1. Trang chủ
  2. » Tài Chính - Ngân Hàng

DE THI THUI DAI HOC MON TOAN So 1

6 3 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 6
Dung lượng 579,19 KB

Nội dung

THI THỬ ĐẠI HỌC 2009 MƠN TỐN Đề thi số Thời gian làm bài: 180 phút A PHẦN DÀNH CHO TẤT CẢ THÍ SINH Câu I (2 điểm) x 1 y x Cho hàm số a) Khảo sát biến thiên vẽ đồ thị C hàm số x 1 m x1 b) Biện luận theo m số nghiệm phương trình Câu II (2 điểm) sin x  cos x  cos x  2sin x  m 0   a) Tìm m để phương trình 1 log  x  3  log  x  1 log  x  b) Giải phương trình    0;  có nghiệm   Câu III (2 điểm) a) Tìm giới hạn 3x   x 1  cos x x L  lim 98 100 50 b) Chứng minh C100  C100  C100  C100   C100  C100  Câu IV (1 điểm) Cho a, b, c số thực thoả mãn a  b  c 3 Tìm giá trị nhỏ biểu thức M  4a  9b  16c  9a  16b  4c  16a  4b  9c B PHẦN DÀNH CHO TỪNG LOẠI THÍ SINH Dành cho thí sinh thi theo chương trình chuẩn Câu Va (2 điểm) a) Trong hệ tọa độ Oxy, cho hai đường trịn có phương trình  C2  : x  y  x  y 16 0  C1  : x2  y  y  0 C  C  Lập phương trình tiếp tuyến chung b) Cho lăng trụ đứng ABC.A’B’C’ có tất cạnh a Gọi M trung điểm AA’ Tính thể tích khối tứ diện BMB’C’ theo a chứng minh BM vng góc với B’C Câu VIa (1 điểm) Cho điểm A  2;5;3 đường thẳng d: x y z   2 Viết phương trình mặt phẳng    chứa d cho khoảng cách từ A đến    lớn Dành cho thí sinh thi theo chương trình nâng cao Câu Vb (2 điểm) a) Trong hệ tọa độ Oxy, viết phương trình hyperbol (H) dạng tắc biết (H) tiếp xúc với đường thẳng d : x  y  0 điểm A có hồnh độ    b) Cho tứ diện OABC có OA 4, OB 5, OC 6 AOB BOC COA 60 Tính thể tích tứ diện OABC Câu VIb (1 điểm) x y z d1 :   , P  : x  y  z  0  3 Cho mặt phẳng đường thẳng x  y z 5    Tìm điểm M thuộc d1, N thuộc d2 cho MN song song với (P) đường thẳng MN cách (P) khoảng d2 : ĐÁP ÁN Câu I a) điểm x 1 x  có tập xác định D R \  1 Tập xác định: Hàm số x 1 x 1 x 1 lim 1; lim ; lim     x x  x1 x  Giới hạn: x   x  y y'  Đạo hàm: 2  x  1 0,25 0,25  0, x 1  Hàm số nghịch biến khoảng   ;1  1;  Hàm số cực trị Bảng biến thiên: Đồ thị hàm số có tiệm cận đứng x 1; tiệm cận ngang y 1 Giao hai tiệm0,25 I  1;1 cận tâm đối xứng Đồ thị: Học sinh tự vẽ hình b) y x 1  C ' x1 Học sinh lập luận để suy từ đồ thị (C) sang đồ thị Học sinh tự vẽ hình x 1 x 1 m y x1 x1 Số nghiệm số giao điểm đồ thị y m Suy đáp số m   1; m  1: phương trình có nghiệm Câu II a) m  1: phương trình có nghiệm   m 1: phương trình vơ nghiệm điểm sin x  cos x 1  sin 2 x 2 Ta có cos4 x 1  2sin x Do  1   3sin 2 x  2sin x  m 0,25 0,5 0,25 0,25 0,25 0,25   x   0;   x   0;    t   0;1  2 Đặt t sin x Ta có f  t   3t  2t  m, t   0;1 Suy Ta có bảng biến thiên b) 10    0;   m  Từ phương trình cho có nghiệm 1 log  x  3  log  x  1 log  