1. Trang chủ
  2. » Mẫu Slide

De thi vao 10 Khanh Hoa 2009

5 4 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 5
Dung lượng 143,28 KB

Nội dung

SỞ GIÁO DỤC VÀ ĐÀO TẠO KHÁNH HÒA KÌ THI TUYỂN SINH LỚP 10 NĂM HỌC 2009-2010 MÔN: TOÁN NGÀY THI: 19/06/2009 Thời gian làm bài: 120 phút (không kể thời gian giao đề) -Baøi 1: (2,00 điểm) (Không dùng máy tính cầm tay) a Cho biết A 5  15 B =  15 so sánh tổng A+B tích A.B 2 x  y 1  b Giải hệ phương trình: 3x  y 12 Bài 2: (2,50 điểm) Cho Parabol (P) : y = x2 đường thẳng (d): y = mx – (m tham số, m ≠ ) a Vẽ đồ thị (P) mặt phẳng Oxy b Khi m = 3, tìm tọa độ giao điểm (p) (d) c Gọi A(xA; yA), B(xB; yB) hai giao điểm phân biệt (P) (d) tìm giá trị m cho yA + yB = 2(xA + xB) – Baøi 3: (1,50 điểm) Một mảnh đất hình chữ nhật có chiều dài chiều rộng 6(m) bình phương độ dài đường chéo gấp lần chu vi Xác định chiều dài chiều rộng mảnh đất Bài 4: (4,00 điểm) Cho đường tròn (O; R) Từ điểm M nằm (O; R) vẽ hai tiếp tuyến MA MB (A, B hai tiếp điểm) Lấy điểm C cung nhỏ AB (Ckhác với A B) Gọi D, E, F hình chiếu vuông góc C AB, AM, BM a Chứng minh AECD tứ giác nội tiếp   b Chứng minh: CDE CBA c Gọi I giao điểm AC ED, K giao điểm CB DF Chứng minh IK//AB d Xác định vị trí điểm C cung nhỏ AB để (AC2 + CB2) nhỏ Tính giá trị nhỏ OM = 2R Heát HƯỚNG DẪN GIẢI Bài 1: (2,00 điểm) (Không dùng máy tính cầm tay) a Cho biết A 5  15 B =  15 so sánh tổng A+B tích A.B     15  5   15  Ta coù : A+B=  15   15 10   A.B =  15  2 25  15 10 Vaäy A+B = A.B 2 x  y 1  b Giải hệ phương trình: 3x  y 12 2 x  y 1  y 1  x  y 1  x    3x  y 12 3 x   x 12 3x    x  12  y 1  x   7 x  12  y 1  x   7 x 14  y 1   y     x 2  x 2 Baøi 2: (2,50 điểm) Cho Parabol (P) : y = x2 đường thẳng (d): y = mx – (m tham số, m ≠ ) a Vẽ đồ thị (P) mặt phẳng Oxy TXĐ: R BGT: x -2 -1 2 y=x 1 Điểm đặc biệt: Vì : a = > nên đồ thị có bề lõm quay lên Nhận trục Oy làm trục đối xứng Điểm thấp O(0;0) ĐỒ THỊ: b Khi m = 3, tìm tọa độ giao điểm (p) (d) Khi m = (d) : y = 3x – Phương trình tìm hoành độ giao điểm: x2 = 3x – x2 - 3x + = (a+b+c=0) =>x1 = ; y1 = vaø x2 = 2; y2 = Vậy m = d cắt P hai điểm (1; 1) (2; 4) c Gọi A(xA; yA), B(xB; yB) hai giao điểm phân biệt (P) (d) tìm giá trị cuûa m cho yA + yB = 2(xA + xB) – 1(*) y y=x2 Vì A(xA; yA), B(xB; yB) giao điểm y A = mx A  -2 -1 x y B = mx B  (d) (P) nên: y A  y B =m  x A  x B   Thay vào (*) ta có: m  x A  x B   2  x A  x B    m  x A  x B  2  x A  x B    m  x A  xB   xA  xB   m 2    xA  xB   xA  xB  Baøi 3: (1,50 điểm) Gọi x(m) chiều dài mảnh đất hình chữ nhật => x-6 (m) chiều rộng mảnh đất hình chữ nhật(ĐK: x-6>0 => x> 6) chu vi mảnh đất  x+  x-6   =  2x-6  4 x  12 Theo định lí Pitago; bình phương độ dài đường chéo laø: x   x-6  x  x  36  12 x 2x  12 x  36 Ta có phương trình : 2x  12 x  36 5  x  12   2x  12 x  36 20 x  60  2x  32 x  96 0  x  16 x  48 0  ' 64  48 16  '  16 4 84 8 Phương trình co ùhai nghiệm: x1  12 x  46  loại  1 Vậy chiều dài mảnh đất 12(m) chiều rộng mảnh đất 6(m)  Bài 4: (4,00 điểm)  AB GT đt:(O; R),tt:MA,MB;C CD  AB; CE  AM ; CF  BM a Chứng minh AECD tứ giác nội tiếp KL M   b Chứng minh: CDE CBA c IK//AB BÀI LÀM: a Chứng minh AECD tứ giác nội tiếp Xét tứ giác AECD ta có : E C A1 I D1 D2K F A A2 N D - Hai góc đối AEC  ADC 90 (CD  AB; CE  AM ) Nên tổng chúng bù Do tứ giác AECD nội tiếp đường tròn    b Chứng minh: CDE CBA Tứ giác AECD nội tiếp đường tròn nên     CDE CAE (cùngchắncungCE ) Điểm C thuộc cung nhỏ AB nên:   CAE CBA (cùngchắncungCA )   CDE CBA Suy : c Chứng minh IK//AB Xét DCE BCA ta có:  B  (cmt )  D     DCE KCI E  A (cùngchắncungCD )     D  ;A  D  FBC  maø EAD IDK( A ) 1 2   EAD  DCE 180 (tứ giác AECD nội tiếp)    KCI  IDK 180 Suy tứ giác ICKD nội tiếp => Mà     CIK CDK cùngchắn CK      CAB CDK cùngchắn CBF  Suy CIK CBA  vị trí đồng vị   IK//AB (đpcm) d Xác định vị trí điểm C cung nhỏ AB để (AC2 + CB2) nhỏ Tính giá trị nhỏ OM = 2R Gọi N trung điểm AB Ta có: AC2 + CB2 = 2CD2 + AD2 + DB2 =2(CN2 – ND2) + (AN+ND)2 + (AN – ND)2 = 2CN2 – 2ND2 + AN2 + 2AN.ND + ND2 + AN2 – 2AN.ND + ND2 = 2CN2 + 2AN2 = 2CN2 + AB2/2 AB2/2 ko đổi nên CA2 + CB2 đạt GTNN CN đạt GTNN  C giao điểm ON cung nhỏ AB => C điểm cung nhỏ AB Khi OM = 2R OC = R hay C trung điểm OM => CB = CA = MO/2 = R Do đó: Min (CA2 + CB2 ) = 2R2  

Ngày đăng: 11/04/2021, 14:25

TÀI LIỆU CÙNG NGƯỜI DÙNG

  • Đang cập nhật ...
w