,a kBf b'( ) 4 b3 4b

Tiếp tuyến A, B có phương trình là:

         

' ' ( ) af' a

yf a x a  f af a xf a

;

         

' ' ( ) f' b

yf b x b  f bf b x f b  b

Hai tiếp tuyến (C) A B song song trùng khi:

  

3 2

4a 4a = 4b (1)

A B

kk    ba b a ab b   Vì A B phân biệt nên a b , (1) tương đương với phương trình:

2 1 (2)

aab b   Mặt khác hai tiếp tuyến (C) A B trùng

        

2 2

4

1

' ' 3

a ab b a ab b

a b

f a af a f b bf b a a b b

         

 

    

      

 

 ,

Giải hệ ta nghiệm (a;b) = (-1;1), (a;b) = (1;-1), hai nghiệm tương ứng với cặp điểm đồ thị 1; 1  1; 1 

Vậy điều kiện cần đủ để hai tiếp tuyến (C) A B song song với

2 1 0

1 a ab b a

a b

    

(3)

II 2,00

1 1,00

Điều kiện:

 

cos sin sin tan cot cot

x x x x x

x

 

  

 

 0,25

Từ (1) ta có:

 

2 cos sin

1 cos sin

2 sin

sin cos cos cos

1 cos sin sin

x x x x

x

x x x x

x x x

  

  0,25

2sin cosx x sinx

 

 

2

2

cos

2

x k

x k

x k

  

 

  

    

   

 0,25

Giao với điều kiện, ta họ nghiệm phương trình cho x k2 k  

    0,25

2 1,00

Điều kiện: x 3 0,25

Phương trình cho tương đương:

  1  1 

2

3 3 3

1 1

log log log

2 xx 2  x 2  x

     

3 3

1 1

log log log

2 x x x x

       

       

3 3

log x x log x log x

        

0,25

   

3

2

log log

3 x

x x

x

 

       

 

 2  3

3 x

x x

x

   

2 9 1 10

10 x x

x        

 

0,25

Giao với điều kiện, ta nghiệm phương trình cho x  10 0,25

III 1,00

1 1,00

 

2

2

2

2

1 cos sin

2

1

1 sin sin

2

I x x dx

x d x

 

   

 

 

   

 

 

0,50

   

2

2

0

3

2

0

1

sin sin sin

2

1

sin sin

2 | 12 |

d x xd x

x x

 

 

 

  

 

(4)

Gọi M, N theo thứ tự trung điểm AB CD Khi

OMAB O N' CD

Giả sử I giao điểm MN OO’ Đặt R = OA h = OO’ Khi đó:

OM I

 vuông cân O nên:

2 2

2 2 2

h a

OMOIIM    ha

0,25

Ta có:

2

2 2

2 2 2 3a

2 4 8

a a a a

ROAAMMO       

    0,25

2

2 3a

R ,

8 16

a a

Vh  

    0,25

2

a 3

2 Rh=2

2

2 xq

a a

S      0,25

V 1,00

Phương trình    

3

1 2

x  xm xxxxm

(1) Điều kiện : 0 x

Nếu x 0;1 thỏa mãn (1) – x thỏa mãn (1) nên để (1) có nghiệm cần có điều kiện

1

2 x  xx

Thay x 

vào (1) ta được:

3

1

2

1

2

m

m m

m  

    

 

0,25

* Với m = 0; (1) trở thành:

4 41 2 0

2 x  x   x Phương trình có nghiệm

0,25

* Với m = -1; (1) trở thành

   

 

    

   

4

2

4

1 2 1

1 1

1

x x x x x x

x x x x x x x x

x x x x

      

          

      

+ Với

4 41 0

2 x  x  x

+ Với

1

1

2 x  x  x

Trường hợp này, (1) có nghiệm

0,25

* Với m = (1) trở thành:

    4  2 2

4

1 1 1

x  xxx   xxx  xx  x Ta thấy phương trình (1) có nghiệm

1 0,

2 xx

nên trường hợp (1) khơng có nghiệm

Vậy phương trình có nghiệm m = m = -1

0,25

VIa 2,00

(5)

Đường trịn (C) có tâm I(2;1) bán kính R 

Gọi A, B hai tiếp điểm (C) với hai tiếp (C) kẻ từ M Nếu hai tiếp tuyến lập với góc 600 IAM nửa tam giác suy IM 2R=2 5.