x    Giải phương trình Điều kiện:  x 1     x  3 x  4 x Trường hợp 1: x   2  0,25 0,25 0,25 0,25 x  x 0  x 2 Trường hợp 1:  x   2  0,25 x  x  0  x 2  0,25 Vậy tập nghiệm (2) Câu III a)   T  2;  3 3x   x 1 L  lim  cos x x Tìm  3x2  1 x    L  lim    cos x  x    cos x   Ta có 0,25 0,25 2x2 1  2x2 L1  lim  lim 2  x x   cos x x 2sin  x    2  Xét 3x    lim x   cos x x L2  lim Xét 0,25 3x  x 2sin  3 x   3x   1     2  0,25 Vậy L L1  L2 2  4 b) 100 50 Chứng minh C100  C100  C100   C100  Ta có 0,5 2 100 100  C100 i  C100 i   C100 i   i 100 C100 100 99  C100  C100  C100   C100  C100  C100   C100 i     Mặt khác 0,5   i  1  2i  i 2i    i 100  2i  50  250 Câu IV 100 50 Vậy C100  C100  C100   C100  Cho a, b, c thoả a  b  c 3 Tìm GTNN M  4a  9b  16c  9a  16b  4c  16a  4b  9c         u  2a ;3b ; 4c , v  2c ;3a ; 4b , w  2b ;3c ; 4a  M  u  v  w Đặt    2 M  u  v  w  2a  2b  2c  3a  3b  3c  4a  4b  4c         0,25     0,5 b c a b  c 6 Tương tự … Theo – si có   3 Vậy M 3 29 Dấu xảy a b c 1 Câu Va a) 0,25 Học sinh tự vẽ hình  C1  : I1  0;  , R1 3;  C2  : I  3;   , R2 3  C  ,  C2  Gọi tiếp tuyến chung 0,25  : Ax  By  C 0 A2  B 0   0,25  tiếp tuyến chung  C1  ,  C2    B  C 3 A2  B  1  d  I1;   R1    2 d  I ;   R2  A  B  C 3 A  B     A  2B C Từ (1) (2) suy A 2 B Trường hợp 1: A 2 B 0,5 Chọn B 1  A 2  C  3   : x  y  3 0  A  2B C Trường hợp 2: Thay vào (1) B   : y  0;  : x  y  0 a  d  M ;  BB ' C    AH  Gọi H trung điểm BC A  B 2 A2  B  A 0; A  b) 0,25 a2 a3 SBB ' C  BB '.BC   VMBB ' C  AH SBB ' C  2 12 Gọi I tâm hình vng BCC’B’ (Học sinh tự vẽ hình) Ta có B ' C  MI ; B ' C  BC '  B ' C  MB 0,25 (Học sinh tự vẽ hình) 0,25 0,5 Câu VIa Gọi K hình chiếu A d  K cố định;    mặt phẳng chứa d H hình chiếu A    Gọi Trong tam giác vng AHK ta có AH  AK Vậy 0,25 AH max  AK     mặt phẳng qua K vng góc với AK    mặt phẳng qua A vng góc với d     : x  y  z  15 0 Gọi 0,25  K  3;1;    Câu Vb a) Gọi mặt phẳng qua K vuông góc với AK H: x2 a2  y2 b2 (H) tiếp xúc với     : x  y  z  0 0,25 1 d : x  y  0  a  b 4 x 4  y 2  A  4;    H   0,25 16 a  b 1    1 0,25 x2 y2 a 8; b 4   H  :  1 Từ (1) (2) suy 0,5 (Học sinh tự vẽ hình) 0,25 Lấy B’ OB; C’ OC cho OA OB ' OC ' 4   OAM    OB ' C '  Lấy M trung điểm B’C’ 0,25 2 b) Kẻ AH  OM  AH   OB ' C ' Ta có AM OM 2  MH  0,25  AH  3 0,25 15  SOBC  OB.OC.sin BOC  2 VOABC  AH SOBC 10 Vậy Câu VIb Gọi 0,25 M   2t ;3  3t; 2t  , N   6t '; 4t ';   5t '  d  M ;  P   2  2t  1  t 0; t 1  t 0  M  1;3;0  , MN  6t ' 4; 4t ' 3;  5t '  Trường hợp 1:     MN  nP  MN nP 0  t ' 0  N  5;0;   Trường hợp 2: Kết luận 0,25 0,25 t 1  M  3; 0;  , N   1;  4;  0,25 Nguồn: Hocmai.vn

Ngày đăng: 11/04/2021, 15:03

TÀI LIỆU CÙNG NGƯỜI DÙNG

  • Đang cập nhật ...
w