Như điểm M nằm đường trịn (T) có phương trình:    

2

2 20

x  y 

0,25

Mặt khác, điểm M nằm đường thẳng , nên tọa độ M nghiệm hệ phương

trình:

 22  12 20 (1) 12 (2)

x y

x y

    

 

  

 

0,25

Khử x (1) (2) ta được:

 2  2

3

2 10 20 42 81 27

5 x

y y y y

x   

         

  

0,25

Vậy có hai điểm thỏa mãn đề là:

9 3;

2 M  

 

27 33 ; 10 M  

  0,25

2 1,00

Ta tính AB CD  10,AC BD  13,AD BC  0,25

Vậy tứ diện ABCD có cặp cạnh đối đơi Từ ABCD tứ diện gần

đều Do tâm mặt cầu ngoại tiếp tứ diện trọng tâm G tứ diện 0,25

Vậy mặt cầu ngoại tiếp tứ diện ABCD có tâm

3 ;0; 2 G 

 , bán kính

14 R GA 

0,50

VII

a 1,00

Số cách chọn viên bi tùy ý : C189 . 0,25

Những trường hợp khơng có đủ ba viên bi khác màu là:

+ Khơng có bi đỏ: Khả khơng xảy tổng viên bi xanh vàng + Khơng có bi xanh: có C139 cách

+ Khơng có bi vàng: có C159 cách

0,25

Mặt khác cách chọn khơng có bi xanh, khơng có bi vàng có C109 cách chọn 9

viên bi đỏ tính hai lần

Vậy số cách chọn viên bi có đủ ba màu là: C109 C189  C139  C159 42910 cách.

0,50

VIb 2,00

1 1,00

I có hồnh độ I

x 

 

9

: ;

2 Id x y    I  

 

Vai trò A, B, C, D nên trung điểm M cạnh AD giao điểm (d) Ox, suy M(3;0)

 2  2 9

2 2

4

I M I M

ABIMxxyy   

D

12

D = 12 AD = 2

3 ABCD

ABC

S

S AB A

AB

   

 

AD d

M AD

   

 

 , suy phương trình AD: 1.x 31.y 0  0 x y  0 . Lại có MA = MD =

Vậy tọa độ A, D nghiệm hệ phương trình:

(6)

 2  2  2  2

3 3 3

3 3

3

x y y x y x

x y x x

x y                                  

3 1

y x x

x y

  

 

   

  

 

4 x y    

 .Vậy A(2;1), D(4;-1),

9 ; 2 I  

  trung điểm AC, suy ra:

2

2

2

2 A C I

C I A

A C C I A

I

x x

x x x x

y y y y y

y                         

Tương tự I trung điểm BD nên ta có: B(5;4)

Vậy tọa độ đỉnh hình chữ nhật (2;1), (5;4), (7;2), (4;-1)

0,50

2 1,00

Mặt cầu (S) tâm I(2;-1;3) có bán kính R = Khoảng cách từ I đến mặt phẳng (P):

 

 ,  2.2 1  16

d d I P        dR Do (P) (S) khơng có điểm chung.Do vậy, MN = d –R = -3 =

0,25

Trong trường hợp này, M vị trí M0 N vị trí N0 Dễ thấy N0 hình chiếu vng góc

của I mặt phẳng (P) M0 giao điểm đoạn thẳng IN0 với mặt cầu (S)

Gọi  đường thẳng qua điểm I vng góc với (P), N0 giao điểm  (P) Đường thẳng  có vectơ phương n P 2; 2; 1 

qua I nên có phương trình

 

2 2

x t

y t t

z t              0,25

Tọa độ N0 ứng với t nghiệm phương trình:

      15

2 2 2 16 15

9

t t t t t

             

Suy

4 13 14 ; ; 3 N   

 .

0,25

Ta có 0

3 IMIN                            

Suy M0(0;-3;4)

0,25

VII b

1,00

Áp dụng bất đẳng thức

1

(x 0,y 0) xyx y   Ta có:

1 1 1

; ;

2 2a+b+c

a b b c   ab c b c c a    a b  c c a a b   

0,50

Ta lại có:

     

2 2

2 2

2 2

1 2

2 4 2

2

2 1

a b c a b c

a b c a b c a

a b c

         

     

      

Tương tự: 2

1 2

;

2b c a  b 7 2c a b  c 7

Từ suy 2

1 1 4

7 7

a b b c c a     a  b  c  Đẳng thức xảy a = b = c =

0,50

(7)

Ngày đăng: 11/04/2021, 16:15

w